Regularizing transformations of polygons

Johann Lang®, Sybille Mick and Otto Röschel

Abstract

We start with a generic n-gon Q_{0} with vertices $q_{j, 0}(j=0$, $\ldots, n-1)$ in the d-dimensional Euclidean space \mathbb{E}^{d}. Additionally, $m+1$ real numbers $u_{0}, \ldots, u_{m} \in \mathbb{R}(m<n)$ with $\sum_{\mu=0}^{m} u_{\mu}=1$ are given. From these initial data we iteratively define generations of n-gons Q_{k} in \mathbb{E}^{d} for $k \in \mathbb{N}$ with vertices $q_{j, k}:=\sum_{\mu=0}^{m} u_{\mu} q_{j+\mu, k-1}$. We can show that this affine iteration generally regularizes in an affine sense.

Mathematics Subject Classification. 51 N 10, 51 N 20.
Keywords. Affine iterations in higher dimensions, affine regularization, polygons and regularizing iterations, regular n-gons.

1. Introduction

Schoenberg [6], Ziv [7], Nicollier [2] and Donisi et al. [1] studied geometric iteration processes starting with a generic n-gon Q_{0} in \mathbb{E}^{2}. They use homotheties to construct vertices of a next generation polygon Q_{1}. Reiterating this process creates a series of generations Q_{k}. This iteration, in general, has a regularizing effect on the polygon. Surprisingly, the result for n-gons in the plane \mathbb{E}^{2} presented by Roeschel in [5] is also valid for n-gons in higher dimensions. In [5] the proof for \mathbb{E}^{2} is based on the fact that the space of planar n-gons is spanned by the planar prototype n-gons of \mathbb{E}^{2}. As this does not hold for higher dimensions the proof for \mathbb{E}^{d} with $d \geq 3$ demands another approach with different arguments. We prove an affine regularization theorem: these iterations in higher dimensions also deliver generations Q_{k} approaching the affine shape of regular planar polygons.

2. The spatial affine iteration

We use vectors in \mathbb{R}^{d} to describe points of the d-dimensional Euclidean space $\mathbb{E}^{d}(d>2)$ with respect to a Cartesian coordinate frame $\left\{O ; x_{1}, \ldots, x_{d}\right\}$. We start with some spatial n-gon $Q_{0} \subset \mathbb{E}^{d}$ with vertices $\left\{q_{0,0}, q_{1,0}, \ldots, q_{n-1,0}\right\}$

Figure 1 An example for $n=8$ and $m=d=3$: the polygon Q_{0} with vertices of a cube and the first generation polygon Q_{1} for $\left(u_{0}, u_{1}, u_{2}, u_{3}\right)=(0.2,-0.35,0.75,0.4)$
$\left(n>2, q_{j, 0} \in \mathbb{R}^{d}\right)$. Our starting polygon Q_{0} shall be called polygon of generation 0 .

On the other hand in an m-dimensional affine space $\mathbb{R}^{m}(0<m<n)$ with a simplex $S:=\left\{a_{0}, \ldots, a_{m}\right\}$ we choose a reference point z^{*} with respect to S : Let $z^{*}:=\sum_{\mu=0}^{m} u_{\mu} a_{\mu}$ be given by its barycentric coordinates $\left(u_{0}, \ldots, u_{m}\right) \in$ $\mathbb{R}^{1 \times(m+1)}$ with $\sum_{\mu=0}^{m} u_{\mu}=1$.

Let $\alpha_{j, 1}$ be the affine mappings from the ordered reference simplex vertex set S to ordered sets of m consecutive vertices $q_{j, 0}, \ldots, q_{j+m, 0}$ of $Q_{0}(j \in \mathbb{J}:=$ $\{0, \ldots, n-1\}$; first index $\bmod n)$. Each of these n affine mappings is applied to the reference point z^{*}; this way we get n image points $q_{j, 1}:=\alpha_{j, 1}\left(z^{*}\right)=$ $\sum_{\mu=1}^{m} u_{\mu} q_{j+\mu-1,0}$ which form a new n-gon Q_{1} called the generation 1 polygon.
The same process can now be applied, in turn, to the polygon Q_{1} with the same reference simplex S and the same reference point z^{*}, creating a subsequent polygon Q_{2}. Iteration yields a series of polygons. $Q_{k}:=\left\{q_{0, k}, \ldots, q_{n-1, k}\right\}$ is the k th generation polygon with vertices

$$
\begin{equation*}
q_{j, k}=\sum_{\mu=0}^{m} u_{\mu} q_{j+\mu, k-1} \in \mathbb{R}^{d} \quad(j \in \mathbb{J}, k \in \mathbb{N} \backslash\{0\}) . \tag{2.1}
\end{equation*}
$$

The procedure is a d-dimensional generalisation of the geometric iteration presented in [5]. Figure 1 shows the first iteration step for an example with $n=8$ and $m=d=3$.

3. The iteration process

We describe the polygons Q_{k} by $d \times n$-matrices $Q_{k}:=\left(q_{0, k}, \ldots, q_{n-1, k}\right)$ in $\mathbb{R}^{d \times n}$ with $q_{j, k}$ (2.1). Formula (2.1) can be rewritten as a product of matrices $Q_{k}:=Q_{k-1} . M$ with the circulant $n \times n$-matrix $M \in \mathbb{R}^{n \times n}$:

$$
M=\left(\begin{array}{cccccccccc}
u_{0} & 0 & \cdots & \cdots & 0 & u_{m} & u_{m-1} & \cdots & u_{2} & u_{1} \tag{3.1}\\
u_{1} & \ddots & \ddots & & & \ddots & \ddots & \ddots & & u_{2} \\
\vdots & \ddots & \ddots & \ddots & & & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & \ddots & & & \ddots & \ddots & u_{m-1} \\
u_{m-1} & & & \ddots & \ddots & \ddots & & & \ddots & u_{m} \\
u_{m} & \ddots & & & \ddots & \ddots & \ddots & & & 0 \\
0 & \ddots & \ddots & & & \ddots & \ddots & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & & & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & \ddots & & & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & 0 & u_{m} & u_{m-1} & \cdots & \cdots & u_{1} & u_{0}
\end{array}\right)
$$

The nth complex roots of unity $\in \mathbb{C}$ shall be termed $\zeta_{j}:=\exp \left(i \frac{2 j \pi}{n}\right)=$ $\cos \frac{2 j \pi}{n}+i \sin \frac{2 j \pi}{n}(j \in \mathbb{Z})$. We define the vectors

$$
\begin{equation*}
P_{j}:=\left(\zeta_{j}^{0}, \ldots, \zeta_{j}^{n-1}\right) \in \mathbb{C}^{1 \times n} \quad(j \in \mathbb{Z}) \tag{3.2}
\end{equation*}
$$

and have $P_{j} \cdot M=P_{j} \sum_{\mu=0}^{m} u_{\mu} \zeta_{j}^{\mu}$ and $M \cdot P_{n-j}^{t}=\left(\sum_{\mu=0}^{m} u_{\mu} \zeta_{j}^{\mu}\right) P_{n-j}^{t}$. Thus, the vectors P_{j} and $P_{n-j}^{t}(j \in \mathbb{J})$ are left and right eigenvectors of M. The corresponding eigenvalue is

$$
\begin{equation*}
\lambda_{j}:=\sum_{\mu=0}^{m} u_{\mu} \zeta_{j}^{\mu} \quad(j \in \mathbb{J}) . \tag{3.3}
\end{equation*}
$$

As $\left(u_{0}, \ldots, u_{m}\right) \in \mathbb{R}^{1 \times(m+1)}$ and $\overline{\zeta_{j}^{\mu}}=\zeta_{n-j}^{\mu}$ we have $\bar{\lambda}_{j}=\lambda_{n-j}$ for all $j \in$ $\mathbb{J} \backslash\{0\}$.
We now regard two matrices out of $\mathbb{C}^{n \times n}$

$$
L:=\frac{1}{\sqrt{n}}\left(\begin{array}{c}
P_{0} \tag{3.4}\\
\vdots \\
P_{n-1}
\end{array}\right) \quad \text { and } \quad R:=\frac{1}{\sqrt{n}}\left(\begin{array}{c}
P_{n} \\
\vdots \\
P_{1}
\end{array}\right) .
$$

L and R are symmetric and regular for $n>1$ (see $[3,5,6]$ and [7]). We have: $L=\bar{R}$ and $L \cdot R=I_{n, n}$ with the $n \times n$ - unit matrix $I_{n, n}$; the matrices L and R are unitary $n \times n$-matrices in $\mathbb{C}^{n \times n}$. We have $L \cdot M \cdot R=D\left(\lambda_{0}, \ldots, \lambda_{n-1}\right)$ with the diagonal matrix $D\left(\lambda_{0}, \ldots, \lambda_{n-1}\right) \in \mathbb{C}^{n \times n}$ containing the eigenvalues λ_{j} of M as its elements in the main diagonal. This yields $M=R \cdot D\left(\lambda_{0}, \ldots, \lambda_{n-1}\right) \cdot L$ and

$$
\begin{align*}
& Q_{k} \cdot R=Q_{k-1} \cdot R \cdot D\left(\lambda_{0}, \ldots, \lambda_{n-1}\right) \quad \text { and } \tag{3.5}\\
& Q_{k} \cdot R=Q_{0} \cdot R \cdot D\left(\lambda_{0}, \ldots, \lambda_{n-1}\right)^{k} \quad \text { for } k \in \mathbb{N} \backslash\{0\} .
\end{align*}
$$

We get $Q_{k} \cdot R=\frac{1}{\sqrt{n}}\left(\sum_{\nu=0}^{n-1} q_{\nu, k} \zeta_{n}^{\nu}, \sum_{\nu=0}^{n-1} q_{\nu, k} \zeta_{n-1}^{\nu}, \ldots, \sum_{\nu=0}^{n-1} q_{\nu, k} \zeta_{1}^{\nu}\right)$.
Then (3.5) yields

$$
\begin{equation*}
\sum_{\nu=0}^{n-1} q_{\nu, k} \zeta_{n-j}^{\nu}=\lambda_{j}^{k} \sum_{\nu=0}^{n-1} q_{\nu, 0} \zeta_{n-j}^{\nu} \quad \forall j \in \mathbb{J} . \tag{3.6}
\end{equation*}
$$

Due to $\lambda_{0}=\sum_{\mu=0}^{m} u_{\mu} \zeta_{0}^{\mu}=1$ and $\zeta_{n}^{\nu}=1$, the index $j=0$ in (3.6) delivers $\sum_{\nu=0}^{n-1} q_{\nu, k}=\sum_{\nu=0}^{n-1} q_{\nu, 0}$ for all $k \in \mathbb{N} \backslash\{0\}$: All polygons Q_{k} have the same center of gravity.

From now on let the initial polygon Q_{0} have its center of gravity in the origin $O:=(0, \ldots, 0)^{t}$. So we can be sure that for all $k \in \mathbb{N}$

$$
\begin{equation*}
\frac{1}{n} \sum_{\nu=0}^{n-1} q_{\nu, k}=\mathbf{o}_{d}:=(0, \ldots, 0)^{t} \tag{3.7}
\end{equation*}
$$

As the matrix R is regular the initial polygon Q_{0} can explicitly be retrieved from the $d \times n$ - matrix

$$
\begin{equation*}
Q_{0} \cdot R=: B=\left(b_{0}, \ldots, b_{n-1}\right) \in \mathbb{C}^{d \times n} \quad \text { with } \quad b_{j}=\frac{1}{\sqrt{n}} \sum_{\nu=0}^{n-1} q_{\nu, 0} \zeta_{n-j}^{\nu} \in \mathbb{C}^{d} \tag{3.8}
\end{equation*}
$$

From $q_{\nu, 0} \in \mathbb{R}^{d}$ and $\zeta_{n-j}^{\nu}=\overline{\zeta_{j}^{\nu}}$ we get $\overline{b_{j}}=b_{n-j}$ for all $j \in \mathbb{J}^{*}:=\{1, \ldots, n-1\}$. Because of (3.7) the first column vector is zero: $b_{0}=\mathbf{o}_{d}$. Equation (3.5) yields

$$
\begin{equation*}
Q_{k} \cdot R=B \cdot D\left(\lambda_{0}, \ldots, \lambda_{n-1}\right)^{k}=\left(\mathbf{o}_{d}, \lambda_{1}^{k} b_{1}, \ldots, \lambda_{n-1}^{k} b_{n-1}\right) \tag{3.9}
\end{equation*}
$$

Thus, we do not alter the recursion in any way if we replace the diagonal matrix $D\left(\lambda_{0}, \ldots, \lambda_{n-1}\right)$ in (3.5) by the diagonal matrix $D^{*}:=D\left(0, \lambda_{1}, \ldots, \lambda_{n-1}\right)$. With this in mind, the iteration process can be described by

$$
\begin{equation*}
Q_{k}=B \cdot D^{* k} \cdot L=\frac{1}{\sqrt{n}} \sum_{\nu=1}^{n} \lambda_{\nu}^{k} b_{\nu} P_{\nu} \Leftrightarrow q_{j, k}=\frac{1}{\sqrt{n}} \sum_{\nu=1}^{n} \lambda_{\nu}^{k} b_{\nu} \zeta_{j}^{\nu} \tag{3.10}
\end{equation*}
$$

for $j \in \mathbb{J}$. Note that $b_{\nu} P_{\nu} \in \mathbb{C}^{d \times n}$ for $\nu \in \mathbb{J}^{*}$.

4. Prototype polygons

The Gaussian plane of complex numbers \mathbb{C} can be interpreted as a Euclidean plane \mathbb{E}^{2} with a Cartesian coordinate frame $\{O ; 1, i\}$. We embed \mathbb{E}^{2} into \mathbb{E}^{d} by identifying 1 and i with the d-dimensional unit vectors $e_{1}:=(1,0,0, \ldots, 0)^{t}$ and $e_{2}:=(0,1,0, \ldots, 0)^{t}$, respectively. The elements of $P_{j}(3.2)$ can be viewed as a collection of n points $\zeta_{j}^{\nu}(\nu \in \mathbb{J})$ equally distributed on the unit circle of $\mathbb{E}^{2} \subset \mathbb{E}^{d}$ centered in O with $j \in \mathbb{J}^{*}:=\{1, \ldots, n-1\}$. Its points can be written as

$$
\begin{equation*}
T_{j}=e_{1} \frac{P_{j}+\bar{P}_{j}}{2}+e_{2} \frac{P_{j}-\bar{P}_{j}}{2 i}=e_{1} \frac{P_{j}+P_{n-j}}{2}+e_{2} \frac{P_{j}-P_{n-j}}{2 i} \tag{4.1}
\end{equation*}
$$

T_{j} is represented by a matrix $\in \mathbb{R}^{d \times n}$ with columns

$$
\begin{equation*}
t_{\nu, j}:=\left(\cos \frac{2 \pi \nu j}{n}, \sin \frac{2 \pi \nu j}{n}, 0, \ldots, 0\right)^{t} \in \mathbb{R}^{d}(\nu \in \mathbb{J}) . \tag{4.2}
\end{equation*}
$$

T_{j} forms the so-called 'regular prototype n-gon of j th kind'. The regular n-gon T_{n-j} is symmetric to T_{j} w.r.t. the axis e_{1} and thus affinely equivalent to T_{j}. If j and n are relatively prime the polygon T_{j} is either a regular n-gon or an
n-sided regular star. If j is a divisor of n with $n=j p$ the polygon T_{j} is either a regular p-gon or an ordinary regular star with p vertices, each of the vertices being multiply counted (j times).

5. The concept of affine regularization

An affine mapping of \mathbb{E}^{d} keeping the origin O in its place is described by

$$
\begin{equation*}
\beta: \mathbb{E}^{d} \longrightarrow \mathbb{E}^{d}, x \mapsto \beta(x)=C x \quad \text { with } \quad C \in \mathbb{R}^{d \times d} . \tag{5.1}
\end{equation*}
$$

The affine image of the polygon $Q_{k}=\left(q_{0, k}, \ldots, q_{n-1, k}\right)$ is $\beta\left(Q_{k}\right):=C \cdot Q_{k}$. Our iteration (2.1) seems to regularize for certain $\left(u_{0}, \ldots, u_{m}\right) \in \mathbb{R}^{1 \times(m+1)}$ irrespective of the choice of the starting polygon Q_{0}. In order to examine this interesting peculiarity we compare the n-gons Q_{k} with a regular prototype n-gon T_{j} (4.1) of j th kind ${ }^{1}$:

Definition 5.1. We call the iteration (2.1) affinely regularizing of kind j with $1 \leq j \leq n / 2$ if, for any generic initial polygon Q_{0}, there exist affine mappings $\beta_{k}: \mathbb{E}^{d} \longrightarrow \mathbb{E}^{d}$ transforming $Q_{k}=\left(q_{0, k}, \ldots, q_{n-1, k}\right)^{t}$ into polygons $\beta_{k}\left(Q_{k}\right)$ with the property that the series Δ_{k} of sums of the squared distances

$$
\begin{equation*}
\Delta_{k}:=\sum_{\nu=0}^{n-1}\left\|\beta_{k}\left(q_{\nu, k}\right)-t_{\nu, j}\right\|^{2}=\operatorname{tr}\left(\left(T_{j}-\beta_{k}\left(Q_{k}\right)\right)^{t} \cdot\left(\overline{T_{j}-\beta_{k}\left(Q_{k}\right)}\right)\right) \tag{5.2}
\end{equation*}
$$

of respective vertices of $\beta\left(Q_{k}\right)$ and of the regular prototype polygon T_{j} of jth kind is a null series: $\lim _{k \rightarrow \infty} \Delta_{k}=0$.

6. The affine regularization theorem

The shape of the polygons Q_{k} depends on the input data set Q_{0} and on the barycentric coordinates $\left(u_{0}, \ldots, u_{m}\right)$ of the reference point z^{*} with $\sum_{\mu=0}^{m} u_{\mu}=$ 1. The latter determine the matrix M (3.1), the eigenvalues λ_{j} and the diagonal matrix $D^{*}=D\left(0, \lambda_{1}, \ldots, \lambda_{n-1}\right)$. The norms $n_{j}:=\left|\lambda_{j}\right|$ of λ_{j} for $j \in \mathbb{J}^{*}$ are given by

$$
\begin{equation*}
n_{j}^{2}=\lambda_{j} \overline{\lambda_{j}}=\sum_{\mu, \nu=0}^{m} u_{\mu} u_{\nu} \zeta_{j}^{\mu-\nu} \tag{6.1}
\end{equation*}
$$

We put $N:=\max \left\{n_{1}, \ldots, n_{n-1}\right\}$. Let the barycentrics $\left(u_{0}, \ldots, u_{m}\right)$ be chosen generally such that not all $\lambda_{1}, \ldots, \lambda_{n-1}$ vanish. $N=0$ is equivalent with $\lambda_{1}=\cdots=\lambda_{n-1}=0$ and can only occur if $m=n-1$ and, additionally, $\left(u_{0}, \ldots, u_{n-1}\right)=(1 / n, \ldots, 1 / n)$. This case of iterated series of 'degenerate n gons' Q_{k}, all collapsing into the center of gravity O shall be excluded further on. For $0<N<1$ the series Q_{k} gradually contracts for increasing k and tends towards the center of gravity O. For $N=1$ the series Q_{k} remains finite,

[^0]but in general still may change its shape and its position from generation to generation. For $N>1$ the series Q_{k} gradually expands for increasing k.

We will prove that for any $N>0$, the algorithm is-in general-affinely regularizing. We divide the set of indices into two distinct subsets:

$$
\begin{equation*}
\mathbb{J}_{1}:=\left\{j \in \mathbb{J}^{*} /\left|\lambda_{j}\right|=N\right\} \neq \emptyset \quad \text { and } \quad \mathbb{J}_{2}:=\mathbb{J}^{*} \backslash \mathbb{J}_{1} . \tag{6.2}
\end{equation*}
$$

According to (3.3), for any $j^{*} \in \mathbb{J}_{1}$ the index $n-j^{*}$ is also contained in \mathbb{J}_{1}; for even n and $j^{*}=n / 2$ these two indices coincide. We have

$$
\begin{equation*}
\frac{\left|\lambda_{j}\right|}{N}=1 \forall j \in \mathbb{J}_{1} \quad \text { and } \quad 0 \leq \frac{\left|\lambda_{j}\right|}{N}<1 \forall j \in \mathbb{J}_{2} . \tag{6.3}
\end{equation*}
$$

Equations (3.10) yield

$$
\begin{gather*}
Q_{k}=\frac{N^{k}}{\sqrt{n}}\left(\sum_{\nu \in \mathbb{I}_{1}}\left(\frac{\lambda_{\nu}}{N}\right)^{k} b_{\nu} P_{\nu}+\sum_{\nu \in \mathbb{J}_{2}}\left(\frac{\lambda_{\nu}}{N}\right)^{k} b_{\nu} P_{\nu}\right) \\
\Leftrightarrow q_{j, k}=\frac{N^{k}}{\sqrt{n}}\left(\sum_{\nu \in \mathbb{J}_{1}}\left(\frac{\lambda_{\nu}}{N}\right)^{k} b_{\nu} \zeta_{\nu}^{j}+\sum_{\nu \in \mathbb{J}_{2}}\left(\frac{\lambda_{\nu}}{N}\right)^{k} b_{\nu} \zeta_{\nu}^{j}\right) . \tag{6.4}
\end{gather*}
$$

Regardless of the input data b_{j} (3.8) the coefficients $\left(\frac{\lambda_{\nu}}{N}\right)^{k}$ form null series for all $\nu \in \mathbb{J}_{2}$ and $k \rightarrow \infty$; the coefficients $\left(\frac{\lambda_{\nu}}{N}\right)^{k}$ for all $\nu \in \mathbb{J}_{1}$ are complex numbers of norm 1 for all $k \in \mathbb{N}$.
Q_{k} and any homothetic image $\rho_{k}\left(Q_{k}\right)$ have the same affine shape. Following Definition 5.1 we can apply homotheties $\rho_{k}: \mathbb{E}^{d} \longrightarrow \mathbb{E}^{d}$ with $x \mapsto x \frac{\sqrt{n}}{N^{k}}$. These homotheties ρ_{k} turn (6.4) into

$$
\begin{gather*}
\rho_{k}\left(Q_{k}\right)=\sum_{\nu \in \mathbb{J}_{1}}\left(\frac{\lambda_{\nu}}{N}\right)^{k} b_{\nu} P_{\nu}+\sum_{\nu \in \mathbb{J}_{2}}\left(\frac{\lambda_{\nu}}{N}\right)^{k} b_{\nu} P_{\nu} \\
\Leftrightarrow \rho_{k}\left(q_{j, k}\right)=\sum_{\nu \in \mathbb{J}_{1}}\left(\frac{\lambda_{\nu}}{N}\right)^{k} b_{\nu} \zeta_{\nu}^{j}+\sum_{\nu \in \mathbb{J}_{2}}\left(\frac{\lambda_{\nu}}{N}\right)^{k} b_{\nu} \zeta_{\nu}^{j} . \tag{6.5}
\end{gather*}
$$

With reference to the cardinal number of the index set \mathbb{J}_{1} we have three cases:
Case A: The index set \mathbb{J}_{1} contains just one element. This can only happen if n is an even integer and the barycentrics $\left(u_{0}, \ldots, u_{m}\right)$ lead to $\mathbb{J}_{1}=\{n / 2\}$. We have $\zeta_{n / 2}=-1$, and $\lambda_{n / 2}=\sum_{\mu=0}^{m} u_{\mu}(-1)^{\mu} \in \mathbb{R}$. As $N=\left|\lambda_{n / 2}\right|>0$ and therefore $\lambda_{n / 2}= \pm N \neq 0$ formula (6.5) reads as

$$
\begin{equation*}
\rho_{k}\left(Q_{k}\right)=(\pm 1)^{k} b_{n / 2} P_{n / 2}+\sum_{\nu \in J_{2}}\left(\frac{\lambda_{\nu}}{N}\right)^{k} b_{\nu} P_{\nu} \tag{6.6}
\end{equation*}
$$

For every k we apply a further homothety $\sigma_{k}: \mathbb{E}^{d} \longrightarrow \mathbb{E}^{d}$ with

$$
\begin{equation*}
\sigma_{k}(x)=(\pm 1)^{k} x \Rightarrow \sigma_{k}\left(\rho_{k}\left(Q_{k}\right)\right)=b_{n / 2} P_{n / 2}+\sum_{\nu \in \mathbb{J}_{2}}\left(\frac{ \pm \lambda_{\nu}}{N}\right)^{k} b_{\nu} P_{\nu} \tag{6.7}
\end{equation*}
$$

We have $b_{n / 2}=\sum_{\nu=0}^{n-1} q_{\nu, 0} \zeta_{n / 2}^{\nu}=\sum_{\nu=0}^{n-1}(-1)^{\nu} q_{\nu, 0} \in \mathbb{R}^{d}$. For a generic input polygon Q_{0} we can assume $b_{n / 2} \neq \mathbf{o}_{d}$. In this case we choose an affine mapping τ with fixed point O and $b_{n / 2} \mapsto e_{1} \in \mathbb{R}^{d}$. The mapping τ induces an affine mapping $\mathbb{C}^{d} \longrightarrow \mathbb{C}^{d}$ transforming $b_{\nu}\left(\nu \in \mathbb{J}_{2}\right)$ into $b_{\nu}^{*}:=\tau\left(b_{\nu}\right) \in \mathbb{C}^{d}$; the
vectors b_{ν}^{*} do not depend on k. The affine mapping $\beta_{k}:=\tau \circ \sigma_{k} \circ \rho_{k}$ places the k th generation polygon Q_{k} into

$$
\begin{equation*}
\beta_{k}\left(Q_{k}\right)=e_{1} P_{n / 2}+\sum_{\nu \in \mathbb{J}_{2}}\left(\frac{ \pm \lambda_{\nu}}{N}\right)^{k} b_{\nu}^{*} P_{\nu} \tag{6.8}
\end{equation*}
$$

The distance vectors $d_{j, k}$ of the vertices of $\beta_{k}\left(Q_{k}\right)$ to the respective vertices of the prototype polygon $T_{n / 2}=e_{1} P_{n / 2}$ (4.1) are the columns of $D_{k}=\left(d_{0, k}, \ldots, d_{n-1, k}\right)$ with

$$
\begin{equation*}
D_{k}=\sum_{\nu \in \mathbb{J}_{2}}\left(\frac{ \pm \lambda_{\nu}}{N}\right)^{k} b_{\nu}^{*} P_{\nu} \Leftrightarrow d_{j, k}=\sum_{\nu \in \mathbb{J}_{2}}\left(\frac{ \pm \lambda_{\nu}}{N}\right)^{k} b_{\nu}^{*} \zeta_{\nu}^{j} \quad(j \in \mathbb{J}) \tag{6.9}
\end{equation*}
$$

The vectors $b_{\nu}^{*} \zeta_{\nu}^{j}$ are independent from k. As the norms of $\left(\frac{\lambda_{\nu}}{N}\right)^{k}$ form null series for all $\nu \in \mathbb{J}_{2}$ we can be sure that $\lim _{k \rightarrow \infty} d_{j, k}=\mathbf{o}_{d}$ for all $j \in \mathbb{J}$. The sum of the squared distances $\Delta_{k}:=\sum_{j=0}^{n-1}\left\|d_{j, k}\right\|^{2}$ is a null series: $\lim _{k \rightarrow \infty} \Delta_{k}=0$. Thus, according to our Definition 5.1 the iteration process in case A is affinely regularizing of kind $n / 2$. For generic input Q_{0} the polygons Q_{k} approach the shape of the n-gon $T_{n / 2}$. The straight lines approximating the polygons Q_{k} tend towards the straight line through O with direction vector $b_{n / 2}$.
Case B: The index set \mathbb{J}_{1} contains exactly two different elements: $\mathbb{J}_{1}=\left\{j^{*}, n-\right.$ $\left.j^{*}\right\}$ with $1 \leq j^{*}<n / 2$. In a way, this could be considered the general case. We put $\lambda_{j^{*}}=N e^{i \phi}$ and $\lambda_{n-j^{*}}=N e^{-i \phi}$ with some real angle $\phi \in[0,2 \pi)$ and define $W:=\sum_{\nu \in \mathfrak{J}_{2}}\left(\frac{\lambda_{\nu}}{N}\right)^{k} b_{\nu} P_{\nu}$. Then (6.5) yields

$$
\begin{equation*}
\rho_{k}\left(Q_{k}\right)=e^{i k \phi} b_{j^{*}} P_{j^{*}}+e^{-i k \phi} b_{n-j^{*}} \bar{P}_{j^{*}}+W \tag{6.10}
\end{equation*}
$$

Let $b_{j^{*}}:=x+i y$ with $x, y \in \mathbb{R}^{d}$. We then have $b_{n-j^{*}}=\bar{b}_{j^{*}}=x-i y$ and

$$
\begin{equation*}
\rho_{k}\left(Q_{k}\right)=x\left(e^{i k \phi} P_{j^{*}}+e^{-i k \phi} \bar{P}_{j^{*}}\right)+i y\left(e^{i k \phi} P_{j^{*}}-e^{-i k \phi} \bar{P}_{j^{*}}\right)+W . \tag{6.11}
\end{equation*}
$$

For a generic input n-gon Q_{0} the two vectors $x, y \in \mathbb{R}^{d}$ are linearly independent. Let $\sigma: \mathbb{E}^{d} \longrightarrow \mathbb{E}^{d}$ be any affine mapping that maps the two vectors x, y into $\sigma(x):=e_{1} / 2$ and $\sigma(y):=-e_{2} / 2 . \sigma$ induces an affine mapping $\mathbb{C}^{d} \longrightarrow \mathbb{C}^{d}$ transforming $b_{\nu}\left(\nu \in \mathbb{J}_{2}\right)$ into $\sigma\left(b_{\nu}\right)$. We have

$$
\begin{align*}
\sigma\left(\rho_{k}\left(Q_{k}\right)\right)= & \left(e_{1} \cos k \phi+e_{2} \sin k \phi\right) \frac{P_{j^{*}}+\bar{P}_{j^{*}}}{2} \\
& +\left(-e_{1} \sin k \phi+e_{2} \cos k \phi\right) \frac{P_{j^{*}}-\bar{P}_{j^{*}}}{2 i} \\
& +\sum_{\nu \in \mathbb{J}_{2}}\left(\frac{\lambda_{\nu}}{N}\right)^{k} \sigma\left(b_{\nu}\right) P_{\nu} \tag{6.12}
\end{align*}
$$

We define the complex numbers $\theta_{\mu, \nu}:=\sigma\left(b_{\mu}\right)^{t} \overline{\sigma\left(b_{\nu}\right)}$ for $\mu, \nu \in \mathbb{J}_{2}$. The matrices

$$
R_{k}:=\left(\begin{array}{ccccc}
\cos k \phi & \sin k \phi & 0 & \ldots & 0 \tag{6.13}\\
-\sin k \phi & \cos k \phi & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

describe rotations τ_{k} in \mathbb{E}^{d}. The induced mappings τ_{k} in \mathbb{C}^{d} transform the vectors $\sigma\left(b_{\nu}\right)$ into vectors $\tau_{k}\left(\sigma\left(b_{\nu}\right)\right) \in \mathbb{C}^{d}\left(\nu \in \mathbb{J}_{2}\right)$. The mappings $\beta_{k}:=\tau_{k} \circ$ $\sigma \circ \rho_{k}$ are affine mappings from \mathbb{E}^{d} into \mathbb{E}^{d} and deliver

$$
\begin{equation*}
\beta_{k}\left(Q_{k}\right)=e_{1} \frac{P_{j^{*}}+\bar{P}_{j^{*}}}{2}+e_{2} \frac{P_{j^{*}}-\bar{P}_{j^{*}}}{2 i}+\sum_{\nu \in \mathrm{J}_{2}}\left(\frac{\lambda_{\nu}}{N}\right)^{k} \tau_{k}\left(\sigma\left(b_{\nu}\right)\right) P_{\nu} \tag{6.14}
\end{equation*}
$$

As every τ_{k} preserves scalar products we have $\tau_{k}\left(\sigma\left(b_{\mu}\right)\right)^{t} \overline{\tau_{k}\left(\sigma\left(b_{\nu}\right)\right)}=\theta_{\mu, \nu}$ for all $\mu, \nu \in \mathbb{J}_{2}$. According to (5.2) we compute the sum of squared distances of the vertices of $\beta_{k}\left(Q_{k}\right)$ to the respective vertices of the prototype polygon $T_{j^{*}}$ and arrive at

$$
\begin{equation*}
\Delta_{k}=\operatorname{tr}\left(\left(T_{j^{*}}-\beta_{k}\left(Q_{k}\right)\right)^{t} \cdot\left(\overline{T_{j^{*}}-\beta_{k}\left(Q_{k}\right)}\right)\right)=n \sum_{\mu \in \mathbb{J}_{2}}\left(\frac{\lambda_{\mu} \bar{\lambda}_{\mu}}{N^{2}}\right)^{k} \theta_{\mu, n-\mu} \tag{6.15}
\end{equation*}
$$

As the values $\theta_{\mu, n-\mu}$ are independent from k and $0 \leq \frac{\lambda_{\mu} \bar{\lambda}_{\mu}}{N^{2}}<1$ for all $\mu \in \mathbb{J}_{2}$ the values $\Delta_{k}(k \in \mathbb{N})$ form a null series. Accordingly, the corresponding iteration process in case B is regularizing of kind j^{*} with $1 \leq j^{*}<n / 2$. For generic input n-gons Q_{0} the two vectors x and y determine a plane ε^{*} through O. The planes ε_{k} approximating the polygon Q_{k} tend towards ε^{*}.
Case C: The index set \mathbb{J}_{1} contains more than two different elements. We have $j^{*}, j^{* *}, n-j^{*} \in \mathbb{J}_{1}$ with $1 \leq j^{*}<j^{* *} \leq n / 2$. According to (6.1) this is characterized by

$$
\begin{equation*}
\sum_{\mu, \nu=0}^{m} u_{\mu} u_{\nu} \zeta_{j^{* *}}^{\mu-\nu}=\sum_{\mu, \nu=0}^{m} u_{\mu} u_{\nu} \zeta_{j^{*}}^{\mu-\nu} \tag{6.16}
\end{equation*}
$$

The coefficients of $u_{\mu} u_{\nu}$ in (6.16) are $\zeta_{j^{* *}}^{\mu-\nu}+\zeta_{j^{* *}}^{\nu-\mu}-\zeta_{j^{*}}^{\mu-\nu}-\zeta_{j^{*}}^{\nu-\mu} \in \mathbb{R}$. The corresponding barycentrics $\left(u_{0}, \ldots, u_{m}\right)$ denote points $z^{*} \in \mathbb{R}^{m}$ which, in general, are positioned on an $(m-1)$-dimensional quadric of \mathbb{R}^{m} containing the vertices of the simplex S. In this case we cannot prove any regularizing effect of the affine iteration.

We call the barycentrics $\left(u_{0}, \ldots, u_{m}\right)$ 'generic' if they do not lead to Case C or, for $m=n-1$, they are different from $\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$. Overall, we have
Theorem 6.1. Affine Regularization Theorem. For generic barycentrics the iteration process (2.1) is affinely regularizing according to Definition 5.1. The barycentrics $\left(u_{0}, \ldots, u_{m}\right)(m<n)$ determine the eigenvalues $\lambda_{1}, \ldots, \lambda_{n-1}$ given by (3.3) and their maximal norm $N>0$. If there is exactly one index j^{*} (with $1 \leq j^{*} \leq n / 2$) with eigenvalue $\lambda_{j^{*}}$ of norm N the iteration is regularizing of kind j^{*}.
If the iteration is affinely regularizing of kind j^{*} then, for a generic input n-gon Q_{0}, the shape of Q_{k} gradually approaches the shape of an affinely transformed prototype n-gon $T_{j^{*}}$.

Figure 2 An example with $n=8, m=d=3$ with $\mathbb{J}_{1}=\{1,7\}$

Figure 3 An exceptional example for $n=8, m=d=3$ with $b_{4}=\mathbf{o}_{d}$ and $\mathbb{J}_{1}=\{4\}$. For this specific n-gon Q_{0} the algorithm works as if it was affinely regularizing of kind 3

Figure 2 shows an example for the same initial octogon Q_{0} as in Fig. 1 $(n=8, m=d=3)$. Here the barycentrics of z^{*} are $\left(u_{0}, u_{1}, u_{2}, u_{3}\right)=$ $(0.4,0.5,0.3,-0.2)$. We get $n_{1} \approx 1.03, n_{2} \approx 0.71, n_{3} \approx 0.13, n_{4} \approx 0.4$ and therefore we have $\mathbb{J}_{1}=\{1,7\}$. The algorithm is regularizing of kind 1 (case B). The figure shows Q_{0} and the following generations up to Q_{16}.

7. Remarkable exceptions

For specific initial polygons Q_{0} the algorithm may deliver unexpected results. If the coefficient vectors b_{ν} of the regarded eigenvalues λ_{ν} for $\nu \in \mathbb{J}_{1}$ in (6.4)
vanish the respective eigenvalues have no influence on the regularizing process. So, for such a specific n-gon Q_{0}, the algorithm works in the same way as if in (3.10) these eigenvalues λ_{ν} had been replaced by $\lambda_{\nu}=0$. The remaining eigenvalues deliver another maximum norm $N^{*}<N$ and a different set \mathbb{J}_{1}. Now our classification (Sect. 6) reveals the affine shape of the series Q_{k}.

Figure 3 shows such an example for $n=8, m=d=3$ where we have $\left(u_{0}, u_{1}, u_{2}, u_{3}\right)=(0.5,-0.25,0.5,0.25)$. We get $n_{1} \approx 0.52, n_{2}=0.5, n_{3} \approx$ $0.99<1, n_{4}=1$. Hence $N=1$ and we conclude that the algorithm is affinely regularizing of kind $4 ; Q_{k}$ is expected to approach the shape of the prototype is T_{4} which is a line segment. The special initial octogon Q_{0}, however, yields $b_{4}=\mathbf{o}_{d}$; we put $\lambda_{4}:=0$ and perform a new case study. The affine shape of Q_{k} tends towards the prototype T_{3}. Figure 3 displays Q_{0} and the following generations up to Q_{6}.

8. Conclusion

We studied affine iterations transforming an initial n-gon Q_{0} in $\mathbb{E}^{d}(d>1)$ into successive generations of n-gons Q_{k}. The Affine Regularization Theorem in this paper does not only extend the results in [5] to dimensions $d>2$; surprisingly, even for dimensions $d>2$ the regularization leads to planar, regular prototypes no matter which generic input n-gon Q_{0} we start with. For very specific input n-gons Q_{0}, though, the same algorithm seems to regularize in a different way. The understanding of this phenomenon completes the results.

Acknowledgements

Open access funding provided by Graz University of Technology.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/ by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] Donisi, S., Martini, H., Vincenzi, G., Vitale, G.: Polygons derived from polygons via iterated constructions. Electron. J. Differ. Geom. Dyn. Syst. 18, 14-31 (2016)
[2] Nicollier, G.: Convolution filters for polygons and the Petr-DouglasNeumann theorem. Contrib. Algebra Geom. 54, 701-708 (2013). doi:10.1007/ s13366-013-0143-9
[3] Pech, P.: The Harmonic analysis of polygons and Napoleon's theorem. J. Geom. Graph. 5(1), 13-22 (2001)
[4] Radcliffe, D.: Inscribed polygons and the Fourier transform. https://mathblag. wordpress.com/2013/10/08/inscribed-polygons-and-the-fourier-transform/. 26 April 2016.
[5] Röschel, O.: Polygons and iteratively regularizing affine transformations. Contrib. Algebra Geom. (in print). doi:10.1007/s13366-016-0313-7
[6] Schoenberg, I.J.: The finite Fourier series and elemenatry geometry. Am. Math. Mon. 57, 390-404 (1950)
[7] Ziv, B.: Napoleon-like configurations and sequences of triangles. Forum Geom. 2, 115-128 (2002)

Johann Lang, Sybille Mick and Otto Röschel
Institute of Geometry, NAWI Graz
Graz University of Technology
Kopernikusgasse 24
8010 Graz
Austria
e-mail: johann.lang@tugraz.at
Sybille Mick
e-mail: mick@tugraz.at
Otto Röschel
e-mail: roeschel@tugraz.at
Received: October 27, 2016.
Revised: January 27, 2017.

[^0]: ${ }^{1}$ As the prototypes T_{j} and T_{n-j} are affinely equivalent, an iteration regularizing of j th kind will also be regularizing of kind $n-j$ and we can confine ourselves to $1 \leq j \leq n / 2$.

