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Abstract There are two kinds of polynomial functions on matrix algebras over com-
mutative rings: those induced by polynomials with coefficients in the algebra itself
and those induced by polynomials with scalar coefficients. In the case of algebras
of upper triangular matrices over a commutative ring, we characterize the former in
terms of the latter (which are easier to handle because of substitution homomorphism).
We conclude that the set of integer-valued polynomials with matrix coefficients on an
algebra of upper triangular matrices is a ring, and that the set of null-polynomials with
matrix coefficients on an algebra of upper triangular matrices is an ideal.
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202 S. Frisch

1 Introduction

Polynomial functions on non-commutative algebras over commutative rings come
in two flavors: one, induced by polynomials with scalar coefficients, the other, by
polynomials with coefficients in the non-commutative algebra itself [1,4–9,11,12].

For the algebra of upper triangular matrices over a commutative ring, we show how
polynomial functions with matrix coefficients can be described in terms of polynomial
functionswith scalar coefficients. In particular, we express integer-valued polynomials
withmatrix coefficients in termsof integer-valuedpolynomialswith scalar coefficients.
The latter have been studied extensively by Evrard, Fares and Johnson [1] and Perug-
inelli [6] and have been characterized as polynomials that are integer-valued together
with a certain kind of divided differences.

Also, our results have a bearing on several open questions in the subject of
polynomial functions on non-commutative algebras. They allow us to answer in
the affirmative, in the case of algebras of upper triangular matrices, two questions
(see Sect. 5) posed by Werner [12]: whether the set of null-polynomials on a non-
commutative algebra forms a two-sided ideal and whether the set of integer-valued
polynomials on a non-commutative algebra forms a ring. In the absence of a substitu-
tion homomorphism for polynomial functions on non-commutative rings, neither of
these properties is a given.

Also, our results on polynomials on upper triangular matrices show that we may be
able to describe polynomial functions induced by polynomials withmatrix coefficients
by polynomial functions induced by polynomials with scalar coefficients, even when
the relationship is not as simple as in the case of the full matrix algebra.

Let D be a domain with quotient field K , A a finitely generated torsion-free D-
algebra and B = A⊗D K . To exclude pathological cases we stipulate that A∩K = D.
Then the set of right integer-valued polynomials on A is defined as

IntB(A) = { f ∈ B[x] | ∀a ∈ A f (a) ∈ A},

where f (a) is defined by substitution on the right of the coefficients, f (a) = ∑
k bka

k ,
for a ∈ A and f (x) = ∑

k bkx
k ∈ B[x]. Left integer-valued polynomials are defined

analogously, using left-substitution:

Int�B(A) = { f ∈ B[x] | ∀a ∈ A f (a)� ∈ A},

where f (a)� = ∑
k a

kbk . Also, we have integer-valued polynomials on A with scalar
coefficients:

IntK(A) = { f ∈ K [x] | ∀a ∈ A f (a) ∈ A}.

For A = Mn(D) and B = Mn(K ) we could show [4] that

IntB(A) = IntK(A) ⊗D A.
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Polynomial functions on upper… 203

Peruginelli and Werner [7] have characterized the algebras for which this relationship
holds. We now take this investigation one step further and show for algebras of upper
triangular matrices, where A = Tn(D) and B = Tn(K ), that IntB(A) can be described
quite nicely in terms of IntK(A) (cf. Remark 1.6, Theorem 4.2), but that the connection
is not as simple as merely tensoring with A.

For a ring R, and n ≥ 1, let Mn(R) denote the ring of n × n matrices with entries
in R and Tn(R) the subring of upper triangular matrices, i.e., the ring consisting of
n × n matrices C = (ci j ) with ci j ∈ R and

ci j �= 0 �⇒ j ≥ i.

Remark 1.1 Let R be a commutative ring. We will make extensive use of the ring
isomorphism between the ring of polynomials in one variable with coefficients in
Mn(R) and the ring of n × n matrices with entries in R[x]:

ϕ : (Mn(R))[x] → Mn(R[x]),
∑

k

(a(k)
i j )1≤i, j≤n x

k �→
(

∑

k

a(k)
i j xk

)

1≤i, j≤n

The restriction of ϕ to (Tn(R))[x] gives a ring isomorphism between (Tn(R))[x] and
Tn(R[x]).

Notation 1.2 For f ∈ (Mn(R))[x], Fk denotes the k-th coefficient of f , and f (k)
i j ∈ R

the (i, j)-th entry in Fk . When we reinterpret f as an element of Mn(R[x]) via the
ring isomorphism of Remark 1.1, we denote the (i, j)-th entry of f by fi j .

In other words,

f =
∑

k

Fkx
k, where Fk = ( f (k)

i j )1≤i, j≤n

and

ϕ( f ) = ( fi j )1≤i, j≤n, where fi j =
∑

k

f (k)
i j xk

Also, we write [M]i j for the (i, j)-the entry of a matrix M . In particular, [ f (C)]i j
is the (i, j)-the entry of f (C), the result of substituting the matrix C for the variable
(to the right of the coefficients) in f , and [ f (C)�]i j the (i, j)-th entry of f (C)�, the
result of substituting C for the variable in f to the left of the coefficients.

We will work in a setting that allows us to consider integer-valued polynomials and
null-polynomials on upper triangular matrices at the same time.

From now on, R is a commutative ring, S a subring of R, and I an ideal of S.
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204 S. Frisch

Notation 1.3 Let R be commutative ring, S a subring of R and I an ideal of S.

IntR(Tn(S),Tn(I )) = { f ∈ R[x] | ∀C ∈ Tn(S) : f (C) ∈ Tn(I )}
IntTn(R)(Tn(S),Tn(I )) = { f ∈ (Tn(R))[x] | ∀C ∈ Tn(S) : f (C) ∈ Tn(I )}
Int�Tn(R)(Tn(S),Tn(I )) = { f ∈ (Tn(R))[x] | ∀C ∈ Tn(S) : f (C)� ∈ Tn(I )},

where

f (C) =
∑

k

FkC
k and f (C)� =

∑

k

Ck Fk for f =
∑

k

Fkx
k .

Example 1.4 When D is a domain with quotient field K and we set R = K and S =
I = D, then IntR(Tn(S),Tn(I )) = IntK(Tn(D)) is the ring of integer-valued polyno-
mials on Tn(D)with coefficients in K and IntTn(R)(Tn(S),Tn(I )) = IntTn(K )(Tn(D)),
the set of right integer-valued polynomials on Tn(D) with coefficients in (Tn(K )).
We will show that the latter set is closed under multiplication and, therefore, a ring,
cf. Theorem 5.4.

Example 1.5 When R is a commutative ring and we set S = R and I = (0), then
IntR(Tn(S),Tn(I )) = NR(Tn(R)) is the ideal of those polynomials in R[x] that map
every matrix in Tn(R) to zero, and IntTn(R)(Tn(S),Tn(I )) = NTn(R)(Tn(R)) is the
set of polynomials in (Tn(R))[x] that map every matrix in Tn(R) to zero under right
substitution. We will show that the latter set is actually an ideal of (Tn(R))[x], cf. The-
orem 5.2.

We illustrate here in matrix form our main result on the connection between the
two kinds of polynomial functions on upper triangular matrices, those induced by
polynomials with matrix coefficients on one hand, and those induced by polynomials
with scalar coefficients on the other hand. (For details, see Theorem 4.2.)

Remark 1.6 If we identify IntTn(R)(Tn(S),Tn(I )) and Int�Tn(R)(Tn(S),Tn(I ))—a
priori subsets of (Tn(R))[x]—with their respective images in Tn(R[x]) under the
ring isomorphism

ϕ : (Tn(R))[x] → Tn(R[x]),
∑

k

( f (k)
i j )1≤i, j≤n x

k �→
(

∑

k

f (k)
i j xk

)

1≤i, j≤n

then

(1) IntTn(R)(Tn(S),Tn(I ))

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

IntR(Tn(S),Tn(I )) IntR(Tn−1(S),Tn−1(I )) . . . IntR(T2(S),T2(I )) IntR(S, I )
0 IntR(Tn−1(S),Tn−1(I )) . . . IntR(T2(S),T2(I )) IntR(S, I )

. . .

0 0 . . . IntR(T2(S),T2(I )) IntR(S, I )
0 0 . . . 0 IntR(S, I )

⎞

⎟
⎟
⎟
⎟
⎟
⎠
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(2) Int�Tn(R)(Tn(S),Tn(I ))

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

IntR(S, I ) IntR(S, I ) . . . IntR(S, I ) IntR(S, I )
0 IntR(T2(S),T2(I )) . . . IntR(T2(S),T2(I )) IntR(T2(S),T2(I ))

. . .

0 0 . . . IntR(Tn−1(S),Tn−1(I )) IntR(Tn−1(S),Tn−1(I ))
0 0 . . . 0 IntR(Tn(S),Tn(I ))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

2 Path polynomials and polynomials with scalar coefficients

We will use the combinatorial interpretation of the (i, j)-th entry in the k-th power of
a matrix as a weighted sum of paths from i to j .

Consider a set V together with a subset E of V ×V . We may regard the pair (V, E)

as a set with a binary relation or as a directed graph. Choosing the interpretation as a
graph, we may associate monomials to paths and polynomials to finite sets of paths.

For our purposes, a path of length k ≥ 1 from a to b (where a, b ∈ V ) in a directed
graph (V, E) is a sequence e1e2 . . . ek of edges ei = (ai , bi ) ∈ E such that a1 = a,
bk = b and b j = a j+1 for 1 ≤ j < k. Also, for each a ∈ V , there is a path of length
0 from a to a, which we denote by εa . (For a �= b there is no path of length 0 from a
to b.)

We introduce a set of independent variables X = {xv w | (v, w) ∈ V × V } and
consider the polynomial ring

R[X ] = R[{xv w | (v, w) ∈ V × V }]

with coefficients in the commutative ring R.
To each edge e = (a, b) in E , we associate the variable xab and to each path

e1e2 . . . ek of length k, with ei = (ai , bi ), the monomial of degree k which is the
product of the variables associated to the edges of the path: xa1b1xa2b2 . . . xakbk . To
each path of length 0 we associate the monomial 1.

If E is finite, or, more generally, if for any pair of vertices a, b ∈ V and fixed
k ≥ 0 there are only finitely many paths in (V, E) from a to b, we define the k-th
path polynomial from a to b, denoted by p(k)

ab , as the sum in R[X ] of the monomials
corresponding to paths of length k from a to b. If there is no path of length k from a
to b in (V, E), we set p(k)

ab = 0.
From now on, we fix the relation (N,≤) and all path polynomials will refer to

the graph of (N,≤), where N = {1, 2, 3, . . .}, or one of its finite subgraphs given by
intervals. The finite subgraph given by the interval

[i, j] = {k ∈ N | i ≤ k ≤ j}

is the graph with set of vertices [i, j] and set of edges {(a, b) | i ≤ a ≤ b ≤ j}.
Because of the transitivity of the relation “≤”, a path in (N,≤) from a to b involves

only vertices in the interval [a, b]. The path polynomial p(k)
ab , therefore, is the same

whether we consider a, b as vertices in the graph (N,≤), or any subgraph given by
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206 S. Frisch

an interval [i, j] with a, b ∈ [i, j]. So we may suppress all references to intervals and
subgraphs and define:

Definition 2.1 Let R be a commutative ring. The k-th path polynomial from i to j
(corresponding to the relation (N,≤)) in R[x] is defined by

(1) For 1 ≤ i ≤ j and k > 0 by

p(k)
i j =

∑

i=i1≤i2≤...≤ik+1= j

xi1i2xi2i3 . . . xik−1ik xik ik+1 ,

(2) for 1 ≤ i ≤ j and k = 0 by p(0)
i j = δi j ,

(3) for i > j and all k: p(k)
i j = 0.

For a, b ∈ N, we define the sequence of path polynomials from a to b as

pab = (p(k)
ab )k≥0.

Remark 2.2 Note that p(k)
i j is the (i, j)-th entry of the k-th power of a generic upper

triangular n × n matrix (with n ≥ i, j) whose (i, j)-th entry is xi j when i ≤ j and
zero otherwise.

Example 2.3 The sequence of path polynomials from 2 to 4 is

p24 = (0, x24, x22x24 + x23x34 + x24x44, . . . )

and

p(3)
24 = x22x22x24 + x22x23x34 + x22x24x44 + x23x33x34 + x23x34x44 + x24x44x44

Again, note that p24 is the sequence of entries in position (2, 4) in the powers
G0,G,G2,G3, . . . of a generic n× n (with n ≥ 4) upper triangular matrix G = (gi j )
with gi j = xi j for i ≤ j and gi j = 0 otherwise.

In addition to right and left substitution of a matrix for the variable in a polynomial
in R[x] or (Tn(R))[x], we are going to use another way of plugging matrices into
polynomials, namely, into polynomials in R[X ] = R[{xi j | i, j ∈ N}]. For this
purpose, the matrix C = (ci j ) ∈ Mn(R) is regarded as a vector of elements of R
indexed by N × N, with ci j = 0 for i > n or j > n:

Definition 2.4 For a polynomial p ∈ R[X ] = R[{xi j | i, j ∈ N}] and a matrix
C = (ci j ) ∈ Mn(R) we define p(C) as the result of substituting ci j for those xi j in p
with i, j ≤ n and substituting 0 for all xkh with k > n or h > n.

To be able to describe the (i, j)-th entry in f (C), where f ∈ R[x], we need one
more construction: for sequences of polynomials p = (pi )i≥0, q = (qi )i≥0 in R[X ],
at least one of which is finite, we define a scalar product 〈p, q〉 = ∑

i pi qi . Actually,
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Polynomial functions on upper… 207

we only need one special instance of this construction, that where one of the sequences
is the sequence of coefficients of a polynomial in R[x] and the other a sequence of
path polynomials from a to b.

Definition 2.5 Given f = f1 + f1x + · · · fmxm ∈ R[x] (which we identify with the
sequence of its coefficients), a, b ∈ N, and pab = (p(k)

ab )∞k=0 the sequence of path
polynomials from a to b as in Definition 2.1, we define

〈 f, pab〉 =
∑

k≥0

fk p
(k)
ab .

Definition 2.6 For a polynomial p ∈ R[X ] = R[{xi j | i, j ∈ N}] and S ⊆ R, we
define the image p(S∗) ⊆ R as the set of values of p as the variables occurring in p
range through S independently. (The star in S∗ serves to remind us that the arguments
of p are not elements of S, but k-tuples of elements of S for unspecified k.)

We define Int(S∗, I ) as the set of those polynomials in R[X ] = R[{xi j | i, j ∈ N}]
that take values in I whenever elements of S are substituted for the variables.

The notation Int(S∗, I ) is suggested by the convention that Int(S, I ) consists of
polynomials in one indeterminate mapping elements of S to elements of I and, for
k ∈ N, Int(Sk, I ) consists of polynomials in k indeterminates mapping k-tuples of
elements of S to I .

We summarize here the connection between path polynomials and the related con-
structions of Definitions 2.1, 2.4, 2.5 and 2.6 with entries of powers of matrices and
entries of the image of a matrix under a polynomial function.

Remark 2.7 Let R be a commutative ring, C ∈ Tn(R), k ≥ 0, 1 ≤ i, j ≤ n, and p(k)
i j

the k-the path polynomial from i to j in R[x] as in Definition 2.1.

(1)
[
Ck

]
i j = p(k)

i j (C)

(2) For f ∈ R[x], [ f (C)]i j = 〈 f, pi j 〉(C).

(3) If the i-th row or the j-th column of C is zero then p(k)
i j (C) = 0, and for all

f ∈ R[x], 〈 f, pi j 〉(C) = 0.

(4) p(k)
i j (S∗) = {p(k)

i j (C) | C ∈ Tn(S)}.
Proof (1) and (2) follow immediately from Definitions 2.1, 2.4 and 2.5. Compare
Remark 2.2. (3) follows from (2) and Definition 2.4, since every monomial occurring
in p(k)

i j involves a variable xim for some m and a variable xhj for some h. Also, (4)
follows from Definitions 2.1 and 2.4.

Lemma 2.8 Let f ∈ R[x]. The image of 〈 f, pi j 〉 under substitution of elements of S
for the variables depends only on f and j − i , that is, for all i ≤ j and all m ∈ N

〈 f, pi j 〉(S∗) = 〈 f, pi+m j+m〉(S∗)

Proof The R-algebra isomorphism

ψ : R[{xhk | i ≤ h ≤ k ≤ j}] → R[{xhk | i + m ≤ h ≤ k ≤ j + m}]
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208 S. Frisch

with ψ(xhk) = ψ(xh+m k+m) and ψ(r) = r for all r ∈ R maps 〈 f, pi j 〉 to
〈 f, pi+m j+m〉.

Applying ψ amounts to a renaming of variables; it doesn’t affect the image of the
polynomial function resulting from substituting elements of S for the variables. ��
Proposition 2.9 Let f ∈ R[x]. The following are equivalent

(1) f ∈ IntR(Tn(S), Tn(I ))
(2) ∀ 1 ≤ i ≤ j ≤ n 〈 f, pi j 〉 ∈ Int(S∗, I )
(3) ∀ 0 ≤ k ≤ n − 1 ∃i ∈ N 〈 f, pi i+k〉 ∈ Int(S∗, I )

Proof The (i, j)-th entry of f (C), for C ∈ Tn(R), is 〈 f, pi j 〉(C), by Remark 2.7
(2). If C varies through Tn(S), then all variables occurring in 〈 f, pi j 〉 vary through S
independently. This shows the equivalence of (1) and (2).

By Lemma 2.8, the image of 〈 f, pi j 〉 as the variables range through S depends only
on f and j − i . This shows the equivalence of (2) and (3). ��

3 Lemmata for polynomials with matrix coefficients

Notation 3.1 Given C ∈ Mn(R) and 1 ≤ h ≤ j ≤ n, let C [h, j] be the matrix
obtained fromC by replacing all entries with row- or column-index outside the interval
[h, j] = {m ∈ N | h ≤ m ≤ j} by zeros; and for S ⊆ R, let

T [h, j]
n (S) = {C [h, j] | C ∈ Tn(S)}.

Remark 3.2 Note that, for f ∈ R[x] and C ∈ Tn(R),

[ f (C)]i j = 〈 f, pi j 〉(C) = 〈 f, pi j 〉(C [i, j]) = [ f (C [i, j])]i j .

This is so because no variables other than xst with i ≤ s ≤ t ≤ j occur in p(k)
i j , for

any k.

We derive some technical, but useful, formulas for the (i, j)-th entry in f (C) and
f (C)�, respectively, where f ∈ (Tn(R))[x] and C ∈ Tn(R).

Lemma 3.3 Let f ∈ (Tn(R))[x] and C ∈ Tn(R) with notation as in 1.2 and in
Definitions 2.1, 2.4, and 2.5. Then, for all 1 ≤ i ≤ j ≤ n, we have

(R)

[ f (C)]i j =
∑

h∈[i, j]
[ fih(C)]h j =

∑

h∈[i, j]
[ fih(C [h, j])]h j

and also

[ f (C)]i j =
∑

h∈[i, j]
〈 fih, phj 〉(C) =

∑

h∈[i, j]
〈 fih, phj 〉(C [h, j]).
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(L)

[ f (C)�]i j =
∑

h∈[i, j]
[ fh j (C)]i h =

∑

h∈[i, j]
[ fh j (C [i,h])]i h

and also

[ f (C)�]i j =
∑

h∈[i, j]
〈 fh j , pih〉(C) =

∑

h∈[i, j]
〈 fh j , pih〉(C [i,h]).

Proof Let d = deg f .

[ f (C)]i j =
d∑

k=0

[FkCk]i j =
d∑

k=0

∑

h∈[1,n]
f (k)
ih [Ck]h j =

d∑

k=0

∑

h∈[1,n]
f (k)
ih p(k)

h j (C).

Changing summation, we get
∑

h∈[1,n]
∑d

k=0 f (k)
ih p(k)

h j (C).

Considering that f (k)
ih �= 0 only if i ≤ h, and that p(k)

h j �= 0 only if h ≤ j , we can
restrict summation to h ∈ [i, j]. Consequently, [ f (C)]i j equals

∑

h∈[i, j]

d∑

k=0

f (k)
ih p(k)

h j (C) =
∑

h∈[i, j]
〈 fih, phj 〉(C) =

∑

h∈[i, j]
[ fih(C)]h j .

ByRemark 3.2,we can replaceC byC [h, j], thematrix obtained fromC by replacing
all entries with row or column index outside the interval [h, j] by zeros. Therefore,

[ f (C)]i j =
∑

h∈[i, j]
〈 fih, phj 〉(C [h, j]) =

∑

h∈[i, j]

[
fih(C

[h, j])
]

h j
.

This shows the formulas for right substitution.
Now, if we substitute C for the variable of f to the left of the coefficients,

[ f (C)�]i j =
d∑

k=0

[CkFk]i j =
d∑

k=0

∑

h∈[1,n]
[Ck]i h f (k)

h j =
d∑

k=0

∑

h∈[1,n]
p(k)
ih (C) f (k)

h j .

Changing summation, we get

∑

h∈[1,n]

d∑

k=0

p(k)
ih (C) f (k)

h j =
∑

h∈[1,n]

d∑

k=0

f (k)
h j p(k)

ih (C).
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210 S. Frisch

Considering that f (k)
h j �= 0 only if h ≤ j , and that p(k)

ih �= 0 only if i ≤ h, we can
restrict summation to h ∈ [i, j]. Consequently, [ f (C)�]i j equals

∑

h∈[i, j]

d∑

k=0

f (k)
h j p(k)

ih (C) =
∑

h∈[i, j]
〈 fh j , pih〉(C) =

∑

h∈[i, j]
[ fh j (C)]i h .

By Remark 3.2, we can replace C by C [i,h], the matrix obtained from C by replacing
all entries in rows and columns with index outside [i, h] by zeros. Therefore,

[ f (C)�]i j =
∑

h∈[i, j]
〈 fh j , pih〉(C [i,h]) =

∑

h∈[i, j]
[ fh j (C [i,h])]i h .

��

Lemma 3.4 Let f ∈ (Tn(R))[x] with notation as in 1.2 and in Definitions 2.1, 2.4,
and 2.5. Let 1 ≤ i ≤ j ≤ n.

[right:] The following are equivalent
(1) [ f (C)]i j ∈ I for all C ∈ Tn(S)

(2) [ fih(C)]h j ∈ I for all C ∈ Tn(S), for all h ∈ [i, j].
(3) 〈 fih, phj 〉 ∈ IntR(S∗, I ) for all h ∈ [i, j].

[left:] The following are equivalent
(1) [ f (C)�]i j ∈ I for all C ∈ Tn(S)

(2) [ fh j (C)]i h ∈ I for all C ∈ Tn(S), for all h ∈ [i, j].
(3) 〈 fh j , pih〉 ∈ IntR(S∗, I ) for all h ∈ [i, j].

Proof For right substitution: (2 ⇒ 1) follows directly from

[ f (C)]i j =
∑

h∈[i, j]
[ fih(C)]h j ,

which is Lemma 3.3.
(1⇒ 2) Induction on h from j down to i . Givenm ∈ [i, j], we show (2) for h = m,

assuming that the statement holds for all values h ∈ [i, j] with h > m. In the above
formula from Lemma 3.3, we let C vary through T [m, j]

n (S) (as in Notation 3.1). For
such a C , the summands [ fih(C)]h j with h < m are zero, by Remark 2.7 (3). The
summands with h > m are in I , by induction hypothesis. Therefore [ f (C)]i j ∈ I for

all C ∈ Tn(S) implies [ fim(C)]m j ∈ I for all C ∈ T [m, j]
n (S). Since [ fim(C)]m j =

[ fim(C [m, j])]m j , by Remark 3.2, the statement follows for all C ∈ Tn(S).
Finally, (3 ⇔ 2) because, firstly, [ fih(C)]h j = 〈 fih, phj 〉(C), for all C ∈ Tn(R),

and secondly, as far as the image of 〈 fih, phj 〉 is concerned, all possible values under
substitution of elements from S for the variables are obtained as C varies through
Tn(S), because no variables other that xi j with 1 ≤ i ≤ j ≤ n occur in this polynomial.
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For left substitution: (2 ⇒ 1) follows directly from

[ f (C)�]i j =
∑

h∈[i, j]
[ fh j (C)]i h,

which is Lemma 3.3.
(1 ⇒ 2) Induction on h, from h = i to h = j . Given m ∈ [i, j], we show (2)

for h = m under the hypothesis that it holds for all h ∈ [i, j] with h < m. In
the above formula from Lemma 3.3, the summands corresponding to h < m are in
I by induction hypothesis. If we let C vary through T [i,m]

n (S) (as in 3.1), then, for
such C , the summands [ fh j (C)]i h = 〈 fh j , pih〉(C) corresponding to h > m are
zero, by Remark 2.7 (3). Therefore [ fmj (C [i,m])]i m ∈ I for all C ∈ Tn(S). But
[ fmj (C [i,m])]i m = [ fmj (C)]i m for all C ∈ Tn(S), by Remark 3.2. Thus, (2) follows
by induction.

Finally, (3 ⇔ 2) because, firstly, [ fh j (C)]i h = 〈 fh j , pih〉(C), for all C ∈ Tn(R),
and secondly, as far as the image of 〈 fh j , pih〉 is concerned, all possible values under
substitution of elements of S for the variables are realized as C varies through Tn(S),
since no variables other than xi j with 1 ≤ i ≤ j ≤ n occur in this polynomial. ��

4 Results for polynomials with matrix coefficients

Considering how matrix multiplication works, it is no surprise that, for a fixed row-
index i and f ∈ (Tn(R))[x], whether the entries of the i-th row of f (C) are in I for
every C ∈ Tn(S), depends only on the i-th rows of the coefficients of f . Indeed, if
f = ∑

k Fkx
k , and [B]i denotes the i-th row of a matrix B, then

[ f (C)]i =
∑

k

[Fk]iCk .

Likewise, for a fixed column index j , whether the entries of the j-th column of
f (C)� are in I for every C ∈ Tn(S) depends only on the j-th columns of the coeffi-
cients of f = ∑

k Fkx
k : if [B] j denotes the j-th column of a matrix B, then

[ f (C)�]
j =

∑

k

Ck[Fk] j .

Now we can formulate the precise criterion which the i-th rows, or j-th columns,
of the coefficients of f ∈ (Tn(R))[x] have to satisfy to guarantee that the entries of
the i-th row of f (C), or the j-th column of f (C)�, respectively, are in I for every
C ∈ Tn(S).

Lemma 4.1 Let f ∈ (Tn(R))[x]. We use the notation of 1.2 and Definitions 2.1. 2.4,
and 2.5.

[right:] Let 1 ≤ i ≤ n. The following are equivalent
(1) For every C ∈ Tn(S), all entries of the i-th row of f (C) are in I .
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(2) For all C ∈ Tn(S), for all h, j with i ≤ h ≤ j ≤ n, [ fih(C)]h j ∈ I .
(3) For all h, j with i ≤ h ≤ j ≤ n, 〈 fih, phj 〉 ∈ IntR(S∗, I ).
(4) fih ∈ IntR(Tn−h+1(S),Tn−h+1(I )) for h = i, . . . , n.

[left:] Let 1 ≤ j ≤ n. The following are equivalent
(1) For every C ∈ Tn(S), all entries of the j-th column of f (C)� are in I .
(2) For all C ∈ Tn(S), for all i, h with 1 ≤ i ≤ h ≤ j , [ fh j (C)]i h ∈ I .
(3) For all i, h with 1 ≤ i ≤ h ≤ j , 〈 fh j , pih〉 ∈ IntR(S∗, I ).
(4) fh j ∈ IntR(Th(S),Th(I )) for h = 1, . . . , j .

Proof For right substitution: by Lemma 3.4, (1–3) are equivalent conditions for the
(i, j)-th entry of f (C) to be in I for all j with i ≤ j ≤ n, for every C ∈ Tn(S).

(3⇒4) For each h with i ≤ h ≤ n, letting j vary from h to n shows that criterion
(3) of Proposition 2.9 for fih ∈ IntR(Tn−h+1(S),Tn−h+1(I )) is satisfied.

(4⇒3)For eachfixedh, fih satisfies, by criterion (2) of Proposition2.9, in particular,
〈 fih, p1k〉 ∈ Int(S∗, I ) for all 1 ≤ k ≤ n−h+1. ByLemma 2.8, 〈 fih, p1k〉(S∗) equals
〈 fih, ph h+k−1〉(S∗). Therefore 〈 fih, phj 〉 ∈ Int(S∗, I ) for all j with h ≤ j ≤ n.

For left substitution: by Lemma 3.4, (1-3) are equivalent conditions for the (i, j)-th
entry of f (C)� to be in I for all i with 1 ≤ i ≤ j , for every C ∈ Tn(S).

(3⇒4) For each h with 1 ≤ h ≤ j , letting i range from 1 to h shows that criterion
(3) of Proposition 2.9 for fh j ∈ IntR(Th(S),Th(I )) is satisfied.

(4⇒3) For each h with 1 ≤ h ≤ j , applying criterion (2) of Proposition 2.9 to fh j
shows, in particular, 〈 fh j , pih〉 ∈ Int(S∗, I ) for all 1 ≤ i ≤ h. ��

We are now ready to prove the promised characterization of polynomials with
matrix coefficients in terms of polynomials with scalar coefficients:

Theorem 4.2 Let f ∈ (Tn(R))[x]. Let Fk = ( f (k)
i j )1≤i, j≤n denote the coefficient of

xk in f and set

fi j =
∑

k

f (k)
i j xk .

Then

f ∈ IntTn(R)(Tn(S),Tn(I )) ⇔ ∀i, j fi j ∈ IntR(Tn− j+1(S),Tn− j+1(I ))

and

f ∈ Int�Tn(R)(Tn(S),Tn(I )) ⇔ ∀i, j fi j ∈ IntR(Ti (S),Ti (I )).

Proof The criterion for f ∈ IntTn(R)(Tn(S),Tn(I )) is just Lemma 4.1 applied
to each row-index i of the coefficients of f ∈ (Tn(R))[x], and the criterion for
f ∈ Int�Tn(R)(Tn(S),Tn(I )) is Lemma 4.1 applied to each column index j of the
coefficients of f .

With the above proof we have also shown Remark 1.6 from the introduction, which
is the representation in matrix form of Theorem 4.2.
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5 Applications to null-polynomials and integer-valued polynomials

Applying our findings to null-polynomials on upper triangular matrices, we can
describe polynomialswith coefficients inTn(R) that induce the zero-functiononTn(R)

in terms of polynomials with coefficients in R that induce the zero function on Tn(R).
As before, we denote substitution for the variable in a polynomial f = ∑

k bkx
k in

Tn(R)[x], to the right or to the left of the coefficients, as

f (C) =
∑

k

bkC
k and f (C)� =

∑

k

Ckbk

and define

NTn(R)(Tn(R)) = { f ∈ (Tn(R))[x] | ∀C ∈ Tn(R) f (C) = 0}
N �
Tn(R)(Tn(R)) = { f ∈ Tn(R)[x] | ∀C ∈ Tn(R) f (C)� = 0}
NR(Tk(R)) = { f ∈ R[x] | ∀C ∈ Tn(R) f (C) = 0}

Null-polynomials on matrix algebras occur naturally in two circumstances: in con-
nection with null-ideals of matrices [2,10], and in connection with integer-valued
polynomials. For instance, if D is a domainwith quotient field K and f ∈ (Tn(K ))[x],
we may represent f as g/d with d ∈ D and g ∈ (Tn(D))[x]. Then f is (right)
integer-valued on Tn(D) if and only if the residue class of g in Tn(D/dD)[x] is a
(right) null-polynomial on Tn(D/dD) [3].

From Theorem 4.2 we derive the following corollary (see also Remark 1.6):

Corollary 5.1 If we identify polynomials in (Tn(R))[x]with their images in Tn(R[x])
under the isomorphism of Remark 1.1, then
NTn(R)(Tn(R))

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

NR(Tn(R)) NR(Tn−1(R)) . . . NR(T2(R)) NR(T1(R))

0 NR(Tn−1(R)) . . . NR(T2(R)) NR(T1(R))

. . .

0 0 . . . NR(T2(R)) NR(T1(R))

0 0 . . . 0 NR(T1(R))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and N �
Tn(R)(Tn(R))

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

NR(T1(R)) NR(T1(R)) . . . NR(T1(R)) NR(T1(R))

0 NR(T2(R)) . . . NR(T2(R)) NR(T2(R))

. . .

0 0 . . . NR(Tn−1(R)) NR(Tn−1(R))

0 0 . . . 0 NR(Tn(R))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

This allows us to conclude:
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Theorem 5.2 Let R be a commutative ring. The set NTn(R)(Tn(R)) of right null-
polynomials on Tn(R) with coefficients in (Tn(R))[x], and the set N �

Tn(R)(Tn(R)) of
left null-polynomials on Tn(R) with coefficients in Tn(R), are ideals of (Tn(R))[x].
Proof Note that NR(Tm(R)) ⊆ NR(Tk(R)) for m ≥ k. Also, NR(Tm(R))R[x] ⊆
NR(Tm(R)) and R[x]NR(Tm(R)) ⊆ NR(Tm(R)) by substitution homomorphism for
polynomials with coefficients in the commutative ring R. This observation together
with matrix multiplication shows that the image of NTn(R)(Tn(R)) in Tn(R[x]) under
the ring isomorphism from (Tn(R))[x] to Tn(R[x]) is an ideal of Tn(R[x]), and like-
wise the image of N �

Tn(R)(Tn(R)) in Tn(R[x]). ��
Now let D be a domain with quotient field K . Applying Theorem 4.2 to integer-

valued polynomials (see also Remark 1.6)

IntTn(K )(Tn(D)) = { f ∈ (Tn(K ))[x] | ∀C ∈ Tn(D) f (C) ∈ Tn(D)}
Int�Tn(K )(Tn(D)) = { f ∈ (Tn(K ))[x] | ∀C ∈ Tn(D) f (C)� ∈ Tn(D)}

IntK(Tn(D)) = { f ∈ K [x] | ∀C ∈ Tn(D) f (C) ∈ Tn(D)}

yields the following corollary:

Corollary 5.3 If we identify polynomials in (Tn(K ))[x]with their images in Tn(K [x])
under the isomorphism of Remark 1.1, then
IntTn(K )(Tn(D))

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

IntK(Tn(D)) IntK(Tn−1(D)) . . . IntK(T2(D)) IntK(T1(D))

0 IntK(Tn−1(D)) . . . IntK(T2(D)) IntK(T1(D))

. . .

0 0 . . . IntK(T2(D)) IntK(T1(D))

0 0 . . . 0 IntK(T1(D))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and Int�Tn(K )(Tn(D))

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

IntK(T1(D)) IntK(T1(D)) . . . IntK(T1(D)) IntK(T1(D))

0 IntK(T2(D)) . . . IntK(T2(D)) IntK(T2(D))

. . .

0 0 . . . IntK(Tn−1(D)) IntK(Tn−1(D))

0 0 . . . 0 IntK(Tn(D))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

We can see the following:

Theorem 5.4 Let D be a domain with quotient field K . The set IntTn(K )(Tn(D))

of right integer-valued polynomials with coefficients in (Tn(K ))[x] and the set
Int�Tn(K )(Tn(D)) of left integer-valued polynomials with coefficients in (Tn(K ))[x]
are subrings of (Tn(K ))[x].
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Proof Note that IntK(Tm(D)) ⊆ IntK(Tk(D)) for m ≥ k. Together with substitution
homomorphism for polynomials with coefficients in K , this implies

IntK(Ti (D)) · IntK(T j (D)) ⊆ IntK(Tmin(i, j)(D)).

This observation together with matrix multiplication shows that the image of
IntTn(K )(Tn(D)) in Tn(K [x])under the ring isomorphismof (Tn(K ))[x] and Tn(K [x])
is a subring of Tn(K [x]), and, likewise, the image of Int�Tn(K )(Tn(D)) is a subring of
Tn(K [x]). ��
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