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A workflow for 3D model reconstruction from multi-view depth
acquisitions of dynamic scenes*
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Abstract— We propose a workflow for generating high-
quality 3D models of dynamic scenes for the film and enter-
tainment industry. Our 3D scanning system comprises multiple
synchronized 3D Measurement Units that incorporate stereo
analysis. We give an overview of the involved algorithms for
stereo matching, point cloud registration, semi-automatic post-
processing and mesh generation, and demonstrate selected steps
of their implementation. The computed 3D models will provide
content for 360 degree video production and 3D augmented
reality applications.

I. INTRODUCTION

The extensive usage of computer graphics in the film and
advertisement industries has drastically raised the demand
for high-quality 3D model generation from real film con-
tent. Related applications include the creation of realistic
special effects and upcoming trends towards immersive 3D
augmented reality, virtual reality and 360 degree video
content production. While several passive and active depth
measurement sensors have become available over the last
decade, currently available multi-view 3D scanning solutions
have various shortcomings. For example, ReCap [3] from
Autodesk processes multiple images of an object from var-
ious viewing positions for 3D object reconstruction, how-
ever, it appears not to be capable of coping with dynamic
scenes. Active devices based on structured light or time-
of-flight techniques often place severe restrictions on the
scene environment (for example, indoor locations only) or
have significant limitations on the size of the scanned area
or the number of viewpoints. Furthermore, the scanning
information is usually only available as point cloud data,
while professional film post-production workflows require
accurate 3D mesh models.

We propose to overcome some of these limitations by the
development of a scalable and cost-efficient workflow for
accurate 3D scanning of film sets and the creation of cor-
responding high-quality 3D models. The system comprises
two stages: online content acquisition (i.e., production side)
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and offline quality enhancement and mesh generation (i.e.,
post-production side). On the production side several stereo-
based 3D Measurement Units (3DMU) are used to acquire
a scene from multiple viewpoints in a highly synchronized
way. On the post-production side the captured views of all
3DMUs enable the conversion of the recorded 2D footage
into high-quality mesh models. The suggested workflow is
explained in more detail in Section III.

II. RELATED WORK

Single camera calibration relates to the process of esti-
mating the intrinsic camera parameters such as focal length,
principal point offset and skew factor. When calibrating
multiple cameras, the extrinsic parameters describing the
geometric relationship between these cameras are essential.
Popular approaches for single camera calibration either rely
on 2D objects such as planes [26] or 1D objects such as a
wand with multiple collinear points [27]. For multiple camera
calibration, a pairwise stereo calibration procedure can be
applied [11]. In contrast, the authors of [21] present a fully
automatic multiple camera calibration procedure.

Depth reconstruction from stereo image pairs has been
studied extensively in the literature, with algorithms tradi-
tionally being grouped into local, global and semi-global
approaches. Local methods proposed during the last years
often rely on adaptive support weight techniques [12] and
cost-volume filtering [13]. Very recently, deep convolutional
neural networks have been successfully used for depth esti-
mation. For example, Kendall et al. [15] propose an end-to-
end deep learning system for computing disparity maps. The
4Dviews [10] system uses an iterative patch sweep method.

Rough alignment of two or more 3D measurements of
a scene by so-called global registration is typically based
on geometric or topological features. In recent work, the
Super4PCS algorithm [17], which matches approximately
planar four-point configurations, has emerged as a fast yet
robust method. In local registration (fine-tuning the results
of global registration) the iterative closest point (ICP) algo-
rithm [4] and its variants [18] are well established techniques
formulated as optimization problems in a least-squares sense.

Sumner et al. [20] propose a method to interactively and
non-rigidly deform meshes. They reduce the complexity of
the problem of deforming a mesh by deforming a graph
structure, termed the embedded deformation (ED) graph.
Non-rigid deformation of a mesh can be used to perform non-
rigid alignment of two meshes, as shown in the Fusion4D [9]
pipeline, which reconstructs a non-rigid scene in real-time. In
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Fusion4D, aligned data is stored and fused in a 3D voxel grid.
The popular marching cubes [16] and dual contouring [14]
algorithms provide the means to transform volumetric to
mesh data.

Some further literature will be addressed in the context of
the method description in the next section.

III. PROPOSED APPROACH
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Fig. 1. Processing pipeline of the proposed workflow.

Our reconstruction framework, as shown in Figure 1, is
designed to capture scenes with multiple 3DMUs. From the
acquired data we reconstruct depth information individually
per 3DMU . In a subsequent step, registration errors among
the individual units are minimized using rigid point cloud
alignment. After that, the results are refined with our semi-
automatic post-correction tool. In the last step we generate
mesh models by means of non-rigid alignment.

In the following, we give a detailed overview of the
individual steps involved in our processing pipeline.

A. 3DMU Setup and Calibration

We illustrate our sensor setup comprising two 3DMUs
as depicted in Figure 2. Each 3DMU is composed of two
industrial-grade XIMEA cameras [24]. Each camera contains
a 2/3 inch RGB sensor and is capable to record at a 2464×
2056 (5 MPix) resolution in RAW format at a maximum of
60 frames per second. Thus, in total we use four cameras
ci to observe the scene. Here, i ∈ {0,1,2,3} is the camera
index, where 0 represents the left camera of 3DMU1, 1 the
right camera of 3DMU1, 2 the left camera of 3DMU2 and 3
the right camera of 3DMU2. Captured image data is recorded
by a controlling computer with USB3 interface. We achieve
accurate synchronization of the cameras with a hardware
interface operating in master/slave mode.

Fig. 2. Illustration of our sensor setup. Please note that cameras are facing
the scene, thus left and right are flipped. A detailed description can be found
in the text.

For calibration, we perform (i) intra-calibration to obtain
the intrinsic and extrinsic parameters for each 3DMU in-
dividually and (ii) inter-calibration to obtain extrinsic pa-
rameters between multiple 3DMUs. For both we use the
approach of Zhang [26] to compute calibration parameters
based on a circle grid calibration pattern. For the former
calibration parameters are obtained in a pre-production step
as these parameters stay fixed for a 3DMU . In particular, we
compute calibration matrices and distortion coefficients for
each camera individually, and rotations and translations for
c1 to c0 and c3 to c2. For the latter, calibration parameters
are obtained during production as soon as the position of
each 3DMU is fixed. In particular, the inter-3DMU extrinsics
encode the rotation and translation from c2 to c0.

B. Depth Reconstruction

We reconstruct dense disparity maps from each individual
3DMU by means of stereo matching. Our method is based
on the cost-volume filtering algorithm employed in [19]. For
each pixel in the left image of a stereo pair with size w×h,
the costs of matching a corresponding pixel in the right image
are computed using the Census dissimilarity metric [25] in a
given disparity search range d. This gives rise to a cost-
volume of dimensions w× h× d. Subsequently, the cost-
volume is aggregated (i.e., filtered) using the fast edge pre-
serving permeability filter [8]. The selected disparity values
are those with minimum costs in the cost-volume. This step
yields a raw disparity map. Finally, unreliable and occluded
pixels are eliminated by means of a consistency check.
Disparity values are compared with those of corresponding
pixels in a second disparity map that was computed in the
same fashion but with the right image as reference. Pixels
that disagree by more than 1 disparity count are dropped. In
order to improve the quality of the results and run-time, the
disparity map computation is embedded into a hierarchical
matching scheme. For each stereo image pair a Gaussian
image pyramid with k = 3 layers is built. Stereo matching
is performed first on the coarsest layer l2. Based on this
initial disparity map, an offset map is computed that guides
disparity estimation on the next finer layer l1. The process is
then repeated for the finest layer l0 of the Gaussian pyramid.
In image sequences slightest changes of capturing conditions
introduce temporal noise in the computed disparity maps. We
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address this issue by temporal filtering in the cost-volume
following the approach in [7]. Using the intra- and inter-
3DMU calibration information we project the disparity maps
into point clouds in a common coordinate system.

C. Semi-automatic Post-Correction

Depth estimation errors, e.g. due to untextured regions,
make additional steps of correction necessary to improve the
quality of the multi-view point cloud reconstruction for high-
quality 3D film content generation. With this goal in mind,
we develop a semi-automatic multi-view 2D-plus-depth vi-
sualization and correction tool. To effectively reduce noise
and outliers from the resulting point cloud, we implement
the multi-view consistency filter of [23] and outlier removal
algorithm of [6]. The tool also allows the user to make spatio-
temporally coherent local corrections on the disparity maps
in a joint-view manner. When it comes to local corrections,
we perform binary segmentation operations on 2D video [5]
to extract areas we are interested in correcting through user-
assisted scribbles in key-frames.

D. Point Cloud Registration and Mesh Generation

In order to fine-tune global 3DMU registration, we per-
form local rigid pairwise alignment of the raw point clouds
for a specific frame (that differs by rigid-body transforms
only). We employ the method of Pottmann et al. [18],
representing an unknown rigid-body transform by its linear
velocity vector field and minimizing approximations of a
point cloud’s squared distance function. In case extrinsic cali-
bration information of the individual 3DMUs is not available,
a global alignment step based on 4PCS [1] precedes the local
alignment step.

We improve a reference frame by fusing each successive
frame with the reference. The reference frame is stored as
a signed distance field, a volume data-set. For alignment we
first extract the reference mesh (the zero-crossing surface
in the signed distance volume) via marching cubes. Non-
rigid alignment is performed to align the next frame as a
point cloud to the reference frame. We follow the approach
of Sumner et al. [20] by generating an ED graph for the
point cloud to be aligned. Skinning the vertices to the ED
graph uses the weighting presented in Fusion4D [9], as this
results in a smoother deformation. A least-squares problem
that minimizes the distance of the point clouds while main-
taining approximative local rigidity through regularization
is formulated based on the linear velocity vector field. To
integrate the aligned point cloud into the reference volume,
we update the signed distance of each voxel grid point by
projection onto an implicit point set surface [2]. In a final
step, we extract a mesh from the merged signed-distance
field via marching cubes.

IV. EXPERIMENTS

We have conducted a capturing session with two 3DMU
prototypes and acquired multiple data-sets with real world
calibration and image sequence data. Results of the initial
processing steps are shown in Figure 3. For these test scenes

we created spherical objects of known size in order to
assess the accuracy of the 3D reconstruction. Using the intra-
3DMU calibration information the image sequences were
rectified (Figure 3 (a,b) and (e,f)). The computed stereo-
derived disparity maps (Figure 3 (c,g)) were afterwards
projected into point clouds (Figure 3 (d,h)). We currently
capture with a frame rate of 25 fps. By measuring the sizes
of the captured spheres in the reconstructed point clouds, we
have determined that the diameters of the two reconstructed
spheres deviate from their true sizes by less than 6 percent
for both 3DMUs. A screenshot of the implemented post-
correction tool is shown in Figure 4. The displayed scribbles
are projected to 3D space using calibration and disparity
information and then back-projected to other views, reducing
user interactions and aiding the user in the 3D segmentation
process.

V. SUMMARY AND FUTURE WORK

We have proposed a multi-view depth reconstruction sys-
tem in the context of a film and media production workflow.
The approach aims at the generation of high-quality and
temporally coherent 3D meshes from dynamic real world
scenes. The implemented processing chain includes algo-
rithms for stereo-based depth reconstruction and geometric
3D data processing, in conjunction with semi-automatic post-
processing techniques for further quality enhancement.

The next step of the ongoing project will be to evaluate
the results of the individual components and the system
as a whole in terms of accuracy and efficiency. Besides
quantitative measurements on scene targets of pre-defined
size and shape, we plan to evaluate the system by rendering
novel views into the viewpoint of an additional reference
3DMU and computing error maps [22]. A complementary
qualitative user study will connect objective assessment and
subjective judgement.
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Fig. 3. Data acquired with our experimental setup. The top row shows results acquired by 3DMU1, the bottom row those of 3DMU2. (a)-(b) and (e)-(f):
rectified RGB stereo image pairs; (c) and (g): color-encoded disparity maps, numbers indicate disparity values; (d) and (h) point clouds derived from depth
maps.
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