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Abstract
We propose code verification examples based on the method of manufactured solutions (MMS) for Kirchhoff–Love and 
Reissner–Mindlin shell analysis. In order to ensure the credibility of numerical simulations reliable software has to be 
provided. Code verification is the process of ensuring that there are no coding mistakes in the implementation and that the 
algorithms work properly. The MMS is an elegant method to derive exact solutions to boundary value problems which can 
be used for rigorous order of accuracy tests within the code verification process. We apply the proposed tests to an in-house 
developed finite element research code implementing elements for Kirchhoff–Love and Reissner–Mindlin shell analysis.

Keywords Code verification · Method of manufactured solutions · Shell analysis · Kirchhoff–Love · Reissner–Mindlin

1 Introduction

In order to ensure the reliability of complex computational 
models, verification and validation ( V&V  ) are unavoidable 
tasks [1, 2]. In the present paper, we follow the concepts 
on V&V  of The American Society of Mechanical Engineers 
guideline [3]. The process of validation determines how 
accurate the model represents the real situation. The aim of 
verification is to show that the simulation results are able 
to represent accurately the solution of the underlying math-
ematical model. Thus, one is interested in the numerical 
error, which is the difference between the simulation results 
and the exact solution of the mathematical model. The com-
parison of simulation results with experimental data is only 
feasible if the results are not significantly influenced by the 
numerical error. Therefore, the process of verification has 
to precede the validation process. Verification activities can 
be split into code verification and calculation verification. 
Code verification represents the process of demonstrating 
that the governing equations, as implemented in the code, 
are solved consistently. Calculation verification is the assess-
ment (estimation) of the numerical error in situations where 
no exact solution is known [4].

According to [5], the most rigorous tests for code verifica-
tion are the order-of-accuracy tests. For any discretization 
method, we expect that the discretization error decreases 
as the mesh is refined. Within an order-of-accuracy test, 
the observed rate of decrease in the discretization error is 
compared with the theoretical rate. In order to evaluate the 
discretization error exact solutions are needed. These exact 
solutions can be constructed by the method of manufactured 
solutions (MMS) [1, 5–8]. Its central idea is to prescribe a 
solution and to determine an artificial source term which 
is added to the governing equations, such that the modi-
fied equations are fulfilled for the prescribed solution. The 
MMS can be applied to a wide range of problems. It has 
been applied to Reynolds-averaged Navier–Stokes solvers 
[9], nonlinear membrane elements [10], within fluid struc-
ture interaction [11, 12], conjugate heat transfer solvers [13], 
Cahn–Hilliard equation [14], and others.

Within shell analysis, the task is to predict the mechani-
cal response of a thin curved structure. A structure is char-
acterized as thin if one space dimension has a much smaller 
extension than the other two. Within this geometric setting, a 
direct solution of the three-dimensional problem is difficult. 
Therefore, many different shell models exist (see [15] for an 
overview). In a number of recent papers [16–21] advanced 
numerical approaches for shell analysis have been developed. 
In these contributions, order-of-accuracy tests were presented 
only for special cases. For more general cases, benchmark 
examples from the shell obstacle course [22] were used. This 
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set of problems consists of the Scordelis-Lo roof problem, 
the pinched cylinder with a diaphragm, and the hemispheri-
cal shell problem. This problem set was introduced in order 
to compare the performance of different finite elements with 
respect to locking and accurate representation of rigid body 
motions. Using this set for code verification one shortcoming 
is the lack of generality in geometry, since only cylindrical 
and spherical geometries are taken into consideration. Another 
drawback is that there are only reference displacement values 
available, which are obtained by numerical simulation. There-
fore, no order-of-accuracy tests are possible.

In the present paper, we investigate code verification of 
finite element codes for shell analysis based on the MMS. 
Thus, an exact solution is available and an order of accu-
racy test can be applied. We propose a series of verification 
examples with increasing complexity. We apply each test to 
a research code, which implements high order finite elements 
for Kirchhoff–Love and Reissner–Mindlin shells.

2  Shell models and finite element method

In this section, the Kirchhoff–Love and the Reissner–Mindlin 
shell theory is recalled and the finite element formulation is 
given briefly.

2.1  The 3D shell problem

We start with the statement of the 3D shell problem, which is 
a 3D problem of linearized elasticity on special domains �.

Find �̃ ∶ 𝛺 ⊂ ℝ
3
→ ℝ

3:

(1)

∇ ⋅ (�̃�𝜎𝜎) + �̃ = 0 in 𝛺,

�̃�𝜎𝜎 = ℂ̃ ∶ 𝜖𝜖𝜖 in 𝛺,

𝜖𝜖𝜖 =
1

2

(
grad(�̃) + grad(�̃)⊤

)
in 𝛺,

�̃ = �̃D on 𝛤D,

�̃ = �̃N on 𝛤N .

We assume that the domain � is defined through a para-
metrization � of a reference surface �̄� (see Fig. 1).

In the present paper, we restrict us to the case of rectangu-
lar parameter domains �̄� . Then the parametrization of � is 
given by

with the unit normal vector � and the thickness interval 
T =

[
−

t

2
,
t

2

]
 , where t is the thickness of the shell. In the rest 

of the paper, Latin indices i, j,… take the values 1, 2, 3 
whereas Greek indices �, � take the values 1, 2. Further-
more, Einstein summation convention applies. In the follow-
ing, we need the covariant base vectors �𝛼 =

𝜕ḡ

𝜕𝜃𝛼
 , �� =

�g

���
 , 

the covariant coefficients of the metric G�� = �� ⋅�� , 
Gij = �i ⋅�j , the contravariant coefficients of the metric 

G
��

= [G��]
−1 , G�� = [G��]

−1 , and the contravariant base 

vectors �
�

= G
��
�� , �i = Gij

�j . Note that all quantities 
with a bar are defined on the reference surface and are, there-
fore, independent of �3 . Whereas quantities with no bar are 
defined on the three-dimensional shell volume. Instead of 
solving for �̃(�), � ∈ 𝛺 , we seek the displacement field 
�(𝜃1, 𝜃2, 𝜃3) = �̃(�(𝜃1, 𝜃2, 𝜃3)) defined on the parametric 
space. We assume that the bodyforce � is given with respect 
to a fixed Cartesian frame �i . Thus, � = bi�i holds. Then, the 
balance of momentum in (1) in parametric coordinates reads

with the contravariant components of the stress tensor 
𝜎𝜎𝜎 = 𝜎ij �i ⊗�j , the Christoffel symbols of second kind 
� k
ij

= �
k
,i
⋅�j , and Ji

l
= �l ⋅ �

i . Here and in the following 

(2)
� ∶ Ū ⊂ ℝ

2
→ �̄� ⊂ ℝ

3

(𝜃1, 𝜃2) ↦ �(𝜃1, 𝜃2).

(3)
� ∶ (Ū × T) ⊂ ℝ

3
→ 𝛺 ⊂ ℝ

3

(𝜃1, 𝜃2) × 𝜃3 ↦ �(𝜃1, 𝜃2, 𝜃3) = �(𝜃1, 𝜃2) + 𝜃3 �,

(4)
(
�
jl

,j
+ �kl�

j

kj
+ �jk� l

kj

)
Ji
l
+ bi = 0,

Fig. 1  Parametrization of the 
shell. The parameter space 
on the left is mapped to the 
physical space on the right. The 
reference surface (red) is para-
metrized by ḡ , whereas the shell 
volume is parametrized by g.
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the notation (),j =
�()

��i
 applies. In the present paper, we 

employ a linear isotropic material law, where the contravari-
a n t  c o m p o n e n t s  o f  t h e  e l a s t i c i t y  t e n s o r 
ℂ = ℂ

ijkl �i ⊗�j ⊗�k ⊗�l are given by

with � and � denoting the Lamé constants. For a given dis-
placement field � the covariant components of the linearized 
strain 𝜖𝜖𝜖 = 𝜖ij �

i ⊗�j are

with the components of the shifter tensor ��
� =

(
�
�
� − �3h

�
�

)
 , 

where h�� = G�� ��,� ⋅ �.
One common assumption in shell theories is that strait 

fibers normal to the mid-surface remain strait after deforma-
tion. Therefore, we assume a displacement field of the form

2.2  Kirchhoff–Love model

In the Kirchhoff–Love model v�(�1, �2) are no independent 
parameters. The assumption that normals to the undeformed 
surface remain normal to the deformed surface and remain 
unstreched leads to

and

Therefore, the components of the consistent strain tensor (6) 
can be computed

(5)

ℂ
���� = �G��G�� + �

(
G��G�� + G��G��

)
,

ℂ
��33 = ℂ

33�� = �G�� ,

ℂ
3�3� = ℂ

3��3 = ℂ
�33� = ℂ

�3�3 = �G�� ,

ℂ
3��� = ℂ

�3�� = ℂ
��3� = ℂ

���3 = 0,

ℂ
333� = ℂ

33�3 = ℂ
3�33 = ℂ

�333 = 0,

ℂ
3333 = � + 2�,

(6)

��� =
1

2

(
��

�
�� ⋅

��(�j)

���
+ �

�

�
�� ⋅

��(�j)

���

)
,

��3 =
1

2

(
��

�
�� ⋅

��(�j)

��3
+ � ⋅

��(�j)

���

)
,

�33 =
��(�j)

��3
⋅ �,

(7)�̄(𝜃1, 𝜃2, 𝜃3) = ui(𝜃1, 𝜃2)�i + 𝜃3v𝛼(𝜃1, 𝜃2)�𝛼 .

(8)v� = −G
��
�,� ⋅ �

(9)�̄(𝜃1, 𝜃2, 𝜃3) = ui(𝜃1, 𝜃2)�i − 𝜃3G
𝛼𝛾
(�,𝛾 ⋅ �)�𝛼 .

In order to avoid Poisson thickness locking the zero trans-
verse normal stress assumption ( �33 = 0 ) has to be included. 
Enforcing the condition leads to the expression

for the modified transverse normal strain. Within the finite 
element code this results in a modification in the material 
law, i.e. in all equations � has to be replaced with 2��

2�+�
.

2.3  Reissner–Mindlin model

In the Reissner–Mindlin model v�(�1, �2) are two additional 
independent unknown fields. The components of the strain 
tensor (6) are now

Again the zero transverse normal stress condition has to be 
enforced in order to avoid Poisson thickness locking.

2.4  Finite element method

In this section, we describe the used finite element approach 
briefly. We have the following variational formulation of (1):

Find �̃ ∈ V  such that

Here, V = {�̃ ∈ [H1(𝛺)]3 | �̃ = �̃ on 𝛤D} and V0 = {�̃ ∈

[H
1
(𝛺)]

3 | �̃ = 0 on 𝛤
D
} . We consider the change of vari-

ables according to �(𝜃1, 𝜃2, 𝜃3) = �̃(�(𝜃1, 𝜃2, 𝜃3)) for all 
quantities in (13). Thus, the integrals in (13) are evaluated 

(10)

�11 =�
�

1
ui
,1
J�i − �3�

�

1

(
ui
,�1
J3i − ui

,�
J�ih

�

1
− ui

,�
J3i�

�

1�

)
,

2�12 =�
�

2
ui
,1
J�i + �

�

1
ui
,2
J�i − �3�

�

2

(
ui
,�1
J3i − ui

,�
J�ih

�

1
− ui

,�
J3i�

�

1�

)

− �3�
�

1

(
ui
,�2
J3i − ui

,�
J�ih

�

2
− ui

,�
J3i�

�

2�

)
,

�22 =�
�

2
ui
,2
J�i − �3�

�

2

(
ui
,�2
J3i − ui

,�
J�ih

�

2
− ui

,�
J3i�

�

2�

)
,

��3 = 0,

�33 = 0.

(11)�33 =
�

� + 2�

(
G11�11 + 2G12�12 + G22�22

)

(12)

�11 = �
�

1
J�iu

i

,1
+ �3�

�

1

(
v
�

,1
G�� + v

�� �1�

)
,

2�12 = �
�

1
J�iu

i

,2
+ �

�

2
J�iu

i

,1
+ �3�

�

1

(
v
�

,2
G�� + v

�� �2�

)

+ �3�
�

2

(
v
�

,1
G�� + v

�� �1�

)
,

�22 = �
�

2
J�iu

i

,2
+ �3�

�

2

(
v
�

,2
G�� + v

�� �2�

)
,

2��3 = ��

�
G��v

�
+ u

i

,�
J3i + v

�
h�� ,

�33 = 0.

(13)
∫
𝛺

𝜖𝜖𝜖(�̃) ∶ ℂ̃ ∶ 𝜖𝜖𝜖(�̃) d� = ∫
𝛺

�̃ ⋅ �̃ d� + ∫
𝛤N

�̃ ⋅ �̃ ds
�

∀ �̃ ∈ V0.
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on the parametric domain utilizing a quadrature rule. In par-
ticular, we use a tensor product quadrature rule composed of 
one-dimensional Gauss–Legendre quadratures for the vol-
ume integrals. Therefore, we have for a generic integrand 
(𝜃1, 𝜃2, 𝜃3) = ̃(x),

where H =
1

2
(h�

�
) is the mean curvature and K = det(h

�
�) is 

the Gaussian curvature. For a = 1, 2, 3 , na is the number of 
quadrature points �a

i
 and quadrature weights �i.

In order to discretize the sought field � we apply two 
steps. First, we resolve the trough-the-thickness variation 
(the dependency on �3 ) of � either by the Kirchhoff–Love 
kinematics (9) or the Reissner–Mindlin kinematics (7). 
The model decision has great impact on the subsequent 
discretization done in a second step. In the case of the 
Reissner–Mindlin shell only first order derivatives appear 
in (12). Therefore, we can use H1 hierarchical shape func-
tions on quadrilaterals [23] for the discretization of the five 
components ui and v� . Due to the second derivatives in (10) 
this approach is not feasible for the Kirchhoff–Love model. 
In order to have a H2 conforming method we use the Bog-
ner–Fox–Schmidt quadrilateral [24] to discretize the three 
components ui . Dirichlet boundary conditions are incorpo-
rated in the ansatz space in the case of the Reissner–Mindlin 
model or enforced by a penalty technique in the case of the 
Kirchhoff–Love model (cf. [25]).

3  Code verification

In the present paper, we apply code verification based on 
order-of-accuracy tests and the MMS to a code for solving 
the shell formulations given in Sect. 2. The necessary pre-
requisite to apply it to a numerical schema is the knowledge 
of a formal order of convergence and exact solutions. Thus, 
an estimate of the type

where C is a constant and h is a characteristic element size, 
has to be known. Then q is called the formal order of con-
vergence with respect to the norm || ⋅ || . For two meshes with 
characteristic element sizes h1 and h2 , the experimental order 
of convergence (eoc) is defined as

(14)
�
𝛺

̃(x) d� = �Ū×T

(𝜃1, 𝜃2, 𝜃3)(1 − 𝜃32H + (𝜃3)2K)

√
det Ḡ𝛼𝛽 d𝜃1 d𝜃2 d𝜃3

≈

n1∑

i=1

n2∑

j=1

n3∑

k=1

(𝜃1
i
, 𝜃2

j
, 𝜃3

k
)(1 − 𝜃3

k
2H + (𝜃3

k
)2K)

√
det Ḡ𝛼𝛽 𝜔i𝜔j𝜔k,

(15)||uexact − unumerical|| ≤ C hq ||uexact||,

(16)eoc =
log(e1) − log(e2)

log(h1) − log(h2)
,

where

is the numerical error corresponding to the discretization 

hi . The code is verified, if the eoc matches the formal order 
of convergence within the asymptotic range. For the finite 
element method applied in this paper, we expect q = p + 1 
for the error in the L2 norm for smooth solutions for the 
Reissner–Mindlin shell. In the case of the Kirchhoff–Love 
shell no theoretical error estimates are known to the authors.

In order to evaluate (17), an exact solution has to be avail-
able. Within the MMS, such a solution is prescribed. Then, 
the source term is determined such that the chosen solution 
fulfills the governing equations. In particular, we perform the 
following steps:

1. Choose the form of the problem domain, i.e. specify the 
surface parametrization (2) and the thickness t

2. Choose the form of the manufactured solution �M , i.e. 
specify the independent parameters in (7)

3. Derive the modified governing equations, i.e. compute 
an artificial source term �M = −∇ ⋅ (ℂ ∶ �(�M)) and 
derive the boundary conditions

4. Solve the discrete form of the modified governing equa-
tions on multiple meshes, i.e. solve (13) with � = �M

5. Evaluate the numerical error (17) and the eoc (16)
6. Apply the order of convergence test

Additionally to [26], we added the first point. The finite ele-
ment code needs the components bi of the source term � = bi�i 
with respect to the global Cartesian frame. They are given by

As noted in [27], an arbitrary choice of manufactured solu-
tion leads easily to a very long computer code for the source 
term. We have observed this for general complex curved 
surfaces too. We use the computer algebra system Math-
ematicaTM [28] to derive the source terms in an automated 
way. Nevertheless, a general verification example assessing 
all features of the code results in a source code with more 
than 106 characters, where simplifications are prohibitively 
time-consuming. Therefore, we compute only the deriva-
tives analytically and the algebraic operations are performed 

(17)ei = ||uexact − unumerical
hi

||

(18)bi = −

(
�
jl

,j
+ �kl�

j

kj
+ �jk� l

kj

)
Ji
l
.
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numerically. Instead of exporting a function for bi , we export 
functions taking the spatial position as input argument for

• strain tensor �ij,
• derivatives of the strain tensor �ij,k,
• covariant base vectors �i,
• derivatives of the covariant base vectors �i,j.

We evaluate these quantities at the needed spatial position and 
compute

Then the source term is obtained with (18).
Remark In the present implementation, we keep the exact 

surface parametrization during the whole computation. 
Therefore, we are able to evaluate the error in a continuous 
norm. In case of an approximation of the surface, one has to 
use the discrete norm [12]

Furthermore, the influence of geometry approximation on 
the formal order of convergence has to be considered. For a 
discussion of this ‘variational crime’, we refer to [29]. We 
remark that in the present approach this is not an issue.

(19)

Gij =�i ⋅�j,

[Gij] =[Gij]
−1,

Ji
l
=�l ⋅ �

i,

� l
kj

=�k,j ⋅�iG
il,

G
ij

,k
= − �

j

kl
Gli − � i

kl
Glj,

�jl =�
(
GijGkl�kl + 2�GikGjl�kl

)
,

�
jl

,j
=�

(
G

ij

,j
Gkl�kl + GijGkl

,j
�kl + GijGkl�kl,j

)

+ �

(
Gik

,j
Gjl�kl + GikG

jl

,j
�kl + GikGjl�kl,j

)
.

(20)e =

√√√√ 1

N

N∑

n=1

(
uexact(xn) − unumerical(xn)

)2

.

4  Verification examples

In the following, we provide a set of verification examples 
with increasing complexity. In principle, it would be suf-
ficient to consider only the most general case in order to 
verify the code, since the special cases are included in the 
general case [30]. However, in order to have confirmation 
exercises, we suggest special cases where parts of the code 
can be tested.

In all examples, we use the parameter space 
(�1, �2) ∈ [0, 0.56] × [0, 0.65] and the thickness t = 0.07m . 
The material parameters � = � = 4000Nm−2 are used, 
which corresponds to Young’s modulus E = 1000Nm−2 
and Poisson’s ratio of � = 0.25 . An additional confirmation 
exercises is obtained through setting � = 0.

In the verification examples for the Reissner–Mindlin 
model, we use the two types of displacement fields given in 
Table 1. Displacement field A is chosen such that it can be 
represented exactly with each discretization. Displacement 
field B is chosen to be general to assess all features of the 
code. For the Kirchhoff–Love model we present three types 
of displacement fields, which are given in Table 2. Again 
field A can be exactly discretized and field C is chosen to be 
general. The field B is constructed such that it vanishes up 
to the second derivatives on the boundary. Therefore, one 
can test simple supported boundary conditions without the 
need of considering external moments along the boundary. 
Additional displacement fields for confirmation exercises 
can be obtained through setting only individual parameters. 
Different surface parametrizations are given in Table 3. 
The parametrization �1 is the identity map yielding a plane 
rectangular mid-surface. With �2 we have a plane mid-sur-
face with curved boundaries. A cylindirical geometry and, 

Table 1  Prescribed displacement parameters for the Reissner–Mind-
lin model

Field A Field B

u1 = �1 sin(��1) cos(��2)

u2 = �2 cos(��1) sin(��2)

u3 = �1�2 sin(��1�2)

v1 = �1�2 sin(��1�2)

v2 = �1�2 sin(��1�2)

Table 2  Prescribed displacement parameters for the Kirchhoff–Love 
model, where f (x, y) = 64

y6
(y − x)3x3

Field A Field B Field C

u1 = �1 f (�1, 0.56)f (�2, 0.65) sin(��1) cos(��2)

u2 = �2 f (�1, 0.56)f (�2, 0.65) sin(��1) cos(��2)

u3 = �1�2 f (�1, 0.56)f (�2, 0.65) sin(��1) cos(��2)

Table 3  Surface parametrizations (The coordinates in physical space 
(x

1
, x

2
, x

3
) are given as functions of �1 and �2)

�
1

�
2

�
3

�
4

x
1
= �1 �1 + (�2)2 cos(�1) 2�1�2+2�1−�2

3

x
2
= �2 �2 + (�1)2 �2 −�1�2+2�1+2�2

3

x
3
= 0 0 sin(�1) 2�1�2−�1+2�2

3
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therefore, curved (constant curvature) surface is given by 
�3 . The parametrization �4 defines a general curved surface.

In all examples, we consider all lateral sides as Dirichlet 
boundary and the top and bottom surfaces as Neumann 
boundary.

4.1  Results for the Reissner–Mindlin model

Example 1 Plane geometry, exact representation of solution. 
The goal of the first example is to determine the influence 
of round-off errors. To this end, we have chosen the plane 
geometry given by the parametrization �1 from Table 3 and 
displacement field A from Table 1. In Fig. 2a the reference 
surface with the body force is depicted. The displacement 
field can be exactly represented in the discrete system. 
Therefore, the remaining error is due to round-off errors. 
We have executed the code for ansatz orders up to order 
three for single precision, as well as for double precision. 
The distribution of the error for a coarse and a fine mesh 
over the parameter domain is depicted in Fig. 2b, c, respec-
tively. In Fig. 3, the errors for different discretization levels 
are shown. We observe constant error levels around 10−15 for 
double precision. This agrees with the expected accuracy. 
The errors for single precision arithmetics are as expected 
about 10−7 . However, using more elements raises the error. 
The conditioning of the discrete system might be the reason 
for this.

Fig. 2  Example 1: a reference surface and body force, b numerical error for a coarse mesh (double precision, p = 2 ), c numerical error for a fine 
mesh (double precision, p = 2)
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Fig. 3  Numerical error for example 1

Fig. 4  Example 2: a reference surface and body force, b numerical error for a coarse mesh ( p = 3 ), c numerical error for a fine mesh ( p = 3)
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Example 2 Plane geometry, general solution. In the sec-
ond example, the discretization error at a plane geometry 
is assessed. Therefore, we use the parametrization �1 with 
displacement field B. The obtained distribution of the body 
force at the reference surface is shown in Fig. 4a. For ansatz 
order p = 3 the distributions of the errors is displayed in 
Fig. 4b, c. We observe oscillations in the errors. Such phe-
nomena were also observed in [20] for a benchmark example 
in the case of elements showing locking. Since in the present 
element formulation no special method to alleviate lock-
ing has been applied, the present oscillations are expected. 
However, the locking does not deteriorate the convergence 
of the method. The development of the errors and the eoc 
for ansatz orders up to order six are shown in Fig. 5. For 
the ansatz orders one to four the eoc tends to the respective 
formal order of convergence. However, for ansatz orders five 
and six, the eoc does not agree with the formal order of 
convergence. In these cases, the numerical error is domi-
nated by the error introduced due to round-off and not by 

the discretization error. This effect is also visible in the sub-
sequent examples. The results verify the tested capabilities 
of the code.

Example 3 General geometry, exact representation of solu-
tion. In the third example, a general geometry with displace-
ment field A is considered. For the reference surface para-
metrization �4 from Table 3 is taken. The necessary body 
force for equilibrium is depicted in Fig. 6a at the reference 
surface. The distribution of the numerical error obtained 
with a coarse and a fine mesh is shown in Fig. 6b, c. Again, 
we observe strong oscillations in the numerical error in case 
of the fine mesh. The development of the errors and the 
eoc for ansatz orders up to order six are shown in Fig. 7. 
The numerical error present in the example stems from the 
numerical integration of the integrals in (13) and round-
off since displacement field A can be exactly discretized. 
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Fig. 5  Development of the numerical error and the eoc for Example 2 a numerical error b experimental order of convergence

Fig. 6  Example 3: a reference surface and body force, b numerical error for a coarse mesh ( p = 4 ), c numerical error for a fine mesh ( p = 4)
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Fig. 7  Development of the numerical error and the eoc for Example 3 a numerical error b experimental order of convergence

Fig. 8  Example 4: a reference surface and body force, b numerical error for a coarse mesh ( p = 5 ), c numerical error for a fine mesh ( p = 5)
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Fig. 9  Development of the numerical error and the eoc for Example 4 a numerical error b experimental order of convergence
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We have set the number of quadrature points in both in-
plane directions to the ansatz order. However, as long as 
the numerical error is dominated by the integration error, 
the eoc is higher or equal as the formal order of conver-
gence regarding the discretization of the displacement field. 
Therefore, the integration error will not hamper the overall 
convergence rate. Note, with more quadrature points the eoc 
can be increased in this example.

Example 4 General geometry, general solution. The fourth 
example consists of the general surface parametrization �4 
and the general displacement field B. Thus, this example 
assesses all features of the code. The reference surface and 
the body force are illustrated in Fig. 8a. In Fig. 8b, c, the 
distribution of the numerical error is depicted for a coarse 
and a fine mesh. Again, we observe oscillations of the error. 
However, the eoc is not deteriorated due to this effects. The 
development of the errors and the eoc for ansatz orders up to 
order six are shown in Fig. 9. Again, the error corresponding 

to ansatz orders five and six is limited by the round-off error. 
Thus, the eoc drops. For all other ansatz orders the eoc tend 
to the formal order of convergence. Thus, the code passes 
this verification example.

4.2  Results for the Kirchhoff–Love model

Example 5 Plane geometry, exact representation of solu-
tion. The goal of this example is to determine the influence 
of round-off errors for the implementation of the FEM for 
the Kirchhoff–Love model. To this end, we have chosen the 
plane geometry given by the parametrization �1 from Table 3 
and displacement field A from Table 2, which can be exactly 
represented in the discrete system. Due to this setting the 
body force vanishes for the Kirchhoff–Love model. The dis-
tribution of the numerical error for a coarse and a fine mesh 
is given in Fig. 10. For the coarse mesh we observe that the 
error is concentrated at the boundary. Due to the use of a 
penalty method this is reasonable. In contrast to this, for 

Fig. 10  Example 5: a numeri-
cal error for a coarse mesh , b 
numerical error for a fine mesh
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Fig. 11  Development of the numerical error and the eoc for Example 5 a numerical error b experimental order of convergence
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the fine mesh the error is concentrated in the interior. This 
is in agreement with the results obtained in Example 1. In 
Fig. 11, the error and eoc for different discretization levels 
and single as well as double precision arithmetics are shown. 
From Fig. 11a it can be seen that the error increases with 
refinement. Furthermore, in Fig. 11b the eoc is at around 
minus four for single and double precision arithmetics. This 
is in agreement with the estimated condition number of the 
stiffness matrix, which raises at the same rate. Thus, we con-
clude that the numerical error is due to round-off errors and 
the penalty method used.

Example 6 General geometry, general solution. In this last 
example we use the parametrization �4 and displacement 
field C from Table 2. The reference surface and the body 
force obtained by the MMS is depicted in Fig. 12a. The dis-
tribution of the numerical error for a coarse and a fine mesh 
are illustrated in Fig. 12b, c. For the coarse mesh we observe 

oscillations as in the examples for the Reissner–Mindlin 
model. The results of the performed convergence study are 
shown in Fig. 13. In Fig. 13a, we observe the convergence 
of the method up to an error level of about 10−8 . This final 
error level is in accordance with the results from Example 5. 
The eoc given in Fig. 13b tends to 4 apart for the last consid-
ered mesh refinement. Due to the use of third-order ansatz 
functions this convergence rate is optimal. Based on these 
results, we conclude that the code passes this general veri-
fication example.

5  Conclusion

Code verification of simulation tools is a necessary proce-
dure in order to ensure the reliability. Especially in shell 
analysis complicated expressions arise which have to be 
coded. Thus, the error-proneness is high. During the prepa-
ration of the present paper, we found that performing order 

Fig. 12  Example 6: a reference surface and body force, b numerical error for a coarse mesh , c numerical error for a fine mesh
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of accuracy tests is a code verification procedure with high 
rigor.

In order to derive exact solutions we applied the MMS 
to the strong form of the 3D elasticity equations in curvilin-
ear coordinates. We have used the computer algebra system 
MathematicaTM for the derivation of the source term func-
tion. In order to avoid long codes for this function we com-
pute only the necessary derivatives analytically.

For code verification in the context of shell analysis we 
proposed different verification examples. We apply the pro-
posed tests to an in-house developed finite element research 
code for Kirchhoff–Love and Reissner–Mindlin shell analy-
sis. The examples are designed such that in some examples 
some parts of the code are not assessed consciously. This can 
help to identify coding faults. Furthermore, we have seen 
that not in all cases the optimal order of convergence has to 
show up. In cases where the discretization error is zero we 
observe the error due to round-off errors or if existing due 
to numerical integration.
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