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Abstract The present paper studies semidiscrete surfaces in three-dimensional
Euclidean space within the framework of integrable systems. In particular, we inves-
tigate semidiscrete surfaces with constant mean curvature along with their associated
families. The notion of mean curvature introduced in this paper is motivated by a
recently developed curvature theory for quadrilateral meshes equipped with unit nor-
mal vectors at the vertices, and extends previous work on semidiscrete surfaces. In
the situation of vanishing mean curvature, the associated families are defined via a
Weierstrass representation. For the general cmc case, we introduce a Lax pair repre-
sentation that directly defines associated families of cmc surfaces, and is connected to
a semidiscrete sinh-Gordon equation. Utilizing this theory we investigate semidiscrete
Delaunay surfaces and their connection to elliptic billiards.

Keywords Semidiscrete surface · Constant mean curvature · Associated family ·
Weierstrass representation · Lax pair representation

Mathematics Subject Classification 53A05 · 53A10 · 39A12

1 Introduction

Surfaces with constant mean curvature H or constant Gauss curvature K have been
of particular interest in differential geometry for a long time. In a modern viewpoint,
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these special geometries are associated with the theory of integrable systems, not least
due to rather recent developments in discrete differential geometry (cf. Bobenko and
Suris [7]). Typically the investigation of constant curvature surfaces is tied to spe-
cific parametrizations, like isothermic parametrizations for constant mean curvature
surfaces.

Over the last decades, various discrete versions of these special parametrizations
have been established. For a comprehensive overview see Bobenko and Pinkall [5]
or Bobenko and Suris [7]. Generally, different kinds of parametrizations (conjugate,
asymptotic,…) have their ownway of discretization. For this reason, discretizing entire
families of smooth surfaces is a challenge, if the type of parametrization changes.
Accordingly, a unifying discrete curvature theory is still an active topic of research.
As a first step toward this direction, Bobenko et al. [6] introduced a general curvature
theory for polyhedral meshes with planar faces based onmesh parallelity. Their theory
is capable of unifying notable previously defined classes of surfaces, such as discrete
isothermic minimal or constant mean curvature surfaces. More recently, Hoffmann
et al. [12] presented a discrete parametrized surface theory for quadrilateral meshes
equipped with unit normal vectors at the vertices, permitting non-planar faces. Their
theory encompasses a remarkably large class of existing discrete special parametriza-
tions. In addition it provides a deeper insight into the associated families of discrete
constant curvature surfaces.

For semidiscrete surfaces, represented by parametrizations possessing one discrete
variable and one continuous variable, the situation is quite similar to the discrete case.
The analysis of semidiscrete surfaces with H = const. respectively K = const. is
bound to isothermic resp. asymptotic parametrizations (cf. Müller and Wallner [16],
Müller [15], Burstall et al. [8], andWallner [23]). However, to the author’s knowledge,
results concerning their associated families have been missing so far.

1.1 Outline and results

In the present paper we investigate two distinct situations: (i) semidiscrete surfaces
with vanishing mean curvature (minimal surfaces), and (ii) semidiscrete surfaces with
constant but non-vanishing mean curvature (cmc surfaces). Since we are especially
interested in the associated families of these surfaces, we do not restrict ourselves
to isothermic parametrizations. Thus, at the beginning (see Sect. 2), we translate the
discrete curvature theory introduced byHoffmann et al. [12] to the semidiscrete setting.
We also highlight the intersection with the curvature theory for semidiscrete conjugate
parametrizations previously considered by Karpenkov and Wallner [13].

In Sect. 3, we recapitulate the notion of isothermic parametrizations. In particular,
we show that a semidiscrete surface is isothermic if and only if its quaternionic cross
ratio allows for a specific factorization (cf. Lemma 5).

Subsequently, in Sect. 4, we investigate semidiscrete isothermic minimal surfaces.
Their Weierstrass representation, established by Rossman and Yasumoto [20], imme-
diately gives rise to their associated families, whose members are however no longer
isothermic. The main result of this section is that all the members of these associated
families are minimal as well (cf. Theorem 1). Moreover, we show that the conjugate
surface of an isothermic minimal surface is asymptotically parametrized.

123



On semidiscrete constant mean curvature surfaces… 539

In Sect. 5, we introduce a Lax pair representation for semidiscrete isothermic cmc
surfaces, which directly contains the definition of their associated families. We prove
that the members of these associated families, which again are no longer isothermic,
all have the same constant mean curvature (cf. Theorem 2).

We conclude the paper by investigating the Lax pair representation of semidiscrete
rotational symmetric cmc surfaces (see Sect. 6). It turns out that the discrete versions
of the classical Delaunay rolling ellipse construction described by Hoffmann [11] and
Bobenko et al. [6] also apply to the semidiscrete setting.

2 A curvature theory for semidiscrete surfaces

Our main object of study are two-dimensional semidiscrete surfaces in three-
dimensional Euclidean space represented by parametrizations

x : Z × R ⊇ D → R
3 : (k, t) �→ x(k, t)

possessing one discrete variable and one continuous variable. Throughout this paper
we assume that x is at least once continuously differentiablew.r.t. the second argument.
We abbreviate the corresponding derivative by ∂x . The forward difference w.r.t. the
discrete parameter is denoted by

�x := x1 − x,

where the notation x1 indicates an index shift: x1(k, t) := x(k+1, t).We only consider
regular semidiscrete surfaces having the property that the sets {�x, ∂x}, {�x, ∂x1},
and {�x, ∂x + ∂x1} are linearly independent throughout.

Just like a smooth parametrized surface can be viewed as built of its contact elements
(consisting of a point together with the surface normal at this point), we henceforth
consider a semidiscrete surface to be represented by a pair of weakly coupled para-
metrizations. Translating the relation between a surface and its Gauss map to the
semidiscrete setting, we define:

Definition 1 A pair of semidiscrete surfaces (x, n) : Z×R ⊇ D → R
3×S

2 is called
coupled, if

�x ⊥ (n + n1) and ∂x ⊥ n (1)

throughout the parameter domain.

The following definition contains a (partial) limit version of the “midpoint connec-
tors” of a quadrilateral considered by Hoffmann et al. [12] as replacements of the first
order partial derivatives of a smooth parametrization.

Definition 2 For a semidiscrete surface (x, n) we define the partial derivatives

∂1x := �x = x1 − x, ∂2x := ∂x + ∂x1
2

,
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as well as the strip normal

N := ∂1n × ∂2n

‖∂1n × ∂2n‖ = �n × (∂n + ∂n1)

‖�n × (∂n + ∂n1)‖ .

In classical surface theory the principal curvatures of a surface at a point are defined
as the eigenvalues of the shape operator that lives on the tangent plane at this point. In
the semidiscrete case the fundamental forms and the shape operator live on the plane
perpendicular to the strip normal N .

Definition 3 Let (x, n) be a semidiscrete surface with strip normal N and let π denote
the orthogonal projection onto the plane perpendicular to N , i.e.,π(x) := x−〈x, N 〉N .
Mimicking the smooth case, we define the fundamental forms I, II, III, and the shape
operator S by

I :=
(‖π(∂1x)‖2 〈π(∂1x), π(∂2x)〉

symm. ‖π(∂2x)‖2
)

, III :=
(‖∂1n‖2 〈∂1n, ∂2n〉
symm. ‖∂2n‖2

)
,

II := −
(〈∂1x, ∂1n〉 〈∂1x, ∂2n〉

〈∂2x, ∂1n〉 〈∂2x, ∂2n〉
)

, S := I−1 II .

The following observation is crucial for the definition of the mean and Gauss cur-
vatures via the shape operator.

Lemma 1 If the pair (x, n) is coupled, the second fundamental form II is symmetric.

Proof Differentiating the equation 〈�x, n + n1〉 = 0 yields 〈�x, ∂n + ∂n1〉 =
−〈∂�x, n + n1〉. Using the assumptions ∂x ⊥ n and ∂x1 ⊥ n1 completes the proof.

	

Symmetry of the second fundamental form is equivalent to the selfadjointness of

the shape operator S w.r.t. the inner product induced by the first fundamental form. In
case of symmetry, the eigenvalues of S are real.

Definition 4 Let (x, n) be a coupled semidiscrete surface and let κ1, κ2 ∈ R be
the eigenvalues of the shape operator S. Then the mean curvature H and the Gauss
curvature K are defined as

H := 1

2
tr(S) = κ1 + κ2

2
and K := det(S) = det II

det I
= κ1κ2.

Another approach toward a meaningful curvature theory for discrete or semidis-
crete surfaces uses the concept of offsets and their connection to the mean and Gauss
curvatures via the Steiner formula. This viewpoint has already been examined, e.g.,
by Bobenko et al. [6] in the purely discrete setting, and by Karpenkov and Wallner
[13] in the semidiscrete case. We are going to demonstrate that the curvatures given
in Definition 4 can just as well be gained via the Steiner formula.

First we note that coupled semidiscrete surfaces naturally feature offsets.
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Lemma 2 A pair of semidiscrete surfaces (x, n) is coupled if and only if for some
(and hence for all) r ∈ R the offset (xr , n) := (x + r n, n) is coupled.

Proof Since n ∈ S
2, we have 〈∂xr , n〉 = 〈∂x, n〉 and 〈�xr , n + n1〉 = 〈�x, n + n1〉,

for all r ∈ R. 	

The relation between offsets and curvatures is established by the so-called mixed

area form. The following definition is motivated by the work of Hoffmann et al. [12].
Also note the similarities to the mixed area form for parallel conjugate semidiscrete
surfaces previously investigated by Karpenkov and Wallner [13].

Definition 5 For two semidiscrete surfaces (x, n), (y, n) with the same Gauss map n
and strip normal N , the mixed area form is given by

A(x, y) := 1

2
(det(∂1x, ∂2y, N ) + det(∂1y, ∂2x, N ))

= 1

4
(det(�x, ∂y + ∂y1, N ) + det(�y, ∂x + ∂x1, N )) .

It turns out that, for a coupled semidiscrete surface (x, n), the mean and Gauss
curvatures from Definition 4 can be expressed in terms of the mixed area forms of the
parametrization x and its Gauss map n in a way completely analogous to the smooth
setting. In particular, this observation shows that the curvatures given in Definition 4
coincide with those discussed by Karpenkov and Wallner [13] in the case of circular
surfaces (see Definition 6).

Lemma 3 Let (x, n) be a coupled semidiscrete surface, then

(i) det I = A(x, x)2, (iii) H = − A(x, n)

A(x, x)
,

(ii) K = A(n, n)

A(x, x)
, (iv) III−2H II+K I = 0.

Proof (i) We have det I = ‖π(∂1x) × π(∂2x)‖2 = det(π(∂1x), π(∂2x), N )2 =
det(∂1x, ∂2x, N )2 = A(x, x)2.

(ii) Using the Binet–Cauchy identity, we compute

det II = 〈π(∂1x) × π(∂2x), ∂1n × ∂2n〉
= det(π(∂1x), π(∂2x), N )‖∂1n × ∂2n‖ = A(x, x)A(n, n).

(iii) Likewise, we obtain

A(x, n) = 1

2
(det(π(∂1x), ∂2n, N ) + det(∂1n, π(∂2x), N ))

= 1

2A(x, x)

(‖π(∂1x)‖2〈π(∂2x), ∂2n〉−〈π(∂1x), π(∂2x)〉〈π(∂1x), ∂2n〉
+ ‖π(∂2x)‖2〈π(∂1x), ∂1n〉−〈π(∂1x), π(∂2x)〉〈π(∂2x), ∂1n〉)

= − A(x, x)

2
tr(S).
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(iv) By the Cayley–Hamilton theorem S2 − tr(S)S + det(S)E = 0, which yields the
last equation. 	


Corollary 1 (Semidiscrete Steiner formula) Let (x, n) be a coupled semidiscrete sur-
face with offset (xr , n) = (x + r n, n), r ∈ R. Then

A(xr , xr ) = (1 − 2Hr + Kr2)A(x, x).

Next, we recapitulate the notion of semidiscrete isothermic parametrizations.

3 Semidiscrete isothermic surfaces

A smooth parametrization is called isothermic, if it is a conformal curvature line
parametrization, possibly upon a reparametrization of independent variables.

A discrete analog of curvature line parametrizations is given, for example, by cir-
cular nets, i.e., quadrilateral meshes with the property that each face possesses a
circumcircle. They have been the topic of various contributions from the perspec-
tive of discrete differential geometry and integrable systems (see, e.g., [3,4,7,9,14]).
Among all quadrilateral meshes, circular nets are the only ones which posses nontriv-
ial vertex offsets, i.e., parallel meshes at constant vertexwise distance (cf. Pottmann
et al. [18]). In particular, choosing an arbitrary offset direction resp. normal vector at
one vertex determines the normal vectors at all other vertices.

The following semidiscrete version of circular nets was first investigated by
Pottmann et al. [19]. They can be understood as semidiscrete curvature line para-
metrizations in exactly the same manner as their purely discrete counterparts.

Definition 6 A semidiscrete surface (x, n) is called circular, if

(a) for each corresponding pair of points x , x1 there is a circle C passing through these
points and being tangent to ∂x , ∂x1 there, and

(b) the Gauss map n is parallel to x , i.e., �n ‖ �x and ∂n ‖ ∂x .

Remark 1 Similar to the discrete case, a parallel Gaussmap n of a semidiscrete surface
x with the property (a) is completely determined by choosing one normal vector
n(k0, t0) arbitrarily in S

2 ∩ ∂x(k0, t0)⊥ (see Karpenkov and Wallner [13, Theorem
1.12]). Due to the parallelity (b), the Gauss map n also enjoys the property (a), and
the pair (x, n) is coupled.

Remark 2 For planar semidiscrete surfaces x : D → R
2 ∼= C, circularity is equivalent

to the existence of a function s : D → R
∗, with

�x = is

(
∂x

‖∂x‖ + ∂x1
‖∂x1‖

)
.

We adopt the following definition of semidiscrete isothermic surfaces from Müller
and Wallner [16].
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Definition 7 A circular semidiscrete surface (x, n) is called isothermic, if there exist
positive semidiscrete functions ν, σ , and τ , such that

‖�x‖2 = σνν1, ‖∂x‖2 = τν2, and ∂σ = �τ = 0.

An isothermic function g : D → C is called holomorphic.

In analogy to the smooth and purely discrete settings, for circular semidiscrete
surfaces x , isothermicity is equivalent to the existence of a Christoffel dual (seeMüller
andWallner [16, Theorem11]). Recall that a semidiscrete surface x is called conjugate,
if {�x, ∂x, ∂x1} is linearly dependent throughout.
Definition 8 Two conjugate semidiscrete surfaces x , x∗ are dual to each other, if there
exists a positive semidiscrete function ν, such that

�x∗ = 1

νν1
�x and ∂x∗ = − 1

ν2
∂x .

In this case, x∗ is called the Christoffel dual of x .

Remark 3 Using the notation of Definition 7, the dual x∗ of a semidiscrete isothermic
surface x fulfills

�x∗ = σ

‖�x‖2�x, ∂x∗ = − τ

‖∂x‖2 ∂x, and A(x, x∗) = 0.

3.1 Quaternionic description of semidiscrete isothermic surfaces

Here we provide a characterization of semidiscrete isothermic surfaces in terms of
quaternions, which we will use for the study of cmc surfaces. In particular, we demon-
strate that, similar to the discrete situation, a semidiscrete surface is isothermic if and
only if its cross ratio allows for a specific factorization.

Consider the algebra of quaternions H equipped with the basis {1, i, j,k}, where
ij = k, jk = i, ki = j. Using the standard matrix representation of H, this basis is
related to the Pauli matrices σ1, σ2, σ3 via

1 =
(
1 0
0 1

)
, i = −iσ1 =

(
0 −i
−i 0

)
,

j = −iσ2 =
(
0 −1
1 0

)
, k = −iσ3 =

(−i 0
0 i

)
,

where i = √−1 ∈ C. We embed R
3 into H by

p = (p1, p2, p3)
T ∈ R

3 ↔ p = p1 i + p2 j + p3 k

=
( −i p3 −i p1 − p2

−i p1 + p2 i p3

)
∈ ImH. (2)

Then, the scalar product is expressed as 〈p, q〉 = − 1
2 tr(pq).
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The identification (2) can be used to define a cross ratio of four possibly non-
coplanar points in three-dimensional space up to inner automorphisms. It is known
that discrete isothermic surfaces can be defined by the property that the cross ratio
of each face allows for a specific factorization (cf. Bobenko and Pinkall [4]). We are
going to analyze how this property translates to the semidiscrete case.

Definition 9 For a semidiscrete surface x in R
3 ∼= ImH, we define the function

Q[x] : D → H via

Q[x] := (∂x)(�x)−1(∂x1)(�x)−1,

and call the unordered pair

{q[x], q̄[x]} := Re Q[x] ± i ‖Im Q[x]‖

the cross ratio of x .

The cross ratio of four points in R
3 is known to be Möbius invariant (see, e.g.,

Bobenko and Pinkall [4, Lemma 1]). By a limit argument this property immediately
carries over to q[x], q̄[x]. Another important feature is that the cross ratio of four
points is real if and only if they lie on a circle. An analogous property holds in the
semidiscrete case.

Lemma 4 A semidiscrete surface x is circular if and only if its cross ratio is real. In
this case, the vectors ∂x, ∂x1 lie to the same side of the line spanned by �x if and
only if Q[x] < 0.

Proof At each point (k, t) ∈ D there is a Möbius transformation μ, such that x
μ�−→

(0, 0, 0)T , x1
μ�−→ (1, 0, 0)T = i, and ∂x

dμ�−→ (0, 1, 0)T = j. Thus, by the Möbius
invariance of the cross ratio, we have

Re Q[x] = Re
(
ji−1∂(μ ◦ x)1i−1

)
= Re

(
ij∂(μ ◦ x)1i−1

)
= Re (j∂(μ ◦ x)1) = −〈∂(μ ◦ x), ∂(μ ◦ x)1〉 ,

‖ Im Q[x]‖ = ‖Im (j∂(μ ◦ x)1)‖ = ‖∂(μ ◦ x) × ∂(μ ◦ x)1‖ .

Hence, the cross ratio is real iff ∂(μ ◦ x) ‖ ∂(μ ◦ x)1, which means that the vector
∂(μ ◦ x)1 anchored at μ(x1) is tangent to the circle defined by μ(x), μ(x1), and
∂(μ ◦ x). Moreover, the cross ratio is negative iff the vectors ∂(μ ◦ x) and ∂(μ ◦ x)1
point to the same direction. By applying the inverse Möbius transformation μ−1, the
statement follows immediately. 	


The following lemmaprovides uswith a characterization of semidiscrete isothermic
surfaces in terms of their cross ratios.
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Lemma 5 A semidiscrete surface x is isothermic if and only if there exist positive
semidiscrete functions σ and τ , such that

Q[x] = − τ

σ
and ∂σ = �τ = 0.

In this case, Q[x] = −‖∂x‖‖∂x1‖
‖�x‖2 .

Proof Let x be an isothermic semidiscrete surface with ν, σ , and τ as in Definition 7.
Moreover, for each fixed (k, t) ∈ D, let the Möbius transformation μ be defined by

x
μ�−→ (0, 0, 0)T , x1

μ�−→ (1, 0, 0)T , and ∂x
dμ�−→ (0, 1, 0)T . Then, for each μ, there

exists ρ > 0, such that ‖μ(x)−μ(y)‖2 = ρ(x)ρ(y)‖x − y‖2, for all x, y ∈ R
3. This

also implies that ‖dxμ(v)‖2 = ρ(x)2‖v‖2, for a tangent vector v attached to x . Thus,
1 = ‖μ(x) − μ(x1)‖2 = ρ(x)ρ(x1)‖�x‖2, and by the previous lemma we get

Q[x] = −〈∂(μ ◦ x), ∂(μ ◦ x)1〉 = −‖∂(μ ◦ x)‖‖∂(μ ◦ x)1‖
= −‖∂x‖‖∂x1‖

‖�x‖2 = − τ

σ
.

Conversely, assume that Q[x] = − τ
σ
, with ∂σ = �τ = 0. By the previous lemma

x is circular and the vectors ∂x , ∂x1 lie to the same side of the line spanned by
�x . Hence, by the observations above, we have ‖∂x‖‖∂x1‖

‖�x‖2 = −Q[x] = τ
σ
. Setting

ν := 1√
τ
‖∂x‖ completes the proof. 	


4 Semidiscrete minimal surfaces

Smooth minimal surfaces in R
3 can be defined in several equivalent ways, e.g. by

locallyminimizing the surface area or by having vanishingmean curvature. An isother-
micminimal surface is determined by the property of beingChristoffel dual to itsGauss
map, giving rise to their well known Weierstrass–Enneper representation. This sec-
tion is concerned with semidiscrete minimal surfaces, which do not fully enjoy these
properties.

Definition 10 A coupled semidiscrete surface (x, n) is called minimal, if its mean
curvature H vanishes identically.

It has already been noted by Müllner and Wallner [16] that semidiscrete isother-
mic minimal surfaces are Christoffel dual to their Gauss map. Similar to the smooth
case, this observation leads to a Weierstrass type representation, as demonstrated by
Rossman and Yasumoto [20]. In turn, this representation gives rise to a one-parameter
family of associated surfaces. These are however no longer isothermic,which hasmade
it difficult to understand their minimality in the discrete and semidiscrete settings so
far.

Let us recall the Weierstrass representation. Let g : Z×R ⊇ D → C be a semidis-
crete holomorphic function with νg , σg , and τg as in Definition 7. It is straightforward
to show that the composition of g with the inverse of the stereographic projection,
given by
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n := 1

|g|2 + 1

(
2Re(g), 2 Im(g), |g|2 − 1

)T
,

is isothermic with ν = 2νg
|g|2+1

, τ = τg , and σ = σg . Now, the Christoffel dual x of n
is uniquely determined, up to translation, as solution of the system

�x = σ

‖�n‖2�n and ∂x = − τ

‖∂n‖2 ∂n.

We see immediately that A(x, n) = 0, so the semidiscrete surface (x, n) is minimal.
Moreover, it has been verified by Rossman and Yasumoto [20] that any semidiscrete
isothermic minimal surface can be described in this way by some semidiscrete holo-
morphic function g.

As alreadymentioned before, theWeierstrass representation immediately gives rise
to the associated family of an isothermic minimal surface.

Definition 11 Let (x, n) be a semidiscrete isothermic minimal surface arising from
a semidiscrete holomorphic function g with σ and τ as in Definition 7. Then the
associated family (xα, n), α ∈ R, of (x, n) is defined, up to translation, as solution of
the system

�xα = σ

2
Re(λφ), with φ := 1

�g
(1 − gg1, i(1 + gg1), g + g1)

T , and

∂xα = −τ

2
Re(λψ), with ψ := 1

∂g

(
1 − g2, i(1 + g2), 2g

)T
, where λ := eiα.

Lemma 6 For every semidiscrete isothermic minimal surface (x, n) the members of
its associated family (xα, n) are well defined and coupled.

Proof To show the existence of xα , we check the compatibility condition ∂�xα =
�∂xα . Using the abbreviation

ω :=
(
g2∂g1 − g21∂g − ∂�g, i(g21∂g − g2∂g1 − ∂�g), 2(g1∂g − g∂g1)

)T
,

and the fact that ∂σ = �τ = 0, one can compute

∂
(
�xα

) = σ

2
Re

(
λ

(�g)2
ω

)
= τ |�g|2

2|∂g||∂g1| Re
(

λ

(�g)2
ω

)

= τ

2
Re

(
λ�ḡ

|∂g||∂g1|�g
ω

)
(∗)= −τ

2
Re

(
λ

∂g∂g1
ω

)
= �

(
∂xα

)
.

Note that the equality (∗) follows from the circularity of themapping g (cf. Remark 2):

�ḡ

|∂g||∂g1|�g
=

−is
(

∂ ḡ
|∂g| + ∂ ḡ1

|∂g1|
)

|∂g||∂g1|is
(

∂g
|∂g| + ∂g1

|∂g1|
) = − 1

∂g∂g1
.
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Fig. 1 An infinitesimal
quadrilateral {x , x1, ∂x , ∂x1}
(black) of a semidiscrete
isothermic minimal surface and
the corresponding projected
infinitesimal quadrilateral
{π(xα), π(xα

1 ), π(∂xα),
π(∂xα

1 )} (gray) of a member of
the associated family

Finally, direct computations show 〈∂xα, n〉 = 0 and 〈�xα, n〉 = −〈�xα, n1〉 =
−σ

2 Re(λ). This concludes the proof. 	

In order to show that the members of the associated family are indeed minimal, we

follow Hoffmann et al. [12]. The key observation is as follows: Consider an (infin-
itesimal) quadrilateral of any member of such a family and orthogonally project it
in direction of the face normal N . Then the resulting (infinitesimal) quadrilateral is
a rotated and scaled version of the corresponding (infinitesimal) quadrilateral of the
original isothermic surface (cf. Fig. 1). As a first step toward this result we provide a
semidiscrete version of [12, Lemma 24].

Lemma 7 Let (xα, n) denote the associated family of a semidiscrete isothermic min-
imal surface (x, n). Then, for each α ∈ R, we have

�xα = ‖�x‖2
σ

(cosα �n − sin α �n × n) , and

∂xα = −‖∂x‖2
τ

(cosα ∂n − sin α ∂n × n) .

Proof Lemma 6 implies �xα ⊥ (n + n1) and ∂xα ⊥ n. Hence, �xα is a linear
combination of �n and �n × n, whereas ∂xα is a linear combination of ∂n and
∂n × n. Moreover,

�xα = σ

2
Re(λφ) = σ

2
(cosα Re(φ) − sin α Im(φ)) , and

∂xα = −τ

2
Re(λψ) = −τ

2
(cosα Re(ψ) − sin α Im(ψ)) .

Since by construction the surfaces (x, n) and (n, n) are dual to each other, we know

that Re(φ) = 2
σνν1

�n = 2
‖�n‖2 �n = 2‖�x‖2

σ 2 �n and Re(ψ) = 2
τν2

∂n = 2
‖∂n‖2 ∂n =

2‖∂x‖2
τ 2

∂n.

It remains to show that Im(φ) = 2‖�x‖2
σ 2 (�n × n) and Im(ψ) = 2‖∂x‖2

τ 2
(∂n × n).

Firstly, it is easy to verify that 〈φ, φ̄〉C3 = 1 and 〈ψ, ψ̄〉C3 = 0, which implies that
Im(φ) and Im(ψ) are perpendicular to Re(φ) and Re(ψ), respectively. Furthermore,
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we check that 〈Im(φ), n〉 = 0 and 〈Im(ψ), n〉 = 0, so Im(φ) ‖ �n × n and Im(ψ) ‖
∂n × n. Finally, we compute

〈Im(φ),�n × n〉 = det(Im(φ),�n, n) = Im (det(φ, n1, n))

= 2(|g|2|g1|2 + g1ḡ + gḡ1 + 1)

(1 + |g|2)(1 + |g1|2) = 2 − 2|�g|2
(1 + |g|2)(1 + |g1|2)

= 2 − ‖�n‖2
2

= ‖n1 + n‖2
2

= 2‖�n × n‖2
‖�n‖2

= 2‖�x‖2
σ 2 ‖�n × n‖2,

〈Im(ψ), ∂n × n〉 = det(Im(ψ), ∂n, n) = 2|∂g|2
(1 + |g|2)2 det(Im(ψ),Re(ψ), n)

= |∂g|2
(1 + |g|2)2 Im

(
det(ψ, ψ̄, n)

) = 2,

wherewe have used the fact that nmaps toS2. Thus, we have Im(φ) = 2‖�x‖2
σ 2 (�n×n)

and Im(ψ) = 2
‖∂n×n‖2 (∂n × n) = 2

‖∂n‖2 (∂n × n) = 2‖∂x‖2
τ 2

(∂n × n). This concludes
the proof. 	


The rotation property mentioned above is stated as follows:

Lemma 8 Let (xα, n) be the associated family of a semidiscrete isothermic minimal
surface (x, n) and let π denote the orthogonal projection in direction of the strip nor-
mal N.Then, for allα, the infinitesimal quadrilateral {π(xα), π(xα

1 ), π(∂xα), π(∂xα
1 )}

is a rotated and scaled version of the infinitesimal quadrilateral {x, x1, ∂x, ∂x1} (cf.
Fig. 1).

Proof By the previous lemma,

π(�xα) = ‖�x‖2
σ

(cosα �n − sin α π(�n × n)) , and

π(∂xα) = −‖∂x‖2
τ

(cosα ∂n − sin α π(∂n × n)) .

The orthogonality π(�n × n) ⊥ �n implies

‖π(�xα)‖2 = ‖�x‖4
σ 2

(
cos(α)2‖�n‖2 − sin(α)2‖π(�n × n)‖2

)

= ‖�x‖4
σ 2

(
cos(α)2‖�n‖2 − sin(α)2 cos(μ)2‖(�n × n)‖2

)

= ‖�x‖2
(
cos(α)2 − sin(α)2 cos(μ)2

∥∥∥∥n + n1
2

∥∥∥∥
2
)

= ‖�x‖2
(
cos(α)2 − sin(α)2d2

)
,
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whereμ := � (�n×n, π(�n×n)) = � ( n+n1
2 , N ), and d denotes the distance between

the origin and the center of the circle C determined by {n, n1, ∂n, ∂n1} in the same
manner as in Definition 6 (a). Likewise, π(∂n × n) ⊥ ∂n implies

‖π(∂xα)‖2 = ‖∂x‖4
τ 2

(
cos(α)2‖∂n‖2 − sin(α)2‖π(∂n × n)‖2

)

= ‖∂x‖4
τ 2

(
cos(α)2‖∂n‖2 − sin(α)2 cos(ξ)2‖∂n × n‖2

)

= ‖∂x‖2
(
cos(α)2 − sin(α)2 cos(ξ)2‖n‖2

)

= ‖∂x‖2
(
cos(α)2 − sin(α)2d2

)
,

where ξ := � (∂n × n, π(∂n × n)) = � (n, N ). Analogously, we obtain

‖π(∂xα
1 )‖2 = ‖∂x1‖2

(
cos(α)2 − sin(α)2d2

)
.

Finally, we observe that

〈π(�xα),�x〉
‖π(�xα)‖‖�x‖ = 〈π(∂xα), ∂x〉

‖π(∂xα)‖‖∂x‖ = 〈π(∂xα
1 ), ∂x1〉

‖π(∂xα
1 )‖‖∂x1‖ = cosα√

cos(α)2− sin(α)2d2
.

Thus, the infinitesimal quadrilateral {π(xα), π(xα
1 ), π(∂xα), π(∂xα

1 )} arises from the
infinitesimal quadrilateral {x, x1, ∂x, ∂x1} by scaling with factor ρα and rotating by
the angle θα , with

ρα =
√
cos(α)2 − sin(α)2d2 and cos θα = cosα

ρα

.

	

We are now able to prove the main result of the present section.

Theorem 1 Every member (xα, n) of the associated family of a semidiscrete isother-
mic minimal surface (x, n) is minimal, i.e., has vanishing mean curvature.

Proof Recall that the rotation by an angle θ about the axis in direction of N can be
written as

RN ,θ (x) = 〈N , x〉N + cos θ (N × x) × N + sin θ N × x .

According to Lemma 8, we thus have

π(�xα) = ραRN ,θα (�x) = ρα (cos θα �x + sin θα N × �x) , and

π(∂xα + ∂xα
1 ) = ραRN ,θα (∂x + ∂x1)

= ρα (cos θα (∂x + ∂x1) + sin θα N × (∂x + ∂x1)) .
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Since

N × �x = 1

‖�n × (∂n + ∂n1)‖ (〈�x,�n〉(∂n + ∂n1)

−〈�x, ∂n + ∂n1〉�n) ,

N × (∂x + ∂x1) = 1

‖�n × (∂n + ∂n1)‖ (〈�n, ∂x + ∂x1〉(∂n + ∂n1)

−〈∂n + ∂n1, ∂x + ∂x1〉�n) ,

the term 4A(xα, n) = det(π(�xα), ∂n + ∂n1, N ) + det(�n, π(∂xα + ∂xα
1 ), N ) van-

ishes for all α ∈ R if and only if A(x, n) = 0 and 〈�x, ∂n + ∂n1〉 = 〈�n, ∂x + ∂x1〉.
Both equations hold since (x, n) is an isothermic minimal surface (cf. Remark 3 and
Lemma 1). 	


In the smooth setting, the Gauss curvature of the members of the associated family
of a minimal surface is independent of the parameter α as well. This is no longer the
case in the discrete and semidiscrete situations.

Lemma 9 Under the assumptions of Theorem 1, the Gauss curvature K α of (xα, n)

obeys

K α = K 0

cos(α)2 + sin(α)2d2
,

where d is the distance between the origin and the center of the circle C determined
by {n, n1, ∂n, ∂n1}.
Proof From the proof of Lemma 8 it follows that A(xα, xα) = ρ2

αA(x, x), with
ρ2

α = cos(α)2 + sin(α)2d2. 	

Weconclude this section by proving that the conjugate surface (x

π
2 , n) of a semidis-

crete isothermic minimal surface (x, n) is an asymptotic parametrization, in analogy
to the smooth and discrete cases. Semidiscrete asymptotic parametrizations have been
studied, e.g., by Wallner [23]. Here, the notation x1̄ indicates an index shift in the
opposite direction: x1̄(k, t) := x(k − 1, t).

Lemma 10 Let (x, n) be a semidiscrete isothermic minimal surface with associated
family (xα, n). Then the conjugate surface (x

π
2 , n) is an asymptotic parametrization,

i.e., the vectors

∂x
π
2 , ∂2x

π
2 , �x

π
2 = x

π
2
1 − x

π
2 , and �x

π
2

1̄
= x

π
2 − x

π
2

1̄

lie in a plane with unit normal vector n.

Proof From Lemma 7, we have

�x
π
2 = −‖�x‖2

σ
�n × n and ∂x

π
2 = ‖∂x‖2

τ
∂n × n.

The computation ∂2x
π
2 = ∂(

‖∂x‖2
τ

)∂n × n + ‖∂x‖2
τ

(∂2n) × n concludes the proof. 	
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Fig. 2 A semidiscrete helicoid (left) and twomembers of its associated family. The corresponding semidis-
crete holomorphic function g described in Example 1 takes r = √

2, β = π/4, and ϕ = π/8 as parameters.
For α = π/2 we obtain a semidiscrete asymptotic parametrization of a catenoid (right)

Example 1 As an example we investigate the associated family of a semidiscrete
helicoid (cf. Fig. 2). In classical differential geometry, an isothermic parametrization
of the helicoid is gained from the Weierstrass data f (z) = 1/(1 + i) and g(z) =
exp((1+i)z). Its conjugate is an asymptotically parametrized catenoid. A semidiscrete
analog of the holomorphic map z �→ exp(az), a ∈ C, has been proposed by Müller
[15, Theorem 7] and is given by

g(k, t) = exp (r exp(iβ)t + (iϕ + logμ)k) ,

with r ∈ R+, β ∈ R, and ϕ ∈ R
∗, such that μ := cos(β+ϕ/2)

cos(β−ϕ/2) > 0. It is straightforward
to check that g is holomorphic with

νg = μk exp(r cos(β)t), σg = 2 sin(ϕ)2

cos(2β) + cos(ϕ)
, and τg = r2.

5 Semidiscrete cmc surfaces

This section focuses on semidiscrete cmc surfaces,which enjoy nonzero constantmean
curvature. In contrast to minimal surfaces, isothermic cmc surfaces are characterized
by having aChristoffel dual at constant distance. This observation immediately follows
from the fact that cmc surfaces are linear Weingarten surfaces.

Lemma 11 Let (x, n) be coupled. Then the mean and Gauss curvatures of the offsets
(xr , n) = (x + r n, n), r ∈ R, are given by

Hr = H − Kr

1 − 2Hr + Kr2
and Kr = K

1 − 2Hr + Kr2
.
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If H = const. �= 0, (xr , n) is a linear Weingarten surface, i.e., there exist a, b ∈ R

only depending on r and H, such that aHr + bKr = 1. An analogous result applies
to constant Gauss curvature surfaces.

Proof In case H = const. �= 0, we set a := 1
H − 2r and b := r

H − r2. If K =
const. �= 0, we set a := −2r and b := 1

K − r2. 	


Corollary 2 If the surface (x, n) has constant mean curvature H = 1
h , then the offset

(xh, n) = (x + h n, n) has constant mean curvature Hh = −H, and the central
surface (x

h
2 , n) = (x + h

2 n, n) has constant positive Gauss curvature K
h
2 = 4H2.

Corollary 3 For a coupled semidiscrete surface (x, n) and its offset (x̂, n) := (x +
n, n), we have the equivalence

A(x, x̂) = 0 ⇐⇒ H = − A(x, n)

A(x, x)
= 1 ⇐⇒ Ĥ = − A(x̂, n)

A(x̂, x̂)
= −1.

We dedicate the rest of this paper to the description of semidiscrete isothermic cmc
surfaces in terms of a pair of linear first-order matrix partial differential equations
called a Lax pair. Similar to the case of minimal surfaces, this representation directly
includes the definition of a one-parameter family of associated surfaces. We consider
only the case H = ±1, since it can always be achieved by scaling.

5.1 The Lax pair representation of smooth cmc surfaces

We briefly recapitulate the smooth situation. For details see Bobenko [2] or Fujimori
et al. [10]. Consider a smooth conformal immersion

x : C ⊇ D → R
3 : z �→ x(z),

with complex coordinate z = s + i t . Conformality means that

〈∂z x, ∂z x〉 = 〈∂z̄ x, ∂z̄ x〉 = 0

throughout the parameter domain, where 〈·, ·〉 denotes the bilinear complex extension
of the standard Euclidean inner product and ∂z , ∂z̄ are the Wirtinger derivatives ∂z =
1
2 (∂s − i∂t ) and ∂z̄ = 1

2 (∂s + i∂t ).
As initiated in Sect. 3.1, we identifyR3 with the set of purely imaginary quaternions

ImH. Thereby, rotating a point x ∈ R
3 translates to the conjugation of x ∈ ImH by a

unit quaternionq. In thematrix representation ofH, the set of unit quaternions {q ∈ H :
‖q‖ = 1} coincideswith theLie groupSU2 = {A ∈ C

2×2 : AH = A−1, det(A) = 1}.
The corresponding Lie algebra is su2 = {A ∈ C

2×2 : AH = −A, tr(A) = 0}. In this
manner, SU2 is a double covering of SO3, which we identify with the set of positively
oriented orthonormal frames.
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Now, let � = �(z) ∈ SU2 represent the frame ( ∂s x‖∂s x‖ , ∂t x‖∂t x‖ , n)T ∈ SO3, where

n = ∂s x×∂t x‖∂s x×∂t x‖ . Then,

∂s x = eu/2�−1i�, ∂t x = eu/2�−1j�, and n = �−1k�, (3)

with eu = ‖∂s x‖2 = ‖∂t x‖2. It turns out that the frame � moves according to

∂z� =
(

∂zu
4 −Qe−u/2

1
2Heu/2 − ∂zu

4

)
�, ∂z̄� =

(
− ∂z̄ u

4 − 1
2Heu/2

Q̄e−u/2 ∂z̄ u
4

)
�, (4)

where the so-called Hopf differential Q and the mean curvature H satisfy Q =
〈∂z∂z x, n〉 and 1

2Heu = 〈∂z∂z̄ x, n〉. The integrability condition of this system, i.e.,
∂z(∂z̄�) = ∂z̄(∂z�), is equivalent to

∂z∂z̄u = 2QQ̄e−u − 1

2
H2eu and ∂z̄ Q = 1

2
eu∂z H. (5)

Thus, if we assume constant mean curvature, the Hopf differential is holomorphic.
If in addition the surface has no umbilic points, then Q �= 0 and we can achieve that
Q = const. �= 0 by a holomorphic change of coordinates. Moreover, Eq. (5) then
are invariant with respect to the transformation Q �→ �Q, with � = e2iα , α ∈ R.
In particular, we may assume that the Hopf differential is real, in which case x is
isothermic. By integrating Eqs. (4) and (3) with Q replaced by �Q, we obtain a
one-parameter family of surfaces xα with the same constant mean curvature.

Remarkably, the solution xα of the system (3) can be obtained without integra-
tion, by a formula first suggested by Sym [21] for K-surfaces and later translated
by Bobenko [1,2] to numerous other cases, including cmc surfaces in various space
forms. Indeed, for any solution � = �(z, α) of the system (4) with Q replaced by
�Q, the parametrization

xα := − 1

H
�−1 ∂

∂α
� + �−1k�,

describes a cmc surface with metric eu , mean curvature H , and Hopf differential �Q
(see [2, Thm. 5]).

For the sake of simplicity, we henceforth assume without loss of generality that
H = 1 and Q = 1/2. Furthermore, we introduce the gauge equivalent frame

�̃ :=
(
e−iα/2 0

0 eiα/2

)
� =

(
1√
λ

0

0
√

λ

)
�, with λ := √

� = eiα.

Using the relations ∂s = ∂z + ∂z̄ and ∂t = i(∂z − ∂z̄), the frame equations (4) with
H = 1 and Q = �/2 translate to
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∂s�̃ = U�̃, with U = 1

2

(
−i ∂t u

2 − eu/2

λ
− λ

eu/2

λeu/2 + 1
λeu/2 i ∂t u

2

)
, and

∂t �̃ = V�̃, with V = 1

2

(
i ∂su

2 − iλ
eu/2 + ieu/2

λ

iλeu/2 − i
λeu/2 −i ∂su

2

)
.

Now, the integrability condition ∂s(∂t �̃) = ∂t (∂s�̃) ⇔ ∂sV + VU = ∂tU + UV is
equivalent to the elliptic sinh-Gordon equation:

∂ssu + ∂t t u = −4 sinh(u).

Finally, we note that the matrices U and V belong to the loop algebra

�su2 := {A : S1 → su2 : A(−λ) = σ3A(λ)σ3},

and accordingly �̃ lies in the corresponding loop group

�SU2 := {A : S1 → SU2 : A(−λ) = σ3A(λ)σ3}.

The condition A(−λ) = σ3A(λ)σ3 states that the elements of �SU2 and �su2 have
even functions of λ on their diagonals and odd functions of λ on their off-diagonals.

5.2 A Lax pair representation of semidiscrete cmc surfaces

As demonstrated by Bobenko and Pinkall [5], the observations above can be utilized
to derive a Lax pair representation of discrete isothermic cmc surfaces along with their
associated families. However, only recently it has been verified by Hoffmann et al.
[12] that the members of these associated families, which are no longer isothermic,
indeed have the same constant mean curvature. In this subsection we explore similar
results for semidiscrete surfaces.

Mimicking the smooth and discrete cases, we seek a solution �(k, t, α) ∈ �SU2
of the system

�1 = U�, ∂� = V�, �(0, 0, α) = 1, (6)

with the Lax matrices

U := 1

γ

(
a i

uλ
− iuλ

iλ
u − iu

λ
ā

)
∈ �SU2, V := 1

δ

(
ib 1

vλ
+ vλ

−λ
v

− v
λ

−ib

)
∈ �su2,

(7)
where λ := eiα , α ∈ R, a : Z×R → C, b, δ : Z×R → R, u, v : Z×R → R+, and
γ 2 := |a|2 + u2 + u−2 − λ2 − λ−2, such that det(U ) = 1.

The compatibility condition ∂(��) = �(∂�) of the system (6) is equivalent to

∂U +UV = V1U, (8)
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which expands to

∂γ = �δ = 0, u2 = vv1,

iδ∂u + (b1 + b)u = av − āv1, and

iδ∂a + (b1 − b)a = uv + uv1 − 1

uv
− 1

uv1
. (9)

To resolve the relation u2 = vv1, we introduce a function w : Z × R → R and set
v = e2w and u = ew+w1 . Then, taking the real resp. imaginary parts of the Eq. (9) leads
to Im(a) = δ(∂w+∂w1)

2 cosh(w−w1)
, b1 = 2Re(a) sinh(w −w1)−b, ∂ Re(a) = − Im(a)

δ
(b1 −b),

and

−δ∂ Im(a) + (b1 − b)Re(a) = 2 sinh(3w + w1) + 2 sinh(w + 3w1),

which is a semidiscrete version of the elliptic sinh-Gordon equation. The analogy to
the smooth case is not obvious at first glance. For a purely discrete version of this
equation we refer to Pedit and Wu [17].

As in the smooth and discrete cases, we use the Sym–Bobenko formula to gain a
parametrization of the semidiscrete surface related to the frame �. In particular, we
are going to investigate the following three parallel surfaces.

Definition 12 Let �(k, t, α) ∈ �SU2, α ∈ R, be a solution of the system �1 = U�,
∂� = V�, �(0, 0, α) = 1, where U ∈ �SU2 and V ∈ �su2 are Lax matrices of
the form (7) satisfying the compatibility condition (8). Then we define the following
families of parallel surfaces

x̌α := −�−1 ∂

∂α
� − 1

2
nα, xα := −�−1 ∂

∂α
�, x̂α := −�−1 ∂

∂α
� + 1

2
nα,

together with their common Gauss map nα := �−1k�.

We will see later (cf. Corollary 6) that, for α = 0, the surfaces (x̌0, n0) and (x̂0, n0)
constructed as in Definition 12 are Christoffel dual isothermic cmc surfaces. Conse-
quently, the families (x̌α, nα) and (x̂α, nα) represent their associated families.

At first we show that the pairs (x̌α, nα), (xα, nα), and (x̂α, nα) from Definition 12
are coupled. In fact, we prove the following slightly more general result.

Lemma 12 Let �(k, t, α) ∈ SU2 be a moving frame defined by �1 = U�, ∂� =
V�, �(0, 0, α) = 1, where U ∈ SU2 and V ∈ su2 satisfy the compatibility condition
(8). Moreover, let p, q ∈ R be arbitrary coefficients. Then the semidiscrete surface
(xα, nα) defined by the formula

xα := p�−1 ∂

∂α
� + qnα, nα := �−1k�,

fulfills the constraint (1) if and only if U satisfies U22
∂
∂α
U11 = U11

∂
∂α
U22, and V

satisfies tr( ∂
∂α

Vk) = 0, i.e., ∂
∂α

V11 = ∂
∂α

V22.

123



556 W. Carl

Proof The condition �xα ⊥ (nα
1 + nα) holds iff tr((xα

1 − xα)(nα + nα
1 )) = 0. Thus,

we compute

(xα
1 − xα)nα = �−1

(
pU−1 ∂

∂α
U + qU−1kU − qk

)
��−1k�

= �−1U−1
(
p

∂

∂α
U + qkU − qUk

)
k�, and

nα
1 (xα

1 − xα) = �−1
1 k�1�

−1
(
pU−1 ∂

∂α
U + qU−1kU − qk

)
�

= �−1U−1k
(
p

∂

∂α
U + qkU − qUk

)
�.

Therefore, tr((xα
1 − xα)(nα + nα

1 )) = 0 ⇐⇒ tr(U−1( ∂
∂α
Uk + k ∂

∂α
U )) = 0, which

is equivalent to U22
∂
∂α
U11 = U11

∂
∂α
U22.

To complete the proof we show that tr(∂xα nα) = p tr( ∂
∂α

Vk). Since ‖nα‖2 =
− 1

2 tr(n
α nα) = 1, we have tr(∂nαnα) = 0. Moreover,

∂

(
�−1 ∂

∂α
�

)
= ∂

(
�−1

) ∂

∂α
� + �−1 ∂2

∂t∂α
� = (V�)H

∂

∂α
� + �−1 ∂

∂α
(V�)

= �−1V H ∂

∂α
� + �−1 ∂

∂α
(V )� + �−1V

∂

∂α
� = �−1 ∂

∂α
(V )�,

where we have used that �−1 = �H and that V H + V = 0. Hence, ∂xα ⊥ nα ⇐⇒
tr( ∂

∂α
Vk) = 0. 	


Corollary 4 The semidiscrete surfaces from Definition 12 are coupled.

Proof We have U22
∂
∂α
U11 = U11

∂
∂α
U22 = |a|2 ∂

∂α
( 1
γ
) and ∂

∂α
V11 = ∂

∂α
V22 = 0. 	


The main result of the present section is that the surfaces (x̌α, nα) and (x̂α, nα)

have constant mean curvature in the sense of Definition 4.

Theorem 2 Let (x̌α, nα) and (x̂α, nα) be given as in Definition 12. Then, for every
α ∈ R, we have A(x̌α, x̂α) = 0 throughout the parameter domain.

Proof The statement can be verified by direct computations. However, since the
involved expressions are rather lengthy, we defer the proof to the Appendix. 	

Corollary 5 The semidiscrete surfaces (x̌α, nα) and (x̂α, nα) fromDefinition 12 have
constant mean curvatures Ȟ = 1 and Ĥ = −1, respectively. The central surface
(xα, nα) has constant Gauss curvature K = 4.

Just like in the smooth case, the surfaces (x̌0, n0) and (x̂α, nα) turn out to be
isothermic and dual to each other.
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Lemma 13 Consider the families (x̌α, nα), (xα, nα), and (x̂α, nα) fromDefinition 12.
Then, for j ∈ Z, we have

Q
[
x̌ j π

2

]
= Q

[
x̂ j π

2

]
= −γ 2

δ2
,

Q
[
x j π

2

]
= −γ 2

δ2

(
v − (−1) jv−1

) (
v1 − (−1) jv−1

1

)
(
u + (−1) j u−1

)2 ,

Q
[
n j π

2

]
= −γ 2

δ2

(
v + (−1) jv−1

) (
v1 + (−1) jv−1

1

)
(
u − (−1) j u−1

)2 .

Proof Inserting the respective expressions derived in the proof of Theorem 2 into the
formula for the cross ratio (cf. Definition 9) immediately yields the stated results. 	

Corollary 6 For every fixed j ∈ Z, the semidiscrete surfaces (x̌ j π

2 , n j π
2 ) and

(x̂ j π
2 , n j π

2 ) are isothermic and dual to each other.

Proof Isothermicity immediately follows from theprevious lemma (cf. alsoLemma5).
Duality is a consequence of Theorem 2. 	


6 Semidiscrete Delaunay surfaces and elliptic billiards

In this section we construct semidiscrete cmc surfaces of rotational symmetry with
discrete profile curves. To this purposewe assume that the LaxmatricesU and V of the
form (7) are independent of the continuous parameter t . In this case, the compatibility
condition (8) resp. the Eq. (9) are given by

δ = const., u2 = vv1, Im(a) = 0,

(b1 − b)Re(a) = uv + uv1 − 1

uv
− 1

uv1
, and (b1 + b)u = Re(a)(v − v1).

To resolve the relation u2 = vv1, we introduce a function w : Z → R+ and set
v = w2 and u = ww1. Next we try to solve the resulting equations

(b1−b)Re(a)=w3w1+ww3
1− 1

w3w1
− 1

ww3
1

, (b1+b)ww1 = Re(a)(w2 − w2
1)

for the successors b1 and w1 of b and w, respectively. From the equation on the right

hand side we get b1 = Re(a)
w2−w2

1
ww1

− b. Inserting this expression into the left hand
equation yields the following condition for w1:

w4w6
1 +

(
w6 + Re(a)2w2

)
w4
1 + 2Re(a)bw3w3

1 −
(
Re(a)2w4 + 1

)
w2
1 − w2 = 0.

123



558 W. Carl

Due to Descartes’ rule of signs there exists a unique positive solution w1 of the latter
equation.

Hence, for any given sequence a : Z → R and initial valuesw(0) ∈ R+, b(0) ∈ R,
the values w(k) and b(k) can be determined recursively for all k ∈ Z+. In this way we
obtain Lax matrices U (k, α) and V (k, α) of the form (7) fulfilling the compatibility
condition (8). Consequently, there exists a solution� = �(k, t, α) of the correspond-
ing system (6). Given that �1 = U� and �(0, 0, α) = 1, we have

�(k, 0, α) = U (k − 1, α)U (k − 2, α) · · ·U (1, α)U (0, α).

Solving ∂� = V� finally yields

�(k, t, α) = exp (V (k, α)t)�(k, 0, α).

By inserting this frame into the Sym–Bobenko formula (see Definition 12), we
obtain semidiscrete Delaunay surfaces together with their associated families. For
example, the initial values w(0) = 1 and b(0) = 0 yield w(k) = 1 and b(k) = 0
for all k ∈ Z+. The corresponding surfaces are semidiscrete cylinders with radius
r = 1/2 (see Fig. 3). By choosing b(0) �= 0, we obtain more general semidiscrete
Delaunay surfaces (see Fig. 4).

Observe that the initial value b(0) regulates the shape of the profile curve of the
isothermic rotational symmetric cmc surface gained for α = 0. Setting b(0) = 0
yields a straight line and in the limit b(0) → ∞ we end up with consecutive half
circles (cf. Fig. 5). The resulting surfaces are semidiscrete unduloids. Simultaneously,
for α = π/2, we obtain the profile curves of semidiscrete nodoids (cf. Fig. 6).

Similarly, the sequence a : Z → R can be used to regulate the spacing between the
vertices of the profile polygons.More precisely, the value a(k) is inversely proportional
to the length of the edge [x̌0(k, t), x̌0(k + 1, t)]. For an illustration see Fig. 7.

It turns out that there exists a nice geometric construction of the profile curves
of semidiscrete rotational symmetric cmc surfaces. In fact, the discrete version of the

Fig. 3 A semidiscrete cylinder with radius r = 1/2 and three members of its associated family. The

parameters a = const. = 2
√
1 + 2√

5
, w(0) = 1, b(0) = 0, and δ = 4 have been chosen such that we get a

periodic surface for α = π/2

123



On semidiscrete constant mean curvature surfaces… 559

Fig. 4 A semidiscrete unduloid (top left) and three members of its associated family. The corresponding
parameters are a = const. ≈ 6.29, w(0) = 1, b(0) = 2, and δ = 4

√
5. For α = π/2 we obtain a

semidiscrete nodoid (right)

0

1

1

b(0) = 0

0

1

1

b(0) = 1

0

1

1

b(0) = 2

0

1

1

b(0) = 8

Fig. 5 Profile curves of semidiscrete rotational symmetric cmc surfaces for different choices of the initial
value b(0), which controls the oscillation of the meridean polygon. Here, α = 0, a = const. = 10, and
w(0) = 1

0

1

1
b(0) = 8

0

1

1

b(0) = 4

0

1

1

b(0) = 2

0

1

1

b(0) = 1

Fig. 6 Profile curves of semidiscrete rotational symmetric cmc surfaces for different choices of the initial
value b(0). Here, α = π/2, a = const. = 10, and w(0) = 1

classicalDelaunay rolling ellipse construction for cmc surfaces of revolution described
by Bobenko et al. [6, § 7.3] also applies to the semidiscrete setting (cf. Fig. 8). This
has to be so, since for discrete surfaces of rotational symmetry the mean curvature is
independent of the angle of rotation (see Bobenko et al. [6, § 7.2]). Thus, the notions

123



560 W. Carl

0

1

1

a = (2, 2, 10, 10, 10, 10, 10, 10, 2, 2)

0

1

1

a = (2, 2, 2, 2, 10, 10, 20, 20, 10, 10, 2)

Fig. 7 Profile curves of semidiscrete rotational symmetric cmc surfaces for different values of the sequence
a, which controls the step size of the polygon. Here, α = 0, w(0) = 1, and b(0) = 2

x̌0 x̌1

x̌2 x̌3
x̌4

x̂0 x̂1

x̂2

x̂3

x̂4

pppppp000
ppppppppp11

pppp22 ppppp33 ppppp444444 pppppppp55θθ η

E

F1FF F2FF

x̌0

x̌1

x̌2

x̌3

x̌4
p0

p1

p2

pppp333

pppp4444

p5

θ
η

Fig. 8 Left: Profile curves of dual semidiscrete rotational symmetric cmc surfaces x̌ , x̂ . Right: An external
elliptic billiard {pk }k∈Z. Each dotted triangle {x̌k , pk , pk+1} on the left is mapped isometrically to the
corresponding triangle on the right. However, for illustrational reasons, the figure on the right hand side
has been scaled up uniformly

of discrete and semidiscrete mean curvatures coincide in this particular case. Observe
that, if the vertices {pk}k∈Z of the trajectory of the external elliptic billiard around
E lie on an ellipse E ′ confocal with E , then we have a classical reflection billiard in
the ellipse E ′, and the above construction agrees with that of Hoffmann [11]. For a
comprehensive overview of mathematical billiards we refer to Tabachnikov [22].
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Appendix: Proof of Theorem 2

Here we provide the proof of Theorem 2. We show that the coupled semidiscrete
surfaces (x̌α, nα) and (x̂α, nα) from Definition 12 satisfy A(x̌α, x̂α) = 0. Applying
the Binet–Cauchy identity to the determinants occurring in the mixed area form yields

A(x̌α, x̂α) = 0 ⇐⇒ 〈�x̌α,�nα〉〈∂ x̂α + ∂ x̂α
1 , ∂nα + ∂nα

1 〉
− 〈�x̌α, ∂nα + ∂nα

1 〉〈∂ x̂α + ∂ x̂α
1 ,�nα〉
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+ 〈�x̂α,�nα〉〈∂ x̌α + ∂ x̌α
1 , ∂nα + ∂nα

1 〉
− 〈�x̂α, ∂nα + ∂nα

1 〉〈∂ x̌α + ∂ x̌α
1 ,�nα〉 = 0. (10)

Moreover, we observe that, for every coupled semidiscrete surface (x, n), we have

〈�x, ∂n + ∂n1〉 = 〈∂x, n1〉 − 〈∂x1, n〉 = 〈∂x + ∂x1,�n〉.

Now, direct computations yield

�x̌α = 1

γ 2�−1
(−i(2u−2 − λ2 − λ−2) −2ā 1

uλ

2a λ
u i(2u−2 − λ2 − λ−2)

)
�,

∂ x̌α = 2

vδ
�−1

(
0 iλ−1

iλ 0

)
�, ∂ x̌α

1 = 2

v1δ1
�−1U−1

(
0 iλ−1

iλ 0

)
U�,

and

�x̂α = 1

γ 2�−1
(
i(2u2 − λ2 − λ−2) −2āuλ

2a u
λ

−i(2u2 − λ2 − λ−2)

)
�,

∂ x̂α = −2v

δ
�−1

(
0 iλ

iλ−1 0

)
�, ∂ x̂α

1 = −2v1
δ1

�−1U−1
(

0 iλ
iλ−1 0

)
U�.

Further, for the Gauss map nα , we obtain

nα = �−1k� = �−1
(−i 0
0 i

)
�, ∂nα = −2i

δ
�−1

(
0 vλ + 1

vλ
λ
v

+ v
λ

0

)
�,

nα
1 = 1

γ 2�−1
(−i |a|2 − i

(
uλ − 1

uλ

)(
λ
u − u

λ

) −2ā
(
uλ − 1

uλ

)
2a

( u
λ

− λ
u

)
i |a|2 + i

(
λ
u − u

λ

)(
uλ − 1

uλ

)
)

�,

�nα = 2

γ 2�−1
(
i
(
u2 + u−2 − λ2 − λ−2

)
ā

( 1
uλ

− uλ
)

a
( u

λ
− λ

u

) −i
(
u2 + u−2 − λ2 − λ−2

)
)

�,

∂nα
1 = −2i

δ1
�−1U−1

(
0 v1λ + 1

v1λ
λ
v1

+ v1
λ

0

)
U�.

Next we compute

U−1
(
0 iλ−1

iλ 0

)
U = 1

γ 2

⎛
⎝a

( 1
u − uλ2

) − ā
(
1
u − u

λ2

)
i ā

2

λ
+ iλ

( 1
uλ

− uλ
)2

ia2λ + i
λ

(
λ
u − u

λ

)2
ā

(
1
u − u

λ2

)
− a

( 1
u − uλ2

)
⎞
⎠,

U−1
(

0 iλ
iλ−1 0

)
U = 1

γ 2

⎛
⎝a

(
1

uλ2
− u

)
− ā

(
λ2

u − u
)

i ā2λ + i
λ

( 1
uλ

− uλ
)2

i a
2

λ
+ iλ

(
λ
u − u

λ

)2
ā

(
λ2

u − u
)

− a
(

1
uλ2

− u
)
⎞
⎠,
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and observe that

iU−1

(
0 v1λ + 1

v1λ
λ
v1

+ v1
λ

0

)
U = U−1

[
v1

(
0 iλ

iλ−1 0

)
+ 1

v1

(
0 iλ−1

iλ 0

)]
U.

Finally, we get

〈�x̌α,�nα〉 = −2

γ 2

(
2u−2 − λ2 − λ−2

)
, 〈�x̂α,�nα〉 = 2

γ 2

(
2u2 − λ2 − λ−2

)
,

〈∂ x̌α
1 , nα〉 = −4

v1δ1γ 2 Im
(
a

(
u−1 − uλ2

))
, 〈∂ x̌α, ∂nα〉 = −2

δ2
(2v−2 + λ2 + λ−2),

〈∂ x̌α, nα
1 〉 = −4

vδγ 2 Im
(
a

(
u−1 − uλ−2

))
, 〈∂ x̌α

1 , ∂nα
1 〉 = −2

δ21
(2v−2

1 + λ2 + λ−2),

〈∂ x̂α
1 , nα〉 = −4v1

δ1γ 2 Im
(
a

(
u − u−1λ−2

))
, 〈∂ x̂α, ∂nα〉 = 2

δ2
(2v2 + λ2 + λ−2),

〈∂ x̂α, nα
1 〉 = −4v

δγ 2 Im
(
a

(
u − u−1λ2

))
, 〈∂ x̂α

1 , ∂nα
1 〉 = 2

δ21
(2v21 + λ2 + λ−2),

as well as

〈∂ x̌α, ∂nα
1 〉 = −4

vδδ1γ 2 Re

(
a2

(
v−1
1 + v1λ

−2
)

+
(
v1 + v−1

1 λ−2
)(

u−1λ − uλ−1
)2)

,

〈∂ x̂α, ∂nα
1 〉 = 4v

δδ1γ 2 Re

(
a2

(
v1 + v−1

1 λ2
)

+
(
v−1
1 + v1λ

2
)(

u−1λ − uλ−1
)2)

,

〈∂ x̌α
1 , ∂nα〉 = −4

v1δδ1γ 2 Re

(
a2

(
v−1 + vλ2

)
+

(
v + v−1λ−2

)(
u−1λ − uλ−1

)2)
,

〈∂ x̂α
1 , ∂nα〉 = 4v1

δδ1γ 2 Re

(
a2

(
v + v−1λ−2

)
+

(
v−1 + vλ2

)(
u−1λ − uλ−1

)2)
.

We complete the proof by substituting these expressions into Eq. (10) and using the
fact that δ1 = δ and u2 = vv1. 	
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