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Abstract We study a Laplace operator on semidiscrete surfaces that is defined by
variation of the Dirichlet energy functional. We show existence and its relation to the
mean curvature normal, which is itself defined via variation of area. We establish sev-
eral core properties like linear precision (closely related to the mean curvature of flat
surfaces), and pointwise convergence. It is interesting to observe how a certain free-
dom in choosing area measures yields different kinds of Laplacians: it turns out that
using as a measure a simple numerical integration rule yields a Laplacian previously
studied as the pointwise limit of geometrically meaningful Laplacians on polygonal
meshes.
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1 Introduction and preliminaries

1.1 Introduction

The Laplace-Beltrami operator � = − div ◦ grad on smooth surfaces and Rieman-
nian manifolds is an extremely well investigated differential operator, which plays
an essential role in many fields including applications. A main strength lies in Rie-
mannian geometry, but it is also relevant to the elementary differential geometry of
surfaces in three-dimensional space, e.g. via the equation �id = −2Hn that relates
the Laplacian to the mean curvature and unit normal vector field. Its intrinsic nature
makes it very useful for computational applications in geometry processing, see e.g.
[16], and it has therefore been extensively discretized. Discrete Laplace operators
defined on triangulations share characteristics with graph Laplacians, but ideally
maintain as many of the core properties of the original Laplace-Beltrami operator
as possible. For contributions to this topic see e.g. [1–3, 11, 12]. Another important
aspect of discretizations is a suitable convergence behavior, see e.g. [18, 20, 21].

A powerful tool to derive Laplace operators on more general surfaces arises from
the calculus of variations. The Laplacian of Riemannian geometry can be seen as
gradient of the Dirichlet energy, which leads to the famous “cotangent formula”
Laplacian on triangle meshes, see e.g. [8, 12]. The variational approach is also
particularly suited to study the mean curvature normal H = Hn, which has an
interpretation as the gradient vector field of the area functional.

In this paper we follow the variational approach. Our aim is to define meaning-
ful Laplacians on semidiscrete parametric surfaces, which are represented by a point
depending on one continuous and one discrete variable. The reader is reminded that
semidiscrete objects occur in the classical theory of transformations of surfaces. For
a systematic and unified treatment of continuous and semidiscrete surfaces as lim-
its of a discrete master theory we refer to the textbook [4]. The lowest-dimensional
case, i.e., 2-dimensional surfaces, has been investigated from various viewpoints.
The semidiscrete incarnation of conjugate surfaces is studied by [13] where piece-
wise-developable surfaces (including circular and conical semidiscrete surfaces) are
considered from the computational viewpoint. Curvatures, in analogy to polyhedral
surfaces, are the topic of [10]. Asymptotic surfaces and especially K-surfaces are
investigated by [17]. The present paper however, is not concerned with any special
class of semidiscrete surfaces.

1.1.1 Outline and results

In Section 2 we define a Laplace operator on semidiscrete surfaces by a variational
principle, namely as gradient of an appropriate Dirichlet energy functional. We show
that this gradient exists and provide a closed-form expression for the semidiscrete
Laplacian in Theorem 1. It turns out that there is quite some freedom in the choice of
the particular L2 space which is basic to the concepts of both gradient and Dirichlet
energy. Section 3 investigates the gradient of the area functional to gain a semidiscrete
mean curvature normal, and establishes the relation �id = −2H for the semidis-
crete case (Theorem 2), which in turn implies that linear functions on flat surfaces
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are in the kernel of the Laplacian (i.e., the linear precision property). Section 4 dis-
cusses further properties like locality, symmetry, positive semidefiniteness, and lack
of a maximum principle. The last section deals with pointwise convergence of the
semidiscrete Laplacian towards the Laplace-Beltrami operator on smooth surfaces
(Theorem 3).

1.2 Variational properties of the Laplacian

The Laplace-Beltrami operator �M on a Riemannian manifold M can be defined
via the Dirichlet energy functional

E(u) = 1

2

∫
M

‖∇u‖2dV, u ∈ C2(M,R).

It is then given as the gradient of the Dirichlet energy,

�M = ∇E,

which means that for smooth test functions u, and all smooth 1-parameter variations

uξ of u, with the property that ∂uξ

∂ξ

∣∣∣
ξ=0

is compactly supported, we have

d

dξ
E(uξ )

∣∣∣∣
ξ=0

=
〈
�Mu,

∂uξ

∂ξ

∣∣∣∣
ξ=0

〉

L2

(with the usual definition 〈f, g〉L2 = ∫
M f (x)g(x)dV (x); see [9, pp. 89–94]). This

relation is basic to the generalization of the Laplace-Beltrami operator to discrete
surfaces and will also be used in the present paper. Recall that for a surface M
embedded in R

3, the Laplace operator has a remarkable connection to the mean cur-
vature normal. Applying the Laplacian component-wise to the identity mapping idM,
we get

�MidM = −2H

(see [7, p. 22]), where the mean curvature normal H = Hn is a unit normal vector n
onM scaled by the corresponding mean curvature H . Observe thatH is independent
of the particular choice of n, as the sign of H depends on the direction of n. This
vector field likewise has a variational definition, namely

−2H = ∇area(M), i.e.,
d

dξ
area(pξ (M))

∣∣∣∣
ξ=0

=
〈
−2H,

∂pξ

∂ξ

∣∣∣∣
ξ=0

〉

L2(M,R3)

for every smooth 1-parameter variation pξ : M → R
3 with p0 = idM (see [7, p. 7]).

Here, area(M) = ∫
M 1dV and 〈f, g〉L2(M,R3) = ∫

M〈f (x), g(x)〉dV (x).

1.3 Semidiscrete surfaces

The semidiscrete surfaces which constitute our object of study are mappings of the
form

x : U → V : (k, t) → x(k, t), with U ⊂ Z × R open,
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and where V is a vector space equipped with a positive definite scalar product 〈·, ·〉V .
Throughout this paper we assume that x is at least twice continuously differen-
tiable in the second argument, and we denote the corresponding set of mappings by
C2
sd(U, V ). Accordingly, the set of semidiscrete functions that are merely continuous

in the second argument is denoted by Csd(U, V ). With the help of the canonical hat
function ϕ(s) := max{1 − |s|, 0}, we extend x to a mapping, again called x,

x : Û → V : (s, t) 
→
∑

k: (k,t)∈U

ϕ(s − k)x(k, t), (1)

where the domain Û is constructed as a disjoint union of strips Uk ⊂ R
2, each strip

being defined as

Uk :=
⋃

t : (k,t)∈U ∧ (k+1,t)∈U
[k, k + 1] × {t}. (2)

In the non-degenerate case, this procedure converts a sequence of curves into a piece-
wise-ruled surface, connecting corresponding points x(k, t) and x(k+1, t) by straight
line segments. For each pair of successive curves x(k, ·) and x(k + 1, ·) there is a
ruled surface strip, which is treated separately from the others as far as the domain
of definition is concerned. This procedure does not alter the values x(s, t) where s

happens to equal an integer k ∈ Z; x(s, t) has the same value regardless of the ques-
tion if s is considered as an element of [k − 1, k] or as an element of [k, k + 1]. We
call the procedure of converting a semidiscrete surface x(k, t) to a piecewise-ruled
surface x(s, t) an “extension”, even if U is not a subset of Û .

In order to make the upcoming formulas shorter and thus better readable, we set
up the following notation. For the derivatives of x(k, t) with respect to the variable t ,
we write x′, x′′, and so forth. Finite differences in the discrete direction are denoted
by

δx(s, t) := x(k + 1, t) − x(k, t), for s ∈ [k, k + 1].
Note that in contrast to x itself, the discrete derivative δx does have different values
for s = k ∈ Z, depending on whether s is thought to be contained in [k − 1, k] or
in [k, k + 1]. We resolve this ambiguity by always making it clear which of the two
corresponding surface strips we are considering.

We call a semidiscrete surface regular, if all its surface strips are regular in the
usual sense, i.e., if

{δx(s, t), x′(s, t)}, s ∈ [k, k + 1]
is linearly independent throughout. Moreover, we call (k, t) ∈ U an inner point, if

{k − 1, k, k + 1} × (t − ε, t + ε) ⊂ U,

for some ε > 0. Otherwise it is called a boundary point. The set of inner points of U

will be denoted by U inn.
Note that we do not make any assumptions on the embeddedness of the surfaces

we study. Later, when considering a real-valued function “u” on a semidiscrete sur-
face x, we regard it as defined in U rather than in x(U). Such a function u therefore
formally is a semidiscrete surface in its own right and we use the same notation as
for the surface x. We call u smooth, if it is at least twice continuously differentiable
in the second argument, i.e., if u ∈ C2

sd(U,R).
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Remark 1 It is easy to see that a semidiscrete surface x(s, t) is regular for all s ∈
[k, k + 1] if x′(k, t), x′(k + 1, t) and δx(k, t) are linearly independent (in which case
the ruled surface strip corresponding to s ∈ [k, k+1] is a regular skew ruled surface).
In case those vectors are linearly dependent, regularity in that interval is equivalent
to |δx(k, t), x ′(k, t)| · |δx(k, t), x ′(k + 1, t)| > 0, for any determinant form |·, ·| on
a plane containing these three vectors (the strip then has a torsal generator whose
singular point x(s∗, t) obeys s∗ �∈ [k, k + 1]; cf. [14, Section 5.1.1]).

2 Variational definition of a semidiscrete Laplace operator

This section aims at a meaningful definition of a Laplace operator on semidiscrete
surfaces. Mimicking the smooth case, we define a semidiscrete Laplacian as gradient
of an appropriate Dirichlet energy functional. For this purpose we first discuss area
measures.

2.1 Integration and Laplacian on semidiscrete surfaces

Consider a semidiscrete surface x with open domain U ⊂ Z × R, which has been
extended to a piecewise-ruled surface defined in the domain Û , as described above
(cf. Eq. 1).

A reasonable definition of its area obviously is given by the sum of the areas of
individual ruled surface strips, which in terms of the matrix I of the first fundamental
form is expressed as

area(x) =
∫∫

Û

√
det I(s, t) dsdt, with I =

( ‖δx‖2 〈δx, x′〉
〈δx, x′〉 ‖x′‖2

)
(3)

(see [6, p. 98]). Note that, in order to resolve the ambiguity in the definition of δx,
the double integral over Û has to be interpreted as the sum of double integrals over
the individual strips Uk stated in Eq. 2.

It makes sense to generalize this definition by replacing Lebesgue measure dsdt

by other measures. We start with a Borel measure μ0 supported on the unit interval
[0, 1], whose zeroth and first moments have the following values:

m0 =
∫

[0,1]
1 dμ0(s) = 1 and m1 =

∫
[0,1]

s dμ0(s) = 1

2
. (4)

That is, we require integration of polynomials up to degree 1 to coincide with inte-
gration w.r.t. Lebesgue measure. A stronger property is symmetry of the measure,
meaning that∫

[0,1]
f (s) dμ0(s) =

∫
[0,1]

f (1 − s) dμ0(s), for all f ∈ L1([0, 1], μ0). (5)

Together with m0 = 1 symmetry implies m1 = 1/2. This symmetry property is not
required except in Theorem 3, where it is explicitly mentioned.

We will see that these assumptions are crucial for some important properties of
the Laplacian, and also for convergence. We actually construct an entire family of
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semidiscrete Laplace operators, depending on the type of integration we employ.
Note that in particular the measure μ0 might be a numerical integration rule, like
the midpoint rule or the trapezoidal rule. As it turns out, a particular choice of mea-
sure leads to the semidiscrete Laplacian introduced in [5] as a pointwise limit of
the discrete construction of Alexa and Wardetzky [1]. We discuss this connection in
Section 2.2.

Now, by translation, μ0 acts as a measure on each interval [k, k + 1], and we
denote the sum of measures on the disjoint union of intervals [k, k + 1] by μ. With
the Lebesgue measure λ on the reals, we consider the product measure μ ⊗ λ on the
disjoint union of strips [k, k + 1] × R. It is precisely this measure which we use for
integration in the domain Û :

Definition 1 Consider a semidiscrete surface x : U → V , extended to a piecewise-
ruled surface x : Û → V . We use its first fundamental form I and the measure μ⊗ λ

on Û to define the surface integral of a function u : Û → R:∫
x

u dA :=
∫

Û

u(s, t)
√
det I(s, t) d(μ ⊗ λ)(s, t).

The surface area is given by areaμ(x) := ∫
x
1 dA.

Again, by the integral over Û we mean the sum of integrals over the individual
strips Uk given by Eq. 2. Note that for nonnegative functions u, the integral always
exists and

∫
x
udA ∈ [0, ∞], whereas for general u,

∫
x
u dA = ∫

x
max(u, 0) dA −∫

x
max(−u, 0) dA is only defined if at least one of the involved expressions is

finite.

Example 1 This definition in particular applies to a semidiscrete function u : U →
R, which has been extended to a piecewise-linear function u : Û → R by linear
interpolation:

u(s, t) =
∑

k: (k,t)∈U

ϕ(s − k)u(k, t).

If u vanishes at the boundary of U , we can write its surface integral as∫
x

u dA =
∑
k∈Z

∫
π2(Uk)

u(k, t) a(k, t) dλ(t),

where π2 : R × R → R : (s, t) 
→ t , and the semidiscrete function a is defined by

a(k, t) :=
∫

[k−1,k] � [k,k+1]
ϕ(s − k)

√
det I(s, t) dμ(s).

Here, the integral over [k − 1, k] � [k, k + 1] represents the sum of the integrals over
the intervals [k − 1, k] and [k, k + 1]. This formula follows from computing the left
hand side by the iterated integral

∑
k

∫
π2(Uk)

( ∫
[k,k+1] u

√
det I dμ(s)

)
dλ(t) and using

u(s, t) = ∑
j ϕ(s − j)u(j, t) to express the interior integral as u(k, t)

∫
[k,k+1] ϕ(s −

k)
√
det I dμ(s)+u(k + 1, t)

∫
[k,k+1] ϕ(s − k − 1)

√
det I dμ(s). An index shift yields

the formula given above.
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Definition 2 Given a semidiscrete surface x with domain U , we define L2 inner
products for semidiscrete real-valued (resp. V -valued) functions u, v with the same
domain by letting

〈u, v〉L2(x) :=
∫

x

uv dA, resp. 〈u, v〉L2(x,V ) :=
∫

x

〈u, v〉V dA.

The integrals in the previous formulas mean that the semidiscrete functions u, v are
multiplied to create a semidiscrete product function (u · v)(k, t) (resp. 〈u, v〉V (k, t)),
which for the purpose of integration undergoes linear interpolation. The inner prod-
ucts are, for instance, well defined for semidiscrete functions that are continuous in
the second argument and have finite L2 norm.

For the Dirichlet energy of a semidiscrete function we use the following definition:

Definition 3 Let x be a regular semidiscrete surface defined on U and let u, v :
U → R be smooth semidiscrete functions, considered as functions on x. Then we
use the extended functions u(s, t), v(s, t) over the extended surface x(s, t) to define
the Dirichlet energy Eμ(u) and the corresponding symmetric bilinear form Eμ(u, v)

via

Eμ(u) := 1

2

∫
x

‖∇u‖2dA, Eμ(u, v) := 1

2

∫
x

〈∇u,∇v〉dA.

As to the gradients of real-valued functions u(s, t), v(s, t) on a parametric surface
x(s, t), recall that 〈∇u,∇v〉 = (

∂u/∂s
∂u/∂t

)
T · I−1 · (

∂v/∂s
∂v/∂t

)
, where I(s, t) is the matrix of

the first fundamental form. This leads to the following explicit expression for the
Dirichlet energy:

Eμ(u) = 1

2

∫
Û

det I−1/2
(
‖x′‖2(δu)2 − 2〈δx, x′〉(δu)(u′) + ‖δx‖2(u′)2

)
d(μ ⊗ λ).

Observe that Eμ(u) essentially is the ordinary Dirichlet energy of the piecewise-
smooth function u(s, t) over the piecewise-smooth surface x(s, t).

It is tempting to employ L2 notation for the definition of the Dirichlet energy.
We will not do that, since the integrand is not generated by extending a semidiscrete
function, and therefore does not fit Definition 2.

Next, we generalize the notion of the gradient of an energy functional to the
semidiscrete case. For that we consider “admissible” variations of semidiscrete
functions:

Definition 4 An admissible variation xξ (k, t) of a smooth semidiscrete mapping x :
U → V is a V -valued function of arguments (ξ, k, t) ∈ (−ε, ε)×U , which depends
smoothly on ξ and t , coincides with x(k, t) for ξ = 0, and such that xξ (k, t) does not
depend on ξ outside a compact subset K of U inn. Moreover, we call a subset B ⊂ U

associated with the variation xξ , if it is open and bounded, with K ⊂ B ⊂ B ⊂ U

and (k, t) ∈ K =⇒ (k − 1, t), (k + 1, t) ∈ B. For the derivative of xξ with respect
to ξ we use the notation

ẋ(k, t) := ∂

∂ξ
xξ (k, t)

∣∣∣∣
ξ=0

.
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This definition in particular applies to admissible variations uξ (k, t) of smooth
semidiscrete functions u : U → R. In what follows we discuss the variation of
energy, and the variation of surface area, even if these quantities are not finite.
As admissible variations only take effect on compact parts of the domain U , the
corresponding change in energy or surface area can be defined in a meaningful way.

Definition 5 Let x : U → V be a regular semidiscrete surface and let E be
a functional on C2

sd(U,R), with the property that there exists an operator ∇E :
C2
sd(U,R) → Csd(U

inn,R), such that for every u ∈ C2
sd(U,R) and all admissible

1-parameter variations uξ of u with associated subset B ⊂ U , we have

d

dξ
E(uξ |B)

∣∣∣∣
ξ=0

= 〈∇E(u), u̇〉L2(x) .

Then∇E is called the gradient ofE. In particular, we define the semidiscrete Laplace
operator �sd on x as the gradient of the Dirichlet energy functional Eμ, i.e.,

�sd := ∇Eμ.

Note that this definition is independent of the particular choice of the bounded
open subset B ⊂ U associated with a variation uξ of u.

Theorem 1 If x : U → V is a regular semidiscrete surface, then the semidiscrete
Laplacian �sdu exists for all smooth semidiscrete functions u defined in the same
domain:

(�sdu) (k, t) = 1

a(k, t)

(
δb(k, t) + c′(k, t)

)
, (6)

with a as in Example 1, and with semidiscrete functions b, c defined by

b(k, ·) :=
∫

[k−1,k]
det I−1/2

(
〈δx, x′〉u′ − ‖x′‖2δu

)
dμ,

c(k, ·) :=
∫

[k−1,k] � [k,k+1]
det I−1/2ϕ(s − k)

(
〈δx, x′〉δu − ‖δx‖2u′) dμ.

Proof Let uξ be an admissible variation of uwith derivative u̇ and letB ⊂ U be asso-
ciated with uξ . We compute the derivative of the Dirichlet energy by using the Leibniz
rule (which applies because all occurring functions are smooth in the variables ξ and
t , and u̇ has compact support):

d

dξ
Eμ(uξ |B)

∣∣∣∣
ξ=0

=
∫

Û

det I−1/2
(
‖x′‖2δuδu̇−〈δx, x′〉 (

δuu̇′+u′δu̇
) + ‖δx‖2u′u̇′)

×d(μ ⊗ λ)

=
∫

Û

(−b(s, t)δu̇(s, t) − c(s, t)u̇′(s, t)
)
d(μ ⊗ λ)(s, t),where

b := det I−1/2(〈δx, x′〉u′ − ‖x′‖2δu),

c := det I−1/2(〈δx, x′〉δu − ‖δx‖2u′). (7)
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Next we apply integration by parts w.r.t. t to the second summand:

d

dξ
Eμ(uξ |B)

∣∣∣∣
ξ=0

=
∫

Û

(−b(s, t)δu̇(s, t)+c′(s, t)u̇(s, t)
)
d(μ ⊗ λ)(s, t)

=
∑
k∈Z

∫
π2(Uk)

∫
s∈[k,k+1]

b(s, t) (u̇(k, t)−u̇(k+1, t))

+c′(s, t) (ϕ(s−k)u̇(k, t)+ϕ(s−k−1)u̇(k+1, t)) dμ(s)dλ(t).

Observe that the boundary terms vanish, since the support of u̇ is contained in U inn.
Finally, an index shift yields

d

dξ
Eμ(uξ |B)

∣∣∣∣
ξ=0

=
∑
k∈Z

∫
π2(Uk)

(
δb(k, t) + c′(k, t)

)
u̇(k, t)dλ(t) = 〈�sdu, u̇〉L2(x),

with b, c, and �sdu as stated above (cf. also Example 1).

2.2 Example: semidiscrete Laplacians arising as limits of discrete ones

As demonstrated in [5], the discrete Laplace operator L constructed by Alexa and
Wardetzky [1] for functions defined on the vertices of a polygonal mesh gives rise to
a Laplace operator on semidiscrete surfaces via pointwise limits. We may discretize
a regular semidiscrete surface x : U → R

3 and a smooth function u : U → R near a
point of interest (k, t) ∈ U inn by letting

xε
ij := x(k + i, t + εj), uε(xε

ij ) := u(k + i, t + εj).

This defines the vertices xε
ij of a quad mesh with regular combinatorics, and function

values on these vertices. The discrete Lapace operator on that mesh is denoted by Lε,
and we let

(�limu)(k, t) := lim
ε→0

(Lεuε)

∣∣∣
0,0

.

Existence and properties of this limit were investigated in [5], in particular indepen-
dence of the limit from the still remaining degrees of freedom in the construction of
L. There is a remarkable connection between our semidiscrete Laplacian �sd and the
semidiscrete Laplacian �lim which arises by pointwise limits. In fact, if the measure
μ0 used to construct �sd is taken as the midpoint rule for numerical integration (i.e.,∫
[0,1] f (s) dμ0(s) = f ( 12 )), then they are equal:

μ0({ 12 }) = 1 =⇒ �sdu = �limu, ∀ u ∈ C2
sd(U,R).

This claim is easily verified by comparing the formulae for �limu given by [5, Corol-
lary 1] with the explicit expressions stated in Theorem 1 of the present paper: If
μ0({ 12 }) = 1,

a(k, t) =
∫

[k−1,k] � [k,k+1]
ϕ(s − k)‖δx(s, t) × x′(s, t)‖dμ(s)

= 1

4

(
‖(x1 − x) × (x′

1 + x′)‖ + ‖(x1̄ − x) × (x ′̄
1
+ x′)‖

)
= A1 + A1̄

4
,
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where we adopt the notation from [5, Corollary 1]. In particular, x1(k, t) = x(k+1, t)
and x1̄(k, t) = x(k − 1, t). Likewise, we get

b(k, t) = 1

2A1

(
〈x1 − x, x′

1 + x′〉(u′
1 + u′) − ‖x′

1 + x′‖2(u1 − u)
)

, and

c(k, t) = 1

2A1

(
‖x1 − x‖2(u′

1 + u′) − 〈x1 − x, x′
1 + x′〉(u1 − u)

)
= − α1

2A1
.

By inserting these functions into Eq. 6 and comparing the resulting expression with
the formula stated in [5, Corollary 1], we see that �sdu = �limu.

3 Semidiscrete mean curvature normals

Before we analyze further properties of the semidiscrete Laplace operator, we dis-
cuss its connection to the mean curvature normal. Recall from the introductory
section the relations between the Laplacian and the mean curvature normal, which
hold for smooth surfaces embedded in R

3: On the one hand, �MidM = −2H,
on the other hand the mean curvature normal itself has the variational definition
−2H = ∇area(M). Here we consider the semidiscrete version of these objects and
the relations between them. Our notation is not entirely the same as in Section 1.2,
because we deal with parametric surfaces.

3.1 Variational properties of mean curvature

Definition 6 Let F be a functional on C2
sd(U, V ) and let x : U → V be a semidis-

crete surface with the property that there exists a function ∇F(x) ∈ Csd(U
inn, V ),

such that for all admissible 1-parameter variations xξ of x with associated subset
B ⊂ U , we have

d

dξ
F (xξ |B)

∣∣∣∣
ξ=0

= 〈∇F(x), ẋ〉L2(x,V ).

Then ∇F(x) is called the gradient of F at x. In particular, the semidiscrete mean
curvature normal Hsd of a regular semidiscrete surface x is defined as

Hsd := −1

2
∇ areaμ(x).

Theorem 2 For regular semidiscrete surfaces x, the mean curvature normal vector
field exists and can be computed by applying the Laplacian componentwise to the
identity mapping on x:

�sdx = −2Hsd.

Proof Let xξ (k, t) be an admissible variation of x. Each semidiscrete surface xξ (k, t)

is extended to a piecewise-ruled surface xξ (s, t), having first fundamental form
Iξ (s, t) (cf. Eq. 3). By definition, xξ (k, t) is independent of ξ outside a compact sub-
set K of U inn. Thus, by a standard argument, the piecewise-ruled surfaces xξ (s, t)
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are regular for all ξ in some interval (−h, h), because
√
det Iξ , i.e., the area spanned

by the partial derivatives of xξ , is positive in a compact set {0} × K ′ ⊂ R × Û , thus
positive in a neighbourhood of this set, and consequently positive in a product set
(−h, h) × K ′.

Thus, we may compute

∂

∂ξ

√
det Iξ = 1

2
√
det Iξ

∂

∂ξ

[
‖δxξ‖2‖x′

ξ‖2 − 〈δxξ , x
′
ξ 〉2

]
.

For ξ = 0, this expression is simplified by computing the individual derivatives
∂
∂ξ

‖δxξ‖2 = 2〈δx, δẋ〉, ∂
∂ξ

‖x′
ξ‖2 = 2〈x′, ẋ′〉, and ∂

∂ξ
〈δxξ , x

′
ξ 〉2 = 2(〈x′, δẋ〉 +

〈δx, ẋ′〉)〈δx, x′〉. We get

d

dξ
areaμ(xξ |B)

∣∣∣∣
ξ=0

=
∫

Û

(−〈b(s, t), δẋ(s, t)〉 − 〈c(s, t), ẋ′(s, t)〉) d(μ ⊗ λ)(s, t),

where the functions b(s, t) and c(s, t) are the same as in Eq. 7, and the previous
formula is the same as the expression for the derivative of the Dirichlet energy in the
proof of Thm. 1, only with x instead of u, and scalar products of V -valued functions
instead of products of real-valued ones. It follows that the gradient of areaμ evaluated
at x indeed equals �sdx.

3.2 Mean curvature of extrinsically flat surfaces

We show that the mean curvature normal of a regular semidiscrete surface x vanishes,
if that surface is embedded in a 2-dimensional plane. Here, embeddedness means
injectivity of the extended surface x(s, t). Besides constituting a sanity check on
our definitions, this fact is of importance later when we show the “linear precision”
property of the semidiscrete Laplacian.

Lemma 1 If the regular semidiscrete surface x : U → V is embedded in a 2-
dimensional plane, then its mean curvature normal Hsd vanishes.

Proof The general idea of the proof is to show that ‖Hsd‖L2(x,V ) = 0 by construct-
ing a variation whose derivative equals Hsd. This can be done in the following way.
Choose a smooth function v : U → R with compact support contained in U inn. Then

xξ (k, t) := x(k, t) + ξv(k, t)2Hsd(k, t)

is a well-defined 1-parameter variation of x with velocity ẋ = v2Hsd.
Now, let � denote the plane containing the surface x and assume without loss of

generality that 0 ∈ �, so � is a linear subspace and therefore δx, x′ ∈ �. It follows
from Thm. 1 and Thm. 2 that Hsd(k, t) ∈ �, and consequently, xξ (k, t) ∈ �. Since
dim� = 2, we can express the above-mentioned area in terms of an appropriate
determinant form |·, ·|:√

det Iξ (s, t) = ∣∣δxξ (s, t), x′
ξ (s, t)

∣∣ = (1 − s + k)
∣∣δxξ (k, t), x ′

ξ (k, t)
∣∣

+(s − k)
∣∣δxξ (k, t), x ′

ξ (k + 1, t)
∣∣ , for s ∈ [k, k + 1], t fixed.
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By Eq. 4, integrating
√
det Iξ over [k, k + 1] w.r.t. dμ(s) is the same as integrat-

ing w.r.t. Lebesgue measure. Thus, areaμ(xξ |B) equals the unsigned Euclidean area.
Since the variation xξ leaves the boundary of the surface unchanged, areaμ(xξ |B)

does not depend on ξ , and we get

‖vHsd‖2L2(x,V )
=

〈
Hsd, v

2Hsd

〉
L2(x,V )

= −1

2
〈∇ area(x), ẋ〉L2(x,V )

= −1

2

d

dξ
area(xξ |B)

∣∣∣∣
ξ=0

= 0.

We conclude that vHsd vanishes for all v, i.e., Hsd = const. = 0.

4 Properties of the semidiscrete Laplacian

The classical Laplace operator enjoys several properties like linear precision, sym-
metry, positive semidefiniteness, and an associated maximum principle for harmonic
functions. It is natural to ask if they carry over to the purely discrete or semidis-
crete cases (for triangle meshes, these core properties turn out to be incompatible
for Laplacians whose definition involves the 1-ring neighbourhood of individual
vertices; see [19]). We start by investigating the kernel of the Laplacian. Surely
it contains the constant functions. As to linear functions, we have the following
result:

Lemma 2 For a regular semidiscrete surface x and its corresponding Laplacian �sd
and mean curvature normal field Hsd, the following statements are equivalent:

(a) All functions u(k, t) = L(x(k, t)) with L : V → R linear are contained in the
kernel of �sd.

(b) x is harmonic, i.e., �sdx = const. = 0.
(c) x is a minimal surface, i.e., Hsd = const. = 0.

Proof The equivalence of (b) and (c) is Theorem 2. Since the coordinate compo-
nents of x are linear functions of x, (a) implies (b). Conversely, any linear function
is a linear combination of coordinate functions and a constant, so (b) implies
(a).

Corollary 1 The semidiscrete Laplacian enjoys the linear precision property, i.e.,
for a regular semidiscrete surface embedded in a 2-dimensional plane, all linear
functions are contained in the kernel of the Laplacian.

Proof Combine Lemmas 1 and 2.

We show that our semidiscrete Laplacian is symmetric and positive semidefinite
in the L2 sense, in a way analogous to the well known Laplace-Beltrami operator
(see, e.g. [15]). This follows directly from the variational definition of the Laplacian.
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Lemma 3 The semidiscrete Laplace operator�sd is symmetric and positive semidef-
inite. More precisely, for semidiscrete functions u and v, with compact support
contained in U inn, we have

〈�sdu, v〉L2(x) = 〈u, �sdv〉L2(x) and 〈�sdu, u〉L2(x) = 2Eμ(u) ≥ 0.

Proof We use the quadratic form Eμ corresponding to the Dirichlet energy (see Def-
inition 3) and compute 〈�sdu, v〉L2(x) = 〈∇Eμ(u), v〉L2(x) = d

dξ
Eμ(u + ξv)|ξ=0

= d
dξ

(Eμ(u, u) + 2ξEμ(u, v) + ξ2Eμ(v, v))|ξ=0 = 2Eμ(u, v), where we have used
the relations given in Definition 5. This implies symmetry and, for u = v,
semidefiniteness.

Unfortunately, the maximum principle is not valid for the semidiscrete Laplacian,
even for functions on very simple surfaces. This is in contrast to the smooth case,
where the maximum principle holds in general; and it is also in contrast to the cotan-
Laplacian on triangle meshes (likewise found as gradient of the Dirichlet energy),
where a maximum principle holds e.g. if all angles are acute. A counterexample is as
follows.

Example 2 Here we construct a semidiscrete harmonic function u with a maximum
at the inner point (0, 0) of the semidiscrete surface x(k, t) := (k, t). For this purpose
we first derive a more explicit expression for the Laplacian �sdu of a semidiscrete
function u on x. We extend x to x(s, t) = (s, t) and u to the piecewise-linear function
u(s, t) = ∑

(k,t)∈Z×R
ϕ(s − k)u(k, t). Then I = diag(1, 1), so by the assumptions 4,

we get

a(k, t) =
∫

[k−1,k] � [k,k+1]
ϕ(s − k)dμ(s) = 1,

b(k, t) = −
∫

[k−1,k]
δu(s, t)dμ(s) = −δu(k − 1, t) = u(k, t) − u(k − 1, t),

c(k, t) = −
∫

[k−1,k] � [k,k+1]
ϕ(s − k)u′(s, t)dμ(s)

= −2m2u
′(k, t) − ( 12 − m2)

(
u′(k − 1, t) + u′(k + 1, t)

)
,

where m2 = ∫
[0,1] s

2dμ0 is the second moment of the measure μ0. Hence, in this
situation, the Laplacian of u is given by

�sdu(k, t) = 2u(k, t) − u(k − 1, t) − u(k + 1, t) − 2m2u
′′(k, t) − ( 12 − m2)

×(
u′′(k − 1, t) + u′′(k + 1, t)

)
.

The harmonicity condition �sdu = 0 thus becomes a system of linear ODEs
for the functions t 
→ u(k, t), where k runs through the integers. Observe that the
assumptions 4 imply 1

4 ≤ m2 ≤ 1
2 . The maximum principle obviously holds if

m2 = 1
2 , which applies e.g. to the trapezoidal rule. Otherwise, for m2 < 1

2 , we can
construct a harmonic function u on x with a maximum at (0, 0) as follows. Choos-
ing u(0, t) := −t2 and assuming symmetry u(±1, t) := φ(t), we find φ(t) easily
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as φ(t) = 1 − t2 + γ1 cos(( 12 − m2)
−1/2t) + γ2 sin(( 12 − m2)

−1/2t). An appropriate
choice of constants, e.g. γ1 = −2, γ2 = 0, yields a function u(k, t), which undoubt-
edly has a local maximum in u(0, 0) = 0. We have thus created a locally defined
counterexample to the maximum principle. It can be turned into a globally defined
example by constructing u(±2, t), u(±3, t), . . . such that overall �sdu = 0: one has
to iteratively solve linear ODEs.

5 Pointwise convergence / consistency

In this section we show that the semidiscrete Laplace operator converges point-
wise to its smooth counterpart, as the semidiscrete surface converges to a smooth
one. In the Finite Elements literature this kind of convergence is called consistency,
while convergence would be reserved for the situation where the solutions of equa-
tions involving the semidiscrete Laplacian converge to solutions of equations which
involve the continuous Laplacian.

More precisely, the situation in the following theorem is as follows. We fix a
point p on a regular surface M, which is assumed to have a local parametriza-
tion f . Without loss of generality, p = f (0, 0). Next, we consider the semidiscrete
surface

xε : (k, t) 
→ f (εk, t), ε > 0,

which obviously contains the point p = xε(0, 0) and is inscribed in the surface M.
Then we analyze the semidiscrete Laplace operator associated with xε and its action
on functions uε, and let ε → 0.

Theorem 3 Consider a smooth regular surface M with parametrization f and a
real-valued function u(s, t) which represents a function defined on the surface M.
Let p = f (0, 0).

Semidiscretize these objects by defining a semidiscrete surface xε(k, t) :=
f (εk, t) and a semidiscrete function uε(k, t) := u(εk, t). Then the corresponding
semidiscrete Laplace operator �ε

sd converges to the Laplace-Beltrami operator �M
defined onM:

f, u ∈ C2 =⇒ (�ε
sduε)(0, 0) = (�Mu)(p) + o(1), as ε → 0.

In case the measure μ0 is symmetric in the sense of Eq. 5, convergence is improved:

f, u ∈ C3 =⇒ (�ε
sduε)(0, 0) = (�Mu)(p) + o(ε), as ε → 0,

f, u ∈ C4 =⇒ (�ε
sduε)(0, 0) = (�Mu)(p) + O(ε2), as ε → 0.

Theorem 2 immediately implies a convergence statement concerning mean
curvature:

Corollary 2 In the situation of Theorem 3, the semidiscrete mean curvature normal
Hε

sd on xε converges pointwise to its smooth counterpart (with the rate of convergence
depending on the smoothness of the parametrization f).
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Proof of Theorem 3 We first set up some notation. For differentiation with respect
to s and t we use the notation ∂1 and ∂2, respectively. The coefficients of the first
fundamental form are denoted by gij := 〈∂if, ∂jf 〉. Their determinant is denoted by
det I = g11g22 − g2

12. We also use the symbols ρijk := 〈∂if, ∂jkf 〉.
• Step 1: Overview of the proof.

In local coordinates, the Laplacian is expressed as

�Mu = 1

acont
(∂1bcont + ∂2ccont), where

acont = √
det I, bcont = g12∂2u − g22∂1u√

det I
, ccont = g12∂1u − g11∂2u√

det I

(see e.g. [15, p. 18]). On the other hand, the semidiscrete Laplacian �ε
sd asso-

ciated with xε is computed, using notation aε, bε, cε analogous to Thm. 1,
as

�ε
sduε(0, 0) = 1

aε

(
δbε + c′

ε

) ∣∣∣
(0,0)

.

We compute Taylor polynomials around (0, 0) for xε(±1, 0) = f (±ε, 0) and
uε(±1, 0) = u(±ε, 0), and insert them into this formula. Long computations
yield

aε(0, 0)

ε
≈ acont(0, 0),

δbε(0, 0)

ε
≈ ∂1bcont(0, 0),

c′
ε(0, 0)

ε
≈ ∂2ccont(0, 0),

where the ≈ symbol means equality up to O(ε2) in the C4 case, resp. o(ε)
in the C3 case, resp. o(1) in the C2 case. Having obtained these convergence
rates, the proof is complete. It remains to perform the above-mentioned long
computations.

• Step 2: Taylor expansion of xε, uε and their derivatives. Note that

xε(s, 0) =
∑

k

ϕ(s−k)xε(k, 0) =
{

(1 + s)f (0, 0) − sf (−ε, 0), if s ∈ [−1, 0],
(1 − s)f (0, 0) + sf (ε, 0), if s ∈ [0, 1].

(8)
The expression for uε in terms of u(±ε, 0) is analogous. The Taylor polynomials
of f (±ε, 0) and its derivatives around ε = 0 are in the C4 case given by

f (±ε, 0) = f (0, 0) ± ε∂1f (0, 0) + ε2

2 ∂11f (0, 0) ± ε3

6 ∂111f (0, 0) + O(ε4),

∂2f (±ε, 0) = ∂2f (0, 0) ± ε∂12f (0, 0) + ε2

2 ∂112f (0, 0) + O(ε3).

∂22f (±ε, 0) = ∂22f (0, 0) ± ε∂122f (0, 0) + O(ε2).

The remainder terms O(εj ) in the individual formulas have to be replaced by
o(εj−1) in the C3 case. In the C2 case, the terms containing third order partial
derivatives of f have to be replaced by o(εj−2). There are analogous expressions
for u(±ε, 0) and its derivatives.

• Step 3: Taylor expansion of the area element. For sufficiently small ε > 0,
we consider the first fundamental form Iε associated with the piecewise-ruled
surface xε and look at the quantity

α(ε, s) = √
det Iε(s, 0), s ∈ [−1, 1].
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Note that, for s ∈ [0, 1], det Iε(s, 0) is the Gram determinant of vectors

δxε(s, 0) = f (ε, 0) − f (0, 0), x′
ε(s, 0) = (1 − s)∂2f (0, 0) + s∂2f (ε, 0).

In the C4 case, a simple computation and taking square roots by means of the
binomial series yields

det Iε(s, 0)=ε2
(
α1+ε(α2+sα3)+ε2α4+O(ε3)

)
, as ε → 0,

α1=det I
∣∣
(0,0), α2=(g22ρ111−g12ρ211)

∣∣
(0,0), α3=2(g11ρ212−g12ρ112)

∣∣
(0,0) ,

α(ε, s)=|ε|
(

α
1/2

1 + ε

2

α2 + sα3

α
1/2

1

+ ε2

8

4α1α4−(α2 + sα3)
2

α
3/2

1

+O(ε3)

)
.

In the C3 case, the remainder term is o(ε2), while in the C2 case, the terms
involving ε2 have to be replaced by o(ε). For s ∈ [−1, 0], the situation is
analogous.

• Step 4: The relation between aε and acont. Our aim is to give a proof of 1
ε
aε(0, 0)

≈ acont(0, 0), where the meaning of “≈” is equality up to an error term depending
on the differentiability class of the objects involved. The relation α(ε, −s) =
α(−ε, s) yields

aε(0, 0) =
∫

[−1,0]
(1 + s)α(ε, s) dμ(s) +

∫
[0,1]

(1 − s)α(ε, s) dμ(s)

=
∫

[0,1]
sα(−ε, 1 − s) + (1 − s)α(ε, s) dμ(s)

= |ε|
∫

[0,1]
(
α

1/2

1 + ε

2
(1 − 2s)α2α

−1/2

1 + O(ε2)
)
dμ(s)

in the C3 and C4 cases, and the same formula with remainder term o(ε) in the
C2 case. Now Eq. 4 yields

∫
[0,1](1 − 2s)dμ(s) = 0, so the result follows.

• Step 5: Relation between bε and bcont. With computations similar to those of the
previous Step 4, it is not difficult to see that

δbε(0, 0) = bε(1, 0) − bε(0, 0) =
∫

[0,1]

(
β(−ε, 1 − s)

α(−ε, 1 − s)
+ β(ε, s)

α(ε, s)

)
dμ0(s),

(9)
where β(ε, s) := 〈δxε, x

′
ε〉u′

ε − ‖x′
ε‖2δuε

∣∣
(0,0) is expressed as

β(ε, s) = 〈f (ε, 0) − f (0, 0), (1 − s)∂2f (0, 0) + s∂2f (ε, 0)〉
· ((1 − s)∂2u(0, 0) + s∂2u(ε, 0))

−‖(1−s)∂2f (0, 0)+s∂2f (ε, 0)‖2 (u(ε, 0)−u(0, 0)) , for s ∈ [0, 1].
Note that β(ε,−s) = −β(−ε, s) and α(ε, −s) = α(−ε, s) for s ∈ [0, 1].
Assuming symmetry of the measure μ0, this simplifies to

δbε(0, 0) =
∫

[0,1]

(
β(−ε, s)

α(−ε, s)
+ β(ε, s)

α(ε, s)

)
dμ0(s).
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Inserting Taylor polynomials yields the expansion (for the C3 case)

β(ε, s) = εβ1 + ε2(β2 + sβ3) + ε3β4 + o(ε3), where

β1 = g12∂2u − g22∂1u

∣∣∣∣0,0, β2 = 1

2
(ρ211∂2u − g22∂11u)

∣∣∣∣
0,0

,

β3 = (ρ112∂2u − 2ρ212∂1u + g12∂12u)
∣∣
0,0.

This leads to

β(−ε, s)

α(−ε, s)
+ β(ε, s)

α(ε, s)
= ε3

(
2(β2+sβ3)α

1/2
1 −β1(α2+sα3)α

−1/2
1

)
+o(ε4)

ε2α1+o(ε3)
.

Integration with respect to dμ(s) and substituting the definitions of αj , βj

eventually yields

δbε(0, 0)

ε
= 2β2 + β3

α
1/2

1

− β1(α2 + 1
2α3)

α
3/2

1

+ o(ε) = ∂1bcont(0, 0) + o(ε).

In the C4 case the remainder term is O(ε2), whereas in the C2 case, where sym-
metry of the measure is not required, the integral on the right hand side of Eq. 9
does not simplify as shown above, and we only get a remainder term of o(1).

• Step 6: Computing the derivative of c(k, t). The following explicit formula,
which is found by differentiating the definition of c(k, t), is needed later:

dc(k, t)

dt
=

∫
[k−1,k] � [k,k+1]

ϕ(s − k)
∂

∂t

( 〈δx, x′〉δu − ‖δx‖2u′

det I1/2

)
dμ(s)

=
∫

[k−1,k] � [k,k+1]
ϕ(s − k)

(
c∗(s, t)
det I1/2

− c∗∗(s, t)
det I3/2

)
dμ(s), where

c∗ := (〈δx ′, x′〉 + 〈δx, x′′〉) δu + 〈δx, x′〉δu′ − 2〈δx, δx′〉u′ − ‖δx‖2u′′,

c∗∗ := (〈δx, x′〉δu − ‖δx‖2u′)
[
〈x′, x′′〉‖δx‖2 − (〈δx′, x′〉 + 〈δx, x′′〉)〈δx, x′〉
+〈δx, δx′〉‖x′‖2

]
.

• Step 7: Relation between cε and ccont. We use the notation of Step 6 to introduce
the symbols γ ∗(ε, s), γ ∗∗(ε, s), which arise from the functions c∗, c∗∗, resp.,
by substituting xε for x and uε for u, and letting t = 0. Note that γ ∗(ε, −s) =
γ ∗(−ε, s) and the same for γ ∗∗, for s ∈ [0, 1]. With a computation similar to
Step 4, it is easy to see that c′

ε(0, 0) is expressed as
∫

[0,1]
s
γ ∗(−ε, 1 − s)

α(−ε, 1 − s)
+ (1 − s)

γ ∗(ε, s)
α(ε, s)

− s
γ ∗∗(−ε, 1 − s)

α(−ε, 1 − s)3
− (1 − s)

γ ∗∗(ε, s)
α(ε, s)3

dμ0(s).

Assuming symmetry of the measure μ0, this expression simplifies to
∫

[0,1]
(1 − s)

(
γ ∗(−ε, s)

α(−ε, s)
+ γ ∗(ε, s)

α(ε, s)

)
− (1 − s)

(
γ ∗∗(−ε, s)

α(−ε, s)3
+ γ ∗∗(ε, s)

α(ε, s)3

)
dμ0(s).
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In the same manner as before we get the expansions

γ ∗(ε, s) = ε2γ ∗
1 + ε3(γ ∗

2 + sγ ∗
3 ) + o(ε3),

γ ∗∗(ε, s) = ε4γ ∗∗
1 + ε5(γ ∗∗

2 + sγ ∗∗
3 ) + o(ε5),

where

γ ∗
1 = ((ρ122 + ρ212)∂1u + g12∂12u − 2ρ112∂2u − g11∂22u)

∣∣
(0,0),

γ ∗∗
1 = (g12∂1u − g11∂2u) (ρ112g22 + ρ222g11 − (ρ212 + ρ122)g12)|(0,0) .

This leads to

γ ∗(−ε, s)

α(−ε, s)
+ γ ∗(ε, s)

α(ε, s)
= 1

ε2α1+o(ε3)

(
ε32γ ∗

1 α
1/2

1 + o(ε4)
)

= ε
2γ ∗

1

α
1/2
1

+ o(ε2),

γ ∗∗(−ε, s)

α(−ε, s)3
+ γ ∗∗(ε, s)

α(ε, s)3
= 1

ε6α3
1+o(ε7)

(
ε72γ ∗∗

1 α
3/2

1 + o(ε8)
)

= ε
2γ ∗∗

1

α
3/2
1

+ o(ε2).

Using property (4) of the measure μ0 for integration, and substituting the
definitions of α1, γ

∗
1 , γ

∗∗
1 , one eventually gets

c′
ε(0, 0)

ε
= γ ∗

1

α
1/2

1

− γ ∗∗
1

α
3/2

1

+ o(ε) = ∂2ccont(0, 0) + o(ε).

This result applies to the C3 case. In the C4 case, one more term in the Taylor poly-
nomials becomes available, and the remainder term in the formula above becomes
O(ε2) instead of o(ε). In the C2 case, where symmetry of the measure μ0 is not
required, we only get o(1) (the details are omitted). The estimates of steps 4, 5, and
7 together conclude the proof.
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