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Abstract
In order for methods combining ab initio density-functional theory and many-body techniques 
to become routinely used, a flexible, fast, and easy-to-use implementation is crucial. We 
present an implementation of a general charge self-consistent scheme based on projected 
localized orbitals in the projector augmented wave framework in the Vienna Ab Initio 
Simulation Package. We give a detailed description on how the projectors are optimally chosen 
and how the total energy is calculated. We benchmark our implementation in combination 
with dynamical mean-field theory: first we study the charge-transfer insulator NiO using a 
Hartree–Fock approach to solve the many-body Hamiltonian. We address the advantages 
of the optimized against non-optimized projectors and furthermore find that charge self-
consistency decreases the dependence of the spectral function—especially the gap—on the 
double counting. Second, using continuous-time quantum Monte Carlo we study a monolayer 
of SrVO3, where strong orbital polarization occurs due to the reduced dimensionality. Using 
total-energy calculation for structure determination, we find that electronic correlations have a 
non-negligible influence on the position of the apical oxygens, and therefore on the thickness 
of the single SrVO3 layer.
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1. Introduction

The advances in the field of nanostructures, where control is 
now experimentally possible on an atom-by-atom scale, have 
given rise to a strong demand for theoretical simulation tools 
that are capable of simulating complex correlated electron 
systems such as heterostructures, clusters, or adatom arrays 
on surfaces. There are several successful approaches that can 
be used for that. Among the most widely used are ab initio 
approaches, notably density functional theory (DFT) and 
many-body model Hamiltonians.

Modern Kohn–Sham DFT, within the local density approx-
imation (LDA) [1] or a generalized gradient approximation 
(GGA) [2], yields various ground-state properties including 
crystal structures quite reliably for many materials, essen-
tially without any ambiguous input parameters. The auxil-
iary single-particle energies can be seen as an estimate of the 
electronic quasi-particle energies [3], sometimes giving good 
qualitative agreement. However, (semi)local functionals like 
LDA or GGA are well known to fail to capture the physics of 
strongly-correlated materials such as Mott insulators, uncon-
ventional superconductors, heavy Fermion systems, or Kondo 
systems.

This is why, for treating these systems, model Hamiltonians 
such as the Hubbard model are usually employed. Generally 
speaking, these approaches focus on the description of elec-
tron correlation phenomena in a minimal low-energy Hilbert 
space. They are accessible by a broad set of many-body tech-
niques including dynamical mean-field theory (DMFT) [4] 
and generalizations thereof. These models naturally depend 
on model parameters that are unknown a priori. Keeping the 
number of parameters low can lead to over-simplified models 
that fail to explain sufficiently well experimental findings. On 
the other hand, keeping a large number of unknown param-
eters makes the results ambiguous already from the outset.

Therefore, to obtain the best of both worlds, it appears 
natural to combine the complementary strengths of both 
approaches to model correlated electron systems in a realistic 
manner. To achieve this goal, there has been an ongoing effort 
in the development of approaches like DFT+DMFT [5, 6] for 
more than 20 years now. The class of materials addressed by 
DFT+DMFT is very wide and includes Mott insulators, cor-
related metals, superconductors, and magnetic materials.

On the DFT side, simulations using projector augmented 
wave (PAW) [7] basis sets turn out to provide a good com-
promise between accuracy and computational requirements 
in these systems. Thus, several DFT+DMFT approaches 
have been implemented with PAW basis sets on the DFT side  
[8, 9]. In its most simple formulation, the DMFT is performed 
on top of a converged DFT calculation (so-called one-shot 
DFT+DMFT). For many systems, especially those where 
the strong correlations cause a rearrangement of charges, the 
success of the method can be significantly improved by per-
forming a fully charge self-consistent calculation [10–14]. 
There, the electron density obtained from the DMFT calcul-
ation is fed back to the DFT code and the entire loop is self-
consistently solved. There already exist implementations of 

DFT+DMFT using the PAW formalism that include charge 
self-consistency [15–17].

Here we describe a fully charge self-consistent imple-
mentation based on optimized projected local orbitals in the 
Vienna Ab Initio Simulation Package (vasp) [18–20]. On the 
DFT side, it is flexible and easy to use; vasp provides the data 
necessary to construct the low-energy model of the system 
and offers an interface so that the updated charge density can 
be handed back. This makes it possible to combine it, e.g. with 
any kind of many-body correction beyond DFT in some corre-
lated subspace defined via local projection operators without 
requiring any changes to the DFT code. On the DMFT side, 
we present two codes making use of this extension of vasp.

The paper is organized as follows. In section 2 we explain 
the details of our approach, particularly, the definition of 
the optimized local projectors and the way the charge feed-
back from the many-body to the DFT part is implemented. 
We then present an application to the testbed material of NiO 
in section  3, where we first analyze the optimized versus 
non-optimized projectors and second demonstrate how full 
charge self-consistency affects simulations of the electronic 
structure, particularly, in relation with the so-called double-
counting problem. In section 4, we report an application of 
our scheme to monolayers of SrVO3, where we compare our 
implementation, in the triqs [21] framework, to the already 
existing interface between triqs and the DFT code wien2k 
[22, 23]. Furthermore, for that material, we demonstrate total 
energy calculations and find structural changes induced by 
correlations.

2. Details of the implementation

2.1. Correlated subspace from optimally projected  
local orbitals

To perform DFT+DMFT calculations one needs a way to 
transform between the basis of the Kohn–Sham (KS) states 
and the localized basis of the subspace used to define lattice 
models, e.g. a Hubbard model. The most obvious way to do 
this is to perform a unitary transformation of a subset of KS 
states to construct a set of local states. This method is at the 
heart of various types of Wannier function based methods, 
such as the maximally-localized Wannier functions [24].

In many cases, when KS bands with different characters 
are strongly entangled, it becomes however difficult to con-
struct a well-defined unitary transformation. In this case it is 
more advantageous to use projector operators which, acting 
on the KS Hilbert space, project out only KS states with a 
desired character. This is the basis of projected localized 
orbitals (PLO) [8].

In the PLO formalism one starts by defining an ortho-
normal localized basis set |χL〉 associated with each correlated 
site, which is typically indexed by local quantum numbers, 
e.g. L = {l, m,σ, ...} with (l, m) and σ being orbital and 
spin angular-momentum quantum-numbers, respectively. 
{|χL〉} spans a correlated subspace C at each correlated site. 
Assuming 〈χL|χL′〉 = δLL′, any operator acting on this space 
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can be constructed by projecting onto C using a projector 
operator P̂C, i.e.

Âimp = P̂CÂP̂C , (1)

P̂C =
∑

L

|χL〉〈χL|. (2)

An arbitrary vector |Ψ〉 of the Hilbert space can be decomposed 
in terms of local states by writing P̂C |Ψ〉 =

∑
L |χL〉〈χL|Ψ〉. 

If we now consider a complete basis |Ψµ〉, the projector oper-
ator is completely defined by specifying PLO functions 
PL,µ ≡ 〈χL|Ψµ〉.

As described in detail in [8, 9], the PLO projector in the 
PAW framework [7, 18] can be written as

PR
L,ν(k) =

∑
i

〈χR
L |φi〉〈p̃i|Ψ̃νk〉, (3)

where |χR
L 〉 are localized basis functions associated with each 

correlated site R , |φi〉 are all-electron partial waves, and |p̃i〉 
are the standard PAW projectors. In the following, we will 
omit the site index R  unless it leads to a confusion. The 
index i stands for the PAW channel n, the angular momentum 
quantum number l, and its magnetic quantum number m. 
|Ψ̃νk〉 are pseudo-KS states. For the PAW potentials distrib-
uted with vasp, generally a minimum of two channels n for 
each angular quantum number are used. For instance for 3d 
elements, the first 3d channel is placed at the energy of the 
bound 3d state in the atom, and a second channel is added 
a few eV above the bound atomic 3d state. Inclusion of the 
second channel improves the transferability of the PAW poten-
tials and the description of the scattering properties greatly. 
For s and p states in, e.g. 3d transition metals, the first channel 
usually describes 3s and 3p semi-core states and the second 
channel is placed somewhere in the valence regime (4s and 4p 
states) or even above the vacuum level. Although a description 
of how the projectors have been obtained is stored in more 
recent PAW potential files, it is not always straightforward for 
the user to identify the best suitable PLO projectors.

Specifically, various choices are possible for |χL〉 [9]. 
Conveniently, one might simply use the all-electron partial 
waves for a particular PAW channel n, |φLn〉, as the local 
basis. However, doing so in vasp can lead to a non-optimal 
projection. For instance, for transition metals to the left of 
the periodic table, the d states in the solid might be more 
or less contracted than those in the atom, so that the ‘best’ 
|χL〉 is a linear combination of the two available 3d channels. 
Likewise, projection onto the TM valence s states is often 
difficult, because of the presence of semi-core s states in the 
PAW potential file. Ideally, the user should not need to make a 
manual choice of the local |χL〉 functions.

In the following we explain a protocol that largely resolves 
these issues. The first step is not strictly required, but simpli-
fies the subsequent coding somewhat. We first construct a set 
of PAW projectors and partial waves that are orthogonalized 
inside the PAW sphere. This can be achieved by diagonal-
izing the all-electron one-center overlap matrix Onn′ (for each 
angular and magnetic quantum number L),

Onn′ = 〈φLn|φLn′〉, (4)

which gives the eigenvalues λn and the eigenvector matrix U,

Λ = diag(λ1, . . . ,λn), (5)

Λ = U†OU. (6)

The new partial waves and the corresponding PAW projec-
tors can now be defined as linear combinations of the original 
ones:

|ξLn〉 =
1√
λn

∑
n′

Unn′ |φLn′〉, (7)

〈β̃Ln| =
√

λn

∑
n′

U†
n′n〈p̃Ln′ |. (8)

This new set of projectors and partial waves have the important 
property that the all-electron partial waves |ξLn〉 are orthogonal 
to each other and that they are normalized to one. Thus, we 
will now refer to them as ‘orthonormal’ partial waves. The 
choice above is not unique, though, for instance one might 
also adopt a Gram–Schmidt orthogonalization procedure.

To construct a unique projector, we seek a unitary trans-
formation that maximizes the overlap between the projector 
and KS valence states within a chosen (user supplied) energy 
window [εP

min, εP
max]. Specifically, we diagonalize a matrix

Mnn′ =
∑
νk

〈β̃Ln|Ψ̃νk〉〈Ψ̃νk|β̃Ln′〉, (9)

where the sum is restricted to states with energies 
ενk ∈ [εP

min, εP
max]. We then pick the eigenvector υn with the 

largest absolute eigenvalue to construct local basis functions 
and corresponding PAW projectors,

|χL〉 =
∑

n

υn|ξLn〉, (10)

〈π̃L| =
∑

n

υ∗
n 〈β̃Ln|, (11)

with projector functions given by8

PL,ν(k) = 〈π̃L|Ψ̃νk〉. (12)

We note in passing that both steps could be combined into a 
single computational step, by diagonalization of a generalized 
eigenvalue problem involving the overlap matrix O and the 
matrix M evaluated using the original set of projectors and 
partial waves.

Note that since the all-electron partial waves do not form 
an orthonormal basis set between different PAW spheres and 
because projection is performed for a subset of KS states, the 
above procedure will usually produce non-normalized local 
states. However, normalized local states can be constructed if 
we orthonormalize the projector functions as follows,

OLL′ =
∑
νk

PL,ν(k)P∗
ν,L′(k), (13)

8 The projectors PL,ν(k) according to (12) containing all phase factors are 
written by vasp to a file called LOCPROJ.
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PL,ν(k) ←
∑

L′

O− 1
2

LL′ PL′,ν(k). (14)

On a technical level, the optimal projectors are constructed 
internally in vasp according to (4)–(12) for each sites R  given 
an energy window [εP

min, εP
max]. The last orthonormalization 

step (14) is done externally as post-processing. This allows 
one to choose a different energy window for the summation 
in (13) in order to fine-tune the degree of localization of the 
impurity Wannier functions.

The projection scheme has been used quite widely in the 
solid state community [8, 9], even in combination with VASP. 
When using VASP, these calculations were often not based on 
a solid mathematical foundation. VASP used to project onto all 
available PAW projectors with a certain angular and momentum 
quantum number lm, summed the resulting densities, averaged 
the phase factors and intensities over all lm projectors, and 
finally wrote the results to a file (PROCAR). Such a prescription, 
in particular, the averaging of the intensities and phase factors 
was done ad hoc without a proper mathematical prescription. 
This can result in unsatisfactory results if the two projectors 
span a completely different subspace, for instance Ni 3d and 
4d states, or transition metal semi-core p states and valence p 
states. We will demonstrate this issue for NiO in section 3.1.

2.2. Total energy and charge self-consistency

A general extension of DFT Kohn–Sham equations to a many-
body problem based on the Hubbard model can be formulated 
using the total-energy functional [10, 25]

E[n,ĜC ] =
1
β

∑
iωnk

Tr{Ĝ(k, iωn)ĤKS(k)}

+ EH[n] + Exc[n]−
∫

dr (vxc + vH)n(r)

+ Ecorr[ĜC ]− EDC[ĜC ],
 

(15)

where Ĝ(k, iωn) is the Green’s function containing many-
body effects, and ĤKS(k) =

∑
ν |Ψνk〉ενk〈Ψνk| is the KS 

Hamiltonian. The charge density, n(r), and Green’s function 
in the correlated subspace, ĜC(k, iωn), are both related to 
Ĝ(k, iωn) by

n(r) =
1
β

Tr
∑
iωnk

〈r|Ĝ(k, iωn)|r〉, (16)

ĜC(k, iωn) = P̂C(k)Ĝ(k, iωn)P̂C(k), (17)

where P̂C
k  projects onto correlated localized states, see 

(2). Ecorr is the energy contribution of the interaction term 
(Hubbard U-term) and Edc is the double-counting correction.

The first four terms of the above expression form the usual 
DFT total energy calculated for the density matrix and charge 
density of the interacting system, which is non-diagonal in 
this case. It is thus clear that to get the correct value of the 
total energy the density matrix must be calculated in a self-
consistent manner.

In the framework of DFT+DMFT [4, 6] the interacting 
Green’s function is defined as follows:

Ĝ(k, iωn) =
[
(iωn + µ)1̂1 − ĤKS(k)− Σ̂KS(k, iωn)

]−1
, (18)

where Σ̂KS(k, iωn) is obtained by up-folding the local 
self-energy,

Σ̂KS(k, iωn) =
∑
νν′

|Ψνk〉〈Ψν′k|

·
∑
mm′

P∗
ν,m(k)Σmm′(iωn)Pm′,ν′(k)

 
(19)

where the local self energy’s matrix elements in the basis of 
localized impurity states, |χlm〉, are

Σmm′(iωn) = Σimp
mm′(iωn)− ΣDC

mm′ , (20)

which consist of the purely local impurity self-energy 
Σ̂imp(iωn), obtained from an impurity solver, and the double 
counting Σ̂dc. Using the PLO functions we can write this 
Green’s function in terms of its KS matrix elements

Gνν′(k, iωn) =
[
(iωn+µ− ενk)1̂1 − Σ̂KS(k, iωn)

]−1

νν′
.

 
(21)

If we define an energy window [εC
min, εC

max] which selects 
a subset WC of KS states affected by correlations, the inter-
acting charge density can be written as

n(r) =
∑

k

∑
ν /∈WC

fνk〈r|Ψνk〉〈Ψνk|r〉

+
∑

k

∑
νν′∈WC

〈r|Ψνk〉Nνν′(k)〈Ψν′k|r〉,
 

(22)

where we use a non-diagonal density matrix

Nνν′(k) =
1
β

∑
iωn

Gνν′(k, iωn), (23)

and a diagonal density matrix formed by the KS occupation 
numbers fνk . Note that the chemical potential μ here is gener-
ally different from the KS chemical potential µKS. The subset 
of KS states for the optimization of the projectors WP and KS 
states affected by correlations WC can be chosen to be the 
same but one does necessarily not have to do so.

From a practical point of view it is convenient to split the 
charge density into a DFT part and a correlation-induced part,

n(r) = nDFT(r) + ∆n(r), (24)

nDFT(r) =
∑
νk

fνk〈r|Ψνk〉〈Ψνk|r〉 (25)

where ∆n(r) is the correlation correction,

∆n(r) =
∑

k
νν′∈WC

〈r|Ψνk〉∆Nνν′(k)〈Ψν′k|r〉,
 (26)

∆Nνν′(k) = Nνν′(k)− fνkδνν′ , (27)

with the last quantity having the important property

J. Phys.: Condens. Matter 30 (2018) 475901
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∑
ν∈WC

∑
k

∆Nνν(k) = 0. (28)

Such a definition of the new charge density is convenient 
because it ensures charge neutrality between DFT iterations.

In a similar way, the total energy can be split into a DFT 
part calculated using the correlated charge density given by 
(22) and a correlation part,

E = EDFT[n]+
∑

k

∑
ν∈WC

∆Nνν(k)ενk

+ Ecorr[ĜC ]− EDC[ĜC ].
 

(29)

Thus, in order to calculate the total energy and to obtain 
the charge density for the next KS iteration, only two quanti-
ties need to be calculated after a DMFT iteration: the den-
sity-matrix correction ∆Nνν(k) and the interaction energy 
(including the double-counting term) Ecorr − Edc.

In this particular vasp implementation, we use ∆Nνν(k) 
to obtain the natural orbitals by a transformation V  given by 
diagonalizing the total correlated density matrix,

f ′νkδνν′ =
∑
µµ′

Vνµ [ fµkδµµ′ +∆Nµµ′(k)]V∗
µ′ν′ , (30)

|Ψ′
νk〉 =

∑
µ

Vνµ|Ψµk〉, (31)

and the charge density and the one-electron energy are, then, 
obtained in the same way as in the normal KS cycle,

n(r) =
∑
νk

f ′νk〈r|Ψ′
νk〉〈Ψ′

νk|r〉, (32)

1
β

∑
iωnk

Tr{G(k, iωn)HKS(k)}

=
∑
νk

f ′νk〈Ψ′
νk|HKS|Ψ′

νk〉.
 (33)

Note that the DFT band energy is calculated using the orig-
inal occupancies fνk , and the second term in (29) represents 
essentially a band-energy correction which takes into account 

the change in the density matrix induced by correlations. The 
occupancies f ′νk  will deviate from the usual Fermi–Dirac sta-
tistics as a result of particle fluctuations from the occupied 
non-interacting KS states into unoccupied states.

3. Benchmark for NiO

NiO is a prototypical charge-transfer insulator where the elec-
tronic band gap on the order of 4 eV arises from a combina-
tion of strong local Coulomb repulsion U within the Ni 3d 
shell and the charge-transfer energy ∆ = εd − εp, i.e. the dif-
ference in on-site energies of O-2p and Ni-3d orbitals [26]. 
The uppermost valence states are of hybrid Ni-3d and O-2p 
character, where the O-2p contribution is dominant.

DFT in (semi)local approximations like LDA or GGA 
fails to describe the insulating nature of NiO. Non-spin-
polarized LDA and GGA yield a metal, while spin-polarized 
calcul ations of the antiferromagnetically ordered phase of 
NiO yield an energy gap of  ∼0.7 eV, which is much smaller 
than the experimentally established gap [27]. The reason for 
this failure of semilocal DFT to describe the insulating state 
of NiO is well known to be the insufficient treatment of the 
strong local Coulomb interaction in the Ni 3d shell. NiO has 
thus become a testbed material for realistic correlated elec-
tron approaches such as DFT  +  U [28] or DFT+DMFT [5, 
29–31].

3.1. Optimized projectors

For the example of NiO, we first investigate the properties of 
the optimized projectors described in section 2. To this end, 
we analyze the Kohn–Sham Hamiltonian transformed to a 
localized basis, which will later serve as a starting point for 
including local correlation effects on a Hartree–Fock level.

In order to treat the Ni d states and ligand O p-states explic-
itly, we project the paramagnetic Kohn–Sham Hamiltonian of 
a two atomic unit cell using 48 × 48 × 48 k points onto Ni 
d and O p states according to (12). Therefore, we optimize 
the projectors in an energy window around the Fermi level 

Figure 1. Left: Ni d weight of the band shown as red dashed line on the right for paramagnetic NiO. Results using non-optimized 
projectors are shown as dashed lines, those from the optimized projectors as solid lines. Orange and blue are results for 12 and 24 bands, 
respectively.
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given by εP
min = −3.3 eV and εP

max = 1.7 eV (i.e. we mainly 
optim ize the Ni d states) and orthonormalize according to (14) 
for all available energies. We perform a Gram–Schmidt proce-
dure to orthogonally complement the Ni d and O p states with 
additional states to end up with the same number of localized 
states as Kohn–Sham states.

In figure  1 we analyze the orbital properties of selected 
eigenstates of the resulting Hamiltonian. The left panel shows 
the Ni d weight of a single band (displayed as red dashed line 
in the right panel) across a k-path from the Γ to the X point. 
For a small number of unoccupied bands, (total number of 
bands Nb  =  12), the non-optimized and optimized projectors 
give nearly identical results. However, by including additional 
unoccupied bands (Nb  =  24) the two schemes display huge 
differences. While the optimized projectors lead to only minor 
differences to the case of Nb  =  12 close to the Γ point, the 
non-optimized projectors lead to considerably less overall Ni 
d weight and a strongly discontinuous behavior for part of the 
k pathway. This underlines the advantage of the optimized 
projectors.

The erroneous behavior of the non-optimized projectors 
roots in additional high energy bands having Ni-4d char-
acter. Using the standard VASP ‘projectors’, these high lying 
valence orbitals show appreciable overlap with the 4d partial 
waves (and 4d projectors). VASP used to lump the 4d and 3d 
contributions into single values, which causes the issues we 
have just observed. Without going into mathematical details 
one can easily understand this behavior. The 3d or 4d states 
are automatically orthogonal, because the 4d states possess 
an additional node inside the PAW sphere. By simply adding 
up the contributions from the 3d and 4d projectors pretending 
that they correspond to a single main quantum number, and 
then performing an orthogonalization, the total charge in each 
d spin channel is one instead of two, explaining the large 
reduction of the d character using the old scheme.

The failure of the unoptimized projectors could in principle 
be avoided by simply not including additional empty bands 
in the construction of the Wannier functions. However, there 
are important cases where this is not possible. First of all, 
the situation of 4d states close to the Fermi energy is real-
ized in many late transition metals. Second, one might be 
interested in quanti ties that include transitions to unoccupied 
states over large energy scales, such as optical spectroscopy. 
In these cases, the optimized projectors give reliable results. 
Furthermore, from a physical point of view, the projectors 
should not depend strongly on the inclusion of unoccupied 
states.

3.2. Hartree–Fock approximation

The DFT+U approach improves the LDA and GGA descrip-
tion of NiO by supplementing the Ni d states by local Coulomb 
interaction which leads to a static local self energy in (20).

There are two ways to formulate DFT+U: first, the tra-
ditional one, where the Kohn–Sham potential is directly 
augmented with a potential arising from the Hartree–Fock 
decoupling of the local Hubbard interaction. Second, in terms 
of a charge self-consistent DFT+DMFT scheme, where 

the DMFT impurity problem is solved in the Hartree–Fock 
approximation called DFT+DMFT(HF) in the following. 
Both schemes are fully equivalent if the augmentation spaces 
are chosen to be strictly the same and the way spin-polariza-
tion is accounted for is the same.

However, many DFT+U implementations, including the 
one in vasp, work with angular-momentum-decomposed 
charge densities, which in general do not relate to proper 
projectors in the definitions of the ‘+U’ potentials [16]. 
Additionally, DFT+DMFT and DFT+U for magnetic mat-
erials can work with or without spin polarization in the DFT 
part.

In the following, we compare DFT+U as implemented 
in vasp to DFT+DMFT(HF) with and without charge self-
consistency for the testbed material NiO, and investigate the 
dependence of the electronic spectra on the double-counting.

We fix the double counting in the vasp DFT+U approach 
according to a prescription known as ‘fully localized limit’ 
(FLL) [32] which leads to an orbital independent and diagonal 
version of Σdc

mm′ in (20), in short µdc. For a meaningful com-
parison of spectral features we choose the double counting 
potential in the DFT+DMFT(HF) approach such that we 
reproduce the size of the gap in vasp DFT+U, leading to 
µdc = 62.5 eV.

We sample the Brillouin zone of the unit cell of twice the 
size of the primitive one using 8 × 8 × 8 k-points and para-
metrize the Coulomb interaction using Slater integrals given 
by effective Coulomb parameters U  =  8 eV and J  =  1 eV as 
obtained from constrained LDA calculations [28]. We per-
form spin polarized calculations considering antiferromagn-
etic ordering of the two Ni atoms in the unit cell, where for 
both, DFT+DMFT(HF) and vasp DFT+U, we only consider 
spin polarization in the Hartree–Fock part but not in the DFT 
part.

The respective density of states for spin up are pre-
sented in figure  2. In general, the DOS from DFT+U and 
DFT+DMFT(HF) are very similar: a gap of about 4 eV is 
opened between heavily spin-polarized Ni states in the con-
duction band and strongly hybridized Ni-O states in the 
valence band. Only details differ for the two approaches, such 
as a slightly larger spin polarization of Ni states and a larger O 
contribution at the valence band edge for DFT+DMFT(HF).

The double-counting problem poses a serious problem 
when using many-body corrections in DFT+DMFT 
approaches predictively, since fundamental properties such 
as the single particle gap depend on the double counting. 
Here, we perform fully charge self-consistent (fcsc) as well 
as one-shot DFT+DMFT(HF) calculations for various fixed 
double-counting potentials µdc to investigate its influence on 
the spectra and on the gap.

Strictly speaking, this approach does not represent a proper 
double-counting scheme on first sight, since there seems to 
be no functional relation between the double-counting poten-
tial µdc and energy Edc. However, one can motivate this 
approach following arguments in [33]. Instead of using the 
standard FLL form for the double-counting correction, one 
introduces an interaction parameter U′ in the double counting 
formulas, which is allowed to be slightly different from U 
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used otherwise in the calculation. In that way, one can again 
relate µdc to a proper energy correction Edc.

However, here we are not interested in total energies but 
in a systematic investigation of the influence of the double 
counting on the spectral properties. That is why we refrain from 
an explicit introduction of this parameter U′. Furthermore, we 
want to circumvent here further complicating ambiguities in 
usual double-counting approaches (e.g. if one should use the 
formal or self-consistent occupation in formulas for Edc) [30].

The resulting total DOS for the fcsc and one-shot calcul-
ations are presented color coded in figure 3. In both cases the 
Ni states in the conduction band (dark blue around 5 eV) are 
shifted linearly towards the Fermi energy as µdc increases. 
The O/Ni states at the valence band edge are not affected 
strongly by the double counting. This is because, in general, 
the higher the Ni character of a band, the more its energy is 
shifted by the double-counting correction.

In the conduction band we also find states with low spec-
tral weight in the PAW spheres (i.e. they are neither located 
around the Ni nor the O atoms but in the interstitial region); 
their energies shift to lower values with decreasing µdc, i.e. in 
the opposite direction than the Ni state in the conduction band. 

For µdc � 58 eV in case of fcsc and µdc � 57 eV in the case 
of one-shot calculations, these states cross the Ni states. Then, 
the conduction band edge does not consist of Ni states, which 
is not in agreement with experiment. Note that the ‘around-
mean-field’ AMF prescription lies in this regime both for one-
shot and fcsc calculations and is thus not suitable for NiO. 
Similarly, the FLL prescription for fcsc calculations is very 
close to this regime.

For values of the double counting that give the correct con-
duction band character, the gap shrinks with increasing µdc. 
This dependence differs strongly for the one-shot and charge 
self-consistent calculations: the slope of the gap dEg/dµdc 
in the physical regime differs by a factor of nearly 2. Thus, 
the charge self-consistency does not cure but alleviates the 
double-counting problem by decreasing the influence of µdc 
on the spectrum.

4. Benchmark for SrVO3 monolayer

SrVO3 presents an example of a correlated transition-metal 
oxide experiencing a metal–insulator transition (MIT) driven 
by a dimensional crossover [34]. In particular, a monolayer 

Figure 2. Partial density of states for spin up of Ni d and O p states from (a) charge self-consistent DFT+DMFT (HF) with µdc = 62.5 eV 
and (b) vasp DFT+U with FLL double counting. Ni1 and Ni2 refers to the two different Ni atoms in the unit cell arising due to the anti-
ferromagnetic ordering. The spin-up density of the atom Ni1 is equal to the spin-down density of Ni2 and vice versa. The oxygen atoms in 
the unit cell show no spin polarization, thus, O1 is equivalent to O2.

Figure 3. Color-coded density of states from DFT+DMFT(HF) for double-counting potentials µdc in steps of 0.5 eV for a) full charge self-
consistency and b) one-shot calculations. The respective µdc from FLL and AMF are depicted as dashed lines, where AMF in the case of 
charge self-consistency is 53.5 eV and therefore out of the plotting range.
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of SrVO3 grown on a SrTiO3 substrate is an insulator with a 
Mott gap of around 2 eV. In DFT, the compound is found to be 
metallic and one has to combine DFT with a many-body tech-
nique to achieve the correct insulating solution. The related 
problem of a double layer of SrVO3 shows insulating behavior 
in a non charge self-consistent DFT+DMFT treatment [35].

Here, we use a monolayer of SrVO3 to benchmark the fully 
charge-self-consistent (fcsc) DFT+DMFT implementation 
of triqs/dfttools [23] within the vasp PLO formalism. 
The motivation for choosing this particular system is that 
electronic correlations induce an appreciable charge redistri-
bution, making the use of a fcsc DFT+DMFT scheme impera-
tive. Importantly, using the triqs/dfttools framework, we 
can benchmark the presented vasp interface to the one that is 
based on the wien2k DFT package [22], also implemented 
in triqs/dfttools. Furthermore, we compare our results 
to previously published fcsc data, also based on the wien2k 
code, but using MLWF as correlated basis set [13].

The system is modeled by a free-standing monolayer 
of SrVO3 with the in-plane lattice constant equal to that of 
SrTiO3 (3.92 Å), simulating thus the epitaxial geometry. The 
effect of the substrate is neglected. To isolate the individual 
layers in a periodic unit cell, a vacuum layer of about 16 Å is 
used in the vasp calculations.

Based on geometry relaxations on the DFT level, in the 
out-of-plane direction, the V-O distance is reduced from  
1.96 Å to 1.93 Å and the Sr–Sr distance from 3.92 Å to 3.52 Å. 
The relaxed unit cell is shown in figure 4. The Brillouin zone 
is sampled using a 15 × 15 × 1 Γ-centered Monkhorst–Pack 
k-grid. The energy cutoff of the plane wave basis set is 400 eV, 
in accordance with the default value for the PAW potentials 
used. Using the procedure described above, the projectors 
onto the V d-states are calculated according to (12) by opti-
mizing in an energy window around the Fermi level given by 
εP
min = −2 eV and εP

max = 1.1 eV (i.e. states with mainly t2g 
character) and orthonormalizing according to (14) in the same 
energy window. In the t2g subspace, a Hubbard–Kanamori 
interaction with U  =  5.5 eV and J  =  0.75 eV (in agreement 
with [13]) is added; the resulting double counting is estimated 
in the FLL scheme [32, 36]. The impurity problem is solved 
using the triqs/CTHYB quantum Monte Carlo [37] solver at 
an inverse temperature β = 40 eV−1.

The one-shot DFT+DMFT calculation results in a nearly 
complete polarization of the orbitals (see fillings in table 1), 
which is found to be equal in vasp and wien2k, and which 
is also in accordance with published data [13]. When using 
the charge feedback in the fcsc framework, the empty orbitals 
become partly repopulated. This effect happens slightly 
stronger in vasp but the agreement of the two calculations 

based on the two different DFT codes is within the expected 
difference between the two implementations. This re-pop-
ulation can also be seen in the spectral function (figure 5), 
which is obtained using analytic continuation of the local lat-
tice Green’s function using the maximum entropy method 
[38]. Unlike the one-shot calculation (top panel of figure 5), 
the fcsc scheme produces a lower Hubbard band with non-
negligible spectral weight also for the degenerate dxz and dyz 
orbitals (bottom panel of figure 5). The same Mott gap (whose 
value is in good agreement with experiment [34]) is found 
starting from both DFT codes, with the peak positions being 
basically identical. The difference in peak height is compat-
ible with the difference of filling between the two methodolo-
gies. The calculated spectra are in excellent agreement with 
results presented in [13].

Full charge self-consistency allows us to calculate reli-
ably the total energy as a function of structural parameters 
and to determine the lowest-energy structure in DFT+DMFT. 
Here, as a proof of principle, we calculate the total energy 
of the compound as a function of the distance between Sr–O 
and V–O planes. We consider deviations ∆z  from the DFT-
optimized structure. Positive ∆z  means that the upper Sr–O 
plane gets shifted upwards and the lower plane gets shifted 
downwards, thus increasing the thickness of the slab in z 
direction. This changes the splitting between the dxy, which 
is close to half-filling, and the degenerate dxz and dyz orbitals, 
which are nearly empty. For more negative ∆z  (i.e. thinner 
slabs), the dxy orbital approach even more half-filling, while 
the dxz and dyz orbitals are progressively emptied (see figure 6, 
bottom). Additionally, the bandwidth decreases, enhancing 
thus the correlations and the size of the Mott gap (not shown 
here). The main result of this total-energy calculation is that 
the minimum calculated with DFT+DMFT is shifted signifi-
cantly towards lower ∆z  (figure 6, top), indicating that the 

Table 1. Filling of the correlated orbitals in DFT+DMFT for one-
shot and fully charge self-consistent calculations based on vasp and 
wien2k.

One-shot fcsc

dxy dxz, dyz dxy dxz, dyz

vasp 0.96 0.02 0.68 0.16
wien2k 0.96 0.02 0.76 0.12

Figure 4. The unit cell of the monolayer of SrVO3. The Sr atoms 
are green, the V atom gray and the O atoms red. The lattice constant 
in the z-direction is 20 Å, i.e. there is about 16 Å of vacuum 
between the periodic replica of the layers, effectively giving an 
isolated monolayer.
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structure with the lowest energy has a smaller slab width than 
obtained by DFT.

The trend in the structural change can be roughly explained 
in terms of an additional energy gain by removing the degen-
eracy between the in-plane dxy and out-of-plane dxz, dyz orbitals 
for smaller values of ∆z . Indeed, having both types of orbitals 
occupied results in an additional energy cost proportional 
to interorbital coupling U  −  3J. Once the apical oxygen is 
moved sufficiently close to the V ion, the anti-bonding orbitals 
dxz, dyz are pushed up in energy and only dxy remains occupied 
(half-filled). This removes the interorbital energy cost, low-
ering thus the total energy.

5. Conclusion

We have presented a charge self-consistent implementation 
to combine DFT with many-body techniques in the vasp 
package, based on optimized projector localized orbitals 
(PLO) in the PAW framework. The implemented optim-
ization, seeking the partial wave with the largest overlap with 
the relevant correlated subspace, is crucial for concise projec-
tions and leads to a straight-forward connection between delo-
calized Kohn–Sham states and localized basis functions. As 
usual, in the localized subspace, Hubbard-like Hamiltonians 
can be used straightforwardly. In contrast to a maximally-
localized Wannier projection, the projector formalism is very 
simple, easy to implement, preserves symmetry, and does not 
require any special precautions for strongly entangled bands. 
Therefore, the projector formalism is also well suited for the 
simulation of correlation effects in supercells with a large 
number of bands. We have exemplified the benefits of using 
optimized projectors for the case of NiO.

We have benchmarked our fcsc implementation for two 
cases. First, we have compared a standard vasp DFT+U 
calcul ation with a charge self-consistent mean-field treatment 
of the DFT+DMFT Hamiltonian for the case of NiO. We find 
only small deviations for the DOS, which we relate to dif-
ferent projections used in the standard vasp DFT+U and the 
DFT+DMFT scheme. For NiO an important finding is that 
the double-counting problem is alleviated by the charge self-
consistency. With charge self-consistency the influence of the 
double-counting parameter on the band gap is reduced by 
about a factor of two compared to one-shot calculations.

Second, we simulated a SrVO3 monolayer and found 
strong orbital polarization, which is decreased in charge self-
consistency. This agrees with previously published results 
using FLAPW+DMFT. Additionally, as a proof of concept, 
we calculated the total energies from DFT+DMFT and found 
that correlation effects lead to structural changes in SrVO3 
monolayers, reducing the apical oxygen height in the single 
layer.

The presented projector and fcsc scheme can be used to 
interface basically any many-body method with the vasp 
package. It offers a robust and concise interface for materials 
studies as well as future developments of tools for strongly-
correlated electron systems.

Figure 6. Top: total-energy change of the single layer of SrVO3 
when moving the upper and lower Sr–O-plane symmetrically by ∆z  
(from the DFT-optimized structure for ∆z = 0) in DFT and in fully 
charge self-consistent DFT+DMFT. For convenience, the energy for 
∆z = 0 is shifted to 0 in each case. Bottom: filling of the degenerate 
dxz and dyz orbitals per spin channel as a function of ∆z. The total 
filling of the impurity is one electron. The lines in both plots are 
guides to the eye. The values and error bars of the DFT+DMFT 
calculations in both plots were obtained by calculating the quantity 
for the four last iterations and then determining the mean and the 
standard deviation. For many data points the error bars are smaller 
than the markers. The total energy in DFT was converged to  
10−6 eV.

Figure 5. DFT+DMFT spectral function of the single layer 
of SrVO3 in a one-shot (top) and fully charge self-consistent 
calculation (bottom). The calculations have been performed using 
triqs/dfttools, once with wien2k (compare [13]) and once 
with vasp as underlying DFT code. The resulting imaginary-time 
Green’s function was analytically continued using the maximum 
entropy method [38].
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