
https://doi.org/10.1007/s10723-017-9411-5

Parallel Tree Search in Volunteer Computing: a Case Study

Wenjie Fang ·Uwe Beckert

Received: 20 April 2017 / Accepted: 3 October 2017
© The Author(s) 2017. This article is an open access publication

Abstract While volunteer computing, as a restricted
model of parallel computing, has proved itself to be
a successful paradigm of scientific computing with
excellent benefit on cost efficiency and public out-
reach, many problems it solves are intrinsically highly
parallel. However, many efficient algorithms, includ-
ing backtracking search, take the form of a tree
search on an extremely uneven tree that cannot be
easily parallelized efficiently in the volunteer com-
puting paradigm. We explore in this article how to
perform such searches efficiently on volunteer com-
puting projects. We propose a parallel tree search
scheme, and we describe two examples of its real-
world implementation, Harmonious Tree and Odd
Weird Search, both carried out at the volunteer com-
puting project yoyo@home. To confirm the observed
efficiency of our scheme, we perform a mathematical
analysis, which proves that, under reasonable assump-
tion that agrees with experimental observation, our
scheme is only a constant multiplicative factor away
from perfect parallelism. Details on improving the
overall performance are also discussed.

W. Fang (�)
Institute of Discrete Mathematics, Technical University
of Graz, Steyrergasse 30, Graz 8010, Austria
e-mail: fang@math.tugraz.at

U. Beckert
Rechenkraft.net e.V., Marburg, Germany
e-mail: yoyo@rechenkraft.net

Keywords Volunteer computing · Parallel tree
search · Power law · Performance · Implementation

1 Introduction

Since the founding of one of the first volunteer com-
puting projects, Great Internet Mersenne Prime Search
(GIMPS), in 1996 [28], the paradigm of volunteer
computing has been gradually established as a cost-
efficient means of scientific computing with good
public outreach. This trend has been sped up by the
appearance of the middle-ware BOINC [3], with var-
ious successful projects, including SETI@home [4]
and Einstein@home [1]. Umbrella projects have also
appeared, such as yoyo@home [31] held by a vol-
unteer community in Germany. Today, researchers
from various fields, including astrophysics, structural
biology, high energy physic and mathematics, set up
volunteer computing projects to solve problems in
their own fields.

Despite the ever-growing number of projects, most
of the problems they solve are intrinsically paral-
lel, for example checking a segment of radio wave
for specific signals (Einstein@home, SETI@home).
However, there are many large problems, especially
those in discrete mathematics aiming at verifying con-
jectures or finding solutions, that have no efficient
parallel algorithm. For these problems, variants of
backtracking search are used, which often consist of
searching through an extremely uneven tree, and are

J Grid Computing (2018) 16: –6 7 64 62

/ Published online: 23 October 2017

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-017-9411-5&domain=pdf
mailto:fang@math.tugraz.at
mailto:yoyo@rechenkraft.net


W. Fang, U. Beckert

thus difficult to parallelize. It is thus interesting to try
to parallelize efficiently massive tree search on uneven
trees in the volunteer computing paradigm, in order
to extend the applicability of volunteer computing to
previously unsuitable domains.

Some previous effort has been devoted to such par-
allelization of tree search on specific problems, result-
ing in several public projects. For instance, Rectilinear
Crossing Number is a project held by researchers
at TU Graz, with the goal of finding the rectilinear
crossing number for n ≤ 18 points using a back-
tracking algorithm [2]. As another example, the OGR
sub-project of Distributed.net searches for optimal
Golomb rulers with n ≤ 28 markings [15], and it also
uses a backtracking algorithm for its purpose. Despite
the effort, from a volunteer’s viewpoint, these projects
have their inconvenience. We are therefore interested
in catering the needs of volunteers while doing an
efficient parallel tree search.

Tree search consists of traversing all the nodes in
a given tree. It includes the special case of back-
tracking search, which is a general algorithm that
can be applied to many problems, mainly in discrete
optimization (see, e.g., Chapter 8 of [5]). In gen-
eral, a backtracking search often has an extremely
unbalanced search tree, which makes it difficult to par-
allelize. Upon the development of distributed systems,
researchers tried to find ways to exploit parallelism in
backtracking search, mainly in clusters. Studies on the
parallelization of backtracking search were pioneered
by Karp and Zhang [27], followed by others (e.g., [18,
24, 32, 33]). Real world implementations of such par-
allel search are performed by many (e.g., [13, 16]) for
finding combinatorial objects or verifying conjectures.
We also see development of software infrastructures
(e.g., Stolee’s Treesearch [35]) that allows automation
of such searches. Readers can also see [22] for a sur-
vey of some work in this direction. The overall idea
is to split the search tree into sub-trees and distribute
them to workers while balancing workload.

However, the previously stated effort is partly
superseded by advances in efficient scheduling, which
is a well-studied topic in distributed systems. It is easy
to see how parallelization of tree search can be done
simply by scheduling search on sub-trees as tasks,
which can be further subdivided if needed. For effi-
cient scheduling, much has been done in environments
such as multi-core processors and clusters, for exam-
ple in [7, 9], where workers are highly available and

can communicate with low cost and latency. There
are also well-established APIs (such as OpenMP
[12]), languages (such as Cilk [8]) and job schedulers
(such as HTCondor [36]) in the industry for efficient
scheduling in such environments.

In volunteer computing, the reduction of paral-
lelizing tree search to efficient scheduling is not so
straightforward. It is because the task of schedul-
ing itself becomes tricky in this paradigm, in which
workers can have low and variable availability [25,
29], and they only pull work from a central server,
but never talk to peers. These constraints restrict the
use of established techniques such as work stealing
[9]. Recently, there has been some study on efficient
scheduling in volunteer computing, such as [17, 23,
30]. However, these results may not apply directly
to our goal, since they concentrate more on selecting
good hosts for a given set of tasks with already a good
estimation of workload, but in parallel backtracking
search, we need to deal with tasks with high variance
but no estimation on the workload.

Without a suitable scheduling method in volunteer
computing, we may want to resort to previous stud-
ies on parallelizing tree search that do not rely on
existing scheduling methods. However, many of these
studies rely more or less on a cluster model, where
inter-processor communication is easy (maybe with
exception of [18, 32]), which do not directly apply to
the volunteer computing paradigm. In [32], the par-
allelization was done by splitting the whole search
space into a huge number of tasks, at least a large
constant times the number of processors. These tasks
are then put into a queue and dealt out to proces-
sors to achieve maximal parallelism until the queue
is dried up. This approach can be easily adapted to
volunteer computing, but a straight-forward subdivi-
sion may introduce extremely large tasks, unwanted
for volunteer machines with varying availability. In
[18], by introducing an overhead of splitting the search
tree locally and deterministically upon each task, the
work balancing is dealt with by selecting sets of non-
overlapping sub-trees for each task. This approach can
also be easily adapted to volunteer computing, but
the huge size of problems we deal with in volunteer
computing projects may lead to a large overhead, sab-
otaging the effectiveness of this approach. Moreover,
all these studies deal with machines in a cluster, man-
aged by technical people, but in volunteer computing,
machines are managed by laypeople, and we have

648



Parallel Tree Search in Volunteer Computing: a Case Study

to consider some “human factors” to attain maximal
efficiency.

Another “human factor” in volunteer computing is
malicious behavior, which may endanger the integrity
of final result. This problem is more important for par-
allel backtracking search, since most of the results will
be negative, which gives malicious users an incentive
to cheat by returning negative results without perform-
ing any real computation. Anti-cheating mechanisms
are not new in volunteer computing. For instance, in
[20], an anti-cheating mechanism called “ringers” was
introduced in the context of cryptological computa-
tions, and in [34], a version of “client reputation” was
used to mitigate cheating behavior. However, these
existing approaches are either too domain-specific, or
unable to essentially eliminate cheating. We also need
to deal with the cheating issue here.

The main contribution of this article is a scheme
that we propose to parallelize massive tree search on
extremely uneven trees in the volunteer computing
paradigm, which includes the useful case of back-
tracking search in constraint satisfaction problems.
Our scheme is similar to that in [32], consisting of
simply dividing the search tree into many sub-trees,
but we mitigate the problem of extremely large tasks
by allowing workers to report partly finished results
in the form of checkpoints as in [10]. In our scheme,
we also propose some practices on the side of “human
factors” of volunteer computing, mainly showing pro-
gression in time to reassure volunteers, and preventing
cheating.We then present two case studies of implemen-
tation, which indicate the effectiveness of our scheme.
Finally, in order to provide formal evidence of the
efficiency of our scheme, we propose and analyze a
simplified mathematical model of the behavior of our
scheme, and we show that, under reasonable assump-
tions and good choice of parameters, the performance
of our scheme is only a constant factor away from
the perfect parallelism. This analysis indicates that our
scheme can still achieve good parallelism despite all
the complications due to unreliable workers in volun-
teer computing. The analysis also provides a guide on
how to choose crucial parameters in the scheme.

For the organization of this paper, in the following,
we first postulate some requirements we want for a
parallel tree search in the volunteer computing paradigm
(Section 2), then we propose a scheme accommo-
dating our needs (Section 3). We then discuss our
implementations on the volunteer computing umbrella

project yoyo@home (Section 4), named Harmonious
Tree and OddWeird Search. In order to understand the
behavior of our scheme and to explain the phenomena
observed in our implementations, we analyze a simpli-
fied mathematical model for practical choices in our
model (Section 5). We conclude by some discussions of
future improvements on the implementation (Section 6).

Upon the writing of this article, we are aware of
an effort by Bazinet and Cummings [6] of subdivid-
ing long computation into workunits with a fixed short
length, which shares some ideas with our work. How-
ever, the motivation of their work is to reduce the
variance of workunit running time to achieve higher
throughput and faster turnaround time of batches,
which is radically different from ours. Nevertheless,
their work shows that our approach may have extra
benefit that we have not considered.

2 Problem Statement

Tree search, or tree traversal, is an elementary algorithm
in computer science. It consists of going through all
the nodes of a tree in some order. The tree can be given
explicitly or implicitly. One of its most important
applications is the backtracking search, which is a gen-
eral search method used in various contexts, especially
in constraint satisfaction problems. Due to its impor-
tance, we will discuss tree search mostly in the case
of backtracking search, but the discussion on paral-
lelization will be applicable to the general case of tree
search.

In the context of constraint satisfaction, a back-
tracking search is equivalent to a tree search on a
tree whose nodes are valid partial assignments, which
are those not violating any prescribed constraints. The
root of the tree is the empty assignment, and the chil-
dren of a node are all the valid one-step extensions
of the corresponding partial assignment. The back-
tracking search thus consists of searching this partial
assignment tree for a valid full assignment. It is a
complete search method, since it always explores the
whole search space and gives an exact answer on
whether there is a solution to the given problem. To
accelerate the search, by early detection of dead-end
nodes (see Fig. 1), we can prune a larger part of the
search tree, thus increasing efficiency. With judicious
pruning method, backtracking search can be used to
give efficiently a definite answer to many constraint

649



W. Fang, U. Beckert

Fig. 1 A search tree, with
some dead-end partial
assignments pruned

satisfaction problems, especially those in combinato-
rial optimization and conjecture verification.

Ironically, when backtracking search is needed, it
is almost always the case that no efficient (i.e. poly-
nomial) algorithm exists for the problem that finds a
solution or establishes the absence of solution, and
we can only explore the exponentially large solution
space using backtracking. Therefore, a parallelized
backtracking search, which is a special case of paral-
lel tree search, will be interesting due to the enormous
speedup. Apart from the conventional supercomputer
approach, we are more interested in the paradigm of
volunteer computing, which is as massive in compu-
tational power but more cost-efficient. In volunteer
computing, a computational problem is broken into
small pieces called workunits, then distributed by a
server to clients on delocalized volunteers’ machines
to be computed, without communication between
clients. When workunits are completed, they are sent
back to the server to be reconstructed into the solution
of the original problem.

Another specialty of volunteer computing is that
the “human factor” of volunteers is as important as
the “machine factor”, since any practice that damages
volunteer experience will quickly lead to loss in com-
putational power. A parallel tree search scheme with
consideration of human factor is thus needed in the
volunteer computing paradigm.

Therefore, in addition to being massive parallelization
with low workunit generation overhead, more require-
ments concerning the human factor should be added
in the quest of the targeted parallel tree search model.
Here is a tentative list of such requirements in the
general context of volunteer computing, drawn from
inputs from volunteers and the need of scientific research.

1. Checkpoint: Reliability and availability of vol-
unteers’ machines are far from those of profes-
sionally managed clusters. Therefore, to avoid
waste of resources and frustration of volunteers,

checkpoints are mandatory. Intervals between
checkpoints should be neither so long that they
induce potentially large waste in accidents, nor so
short that harm performance.

2. Moderate running time: Also due to reliability
and availability issues, extremely long workunits
are to be avoided, since they are more prone
to error and lead to greater volunteer frustration
when errors occur, although these inconveniences
can be alleviated by some additional mechanisms,
for instance the trickle mechanism in BOINC.
Extremely short workunits can also damage user
experience through frequent communication with
the server, but less seriously if mixed with longer
workunits. An estimated recommendation of run-
ning time is from 1 to 12 h.

3. Progress bar: Volunteers love to see the progress
of their workunits, which gives them a sense of
certainty that the workunit is being processed
without error. An application without progress bar
may lead to frustration of volunteers due to uncer-
tainty. However, the progress bar does not need to
be precise, since it is used only as a reference.

4. Validation: Due to the reliability issue and pos-
sible malicious participants, a way to verify the
integrity of each result is needed to guarantee
that the search is completed without missing any
possible solution.

These requirements show a real challenge for par-
allel backtracking search, since the efficiency of back-
tracking search lies in a good pruning strategy, which
also makes run-time unpredictable, as the pruning of
useless large sub-trees is known only at run-time.
Hence, there is no easy and good estimate of worku-
nit running time and progress, which prevents running
time control and progress bar. Existing practices often
sacrifice some of these requirements. For example,
the Rectilinear Crossing Number project is known for
highly unbalanced workunit run-time that ranges from

650



Parallel Tree Search in Volunteer Computing: a Case Study

a few seconds to a few hundred hours, a phenomenon
that already appeared for smaller cases [2]. The same
also happens to the previous OGR sub-project of Dis-
tributed.net, which is alleviated in the new OGR-NG
framework by grouping potentially small workunits
into a larger one, which can also lead to relatively large
grouped workunits. The two projects also lack a satis-
fying progress bar. We thus want a parallel tree search
scheme on extremely uneven trees that is capable of
satisfying all the stated requirements.

3 Our Parallel Tree Search Scheme

We now propose a parallel tree search scheme satisfy-
ing all the stated requirements. Our scheme is based on
a simple idea: smoothing out the variation of sub-tree
size by dividing the whole search tree into many small
sub-trees (called sections hereinafter). Then a fairly
large number of adjacent sub-trees can be packed into
each workunit, reducing the variance of workunit size.
We now try to devise a model based on this idea
to meet the four requirements (checkpoint, running
time, progress bar, validation) mentioned in the pre-
vious section. The checkpoint requirement is easily
met by writing the current branch of search into the
checkpoint file.

We now focus on the running time requirement.
There is a compromise to take between dividing
the whole search tree into as many small sections
as possible, and the computational power consumed
during workunit generation. One solution (taken by
distributed.net on OGR-NG projects, see [14]) is to
off-load the workunit generation to clients to har-
ness greater power for finer-grain decomposition, in
exchange of possible complication of client code and
project structure. To avoid such complication, we
choose to take the compromise head on, by restrict-
ing ourselves to generating workunits locally with
moderate computational power.

Not going deep enough in the search tree when
generating workunits has its problem, that is, section
sizes can vary greatly, introducing giant workunits. To
meet the running time requirement, instead of trying to
search deeper in workunit generation for a finer-grain
decomposition, we instead use the following strategy:
when a workunit has been run for a given amount
of time on a volunteer’s machine, it should stop pre-
maturely, write a checkpoint and send it back to the

server as a result. To minimize network traffic, we sup-
pose that the checkpoint file is small, for instance less
than 10KB. This limit suffices in general for most con-
straint satisfaction problems, as we only need to record a
partial assignment, which is typically small. Since the
checkpoint contains all the necessary information to
continue the search, the server can use it to produce
a new workunit to send out. We call it the recycle
mechanism. We should note that the idea of transferring
workunits in distributed environments similar to vol-
unteer computing is not new. For instance, in [10]
there is an approach of scheduling in a desktop grid
that migrates tasks in the form of checkpoints.

Now it suffices to find a good measure of the
workload already accomplished by the volunteer’s
machines during run-time. However, it complicates
if we also consider the validation requirement. We
would like to verify volunteers’ result, which has no
apparent pattern due to the complex structure of the
search tree, and we are left to the only option to com-
pare verbatim the results generated by two different
machines from two different volunteers. In the case
where the computation involves float-point arithmetic,
verbatim comparison may fail for legitimate results
from different computing architectures. However, in
the case of tree search, in general float-point arith-
metic is not involved or can be avoided, so we can
use verbatim comparison here. If we use running time
as the workload measure, the heterogeneity of vol-
unteer machines will guarantee no possible verbatim
match results. Therefore, we have to find a measure
of workload that does not change between machines,
something intrinsic to the computation itself. We do
not need the measure to be precise, it can be off by a
few percents, or even up to 20% or 30%.

The best way to implement such a measure is
to count the number of execution of a certain rou-
tine that is representative for the whole computation,
preferably one that uses a considerable but roughly
constant amount of computation, to minimize the extra
cost of updating measure counter. In tree search, a
natural choice of such a measure is the number of
nodes we have traversed. However, in some cases, the
amount of computation needed for each node may dif-
fer greatly, rendering this natural choice less realistic.
In these cases, we need to choose a measure that is
adapted to the algorithm we used. We will see the
choice of such routine in the case studies in the fol-
lowing section. In this way, if the chosen routine is

651



W. Fang, U. Beckert

representative enough, we will have a workload mea-
sure that is intrinsic to the computation code and
identical across all machines. We thus set the stopping
requirement as that this workload measure reaches a
certain fixed amount, empirically set beforehand using
a reference machine. Always due to the difference
of float-point arithmetic on various architectures, we
demand the workload measure to be an integer. In this
way, we reach a design that practically meets the run-
ning time requirement combined with the validation
requirement using verbatim comparison.

We notice that the solution above also meets the
progress bar requirement automatically. We only need
to announce the progress using our workload mea-
sure. Since we have a good approximation of the real
workload, the progress bar will also only be slightly
off. We therefore have a scheme that meets all four
requirements.

It was pointed out by an anonymous referee that
checkpoint files may create security holes that allow
malicious participants to inject code into the server or
other volunteers’ machine. This issue is also shared by
other efforts in volunteer computing, as participants
are allowed to send information to the server. How-
ever, by properly sanitizing the input during coding,
we can close the security hole. This is easy to imple-
ment for tree search in particular, as the checkpoint file
is small (less than 10 KB), with a predefined structure
and a predefined limit for each element of the check-
point. To further protect volunteers, when recycling
workunits, the server can check the sanity of returned
checkpoint files (for example by checking their sizes
and structural integrity) and throw away suspicious
ones. Verbatim comparison also serves as a barrier for
this type of attack.

Below we recapitulate the details of our model. We
suppose that the following conditions can be met in
our tree search.

– Checkpoint: It is possible to construct a fairly
small (e.g., not exceeding an explicit limit, prefer-
ably less than 10KB) checkpoint file with which
the same application can pick up the search. For
simplicity, we impose the extra requirement that
checkpoint files have the same structure as initial
input files.

– Workload measure: There is a representative
routine that can be used as an approximate work-
load measure in run-time.

Such assumptions are satisfied in many backtrack-
ing search algorithms for constraint satisfaction prob-
lems, and more general tree searches. Under these
assumptions, our scheme of massive parallel tree
search can be described as follows.

– Workunit generation: On the server side, with
a moderate amount of computational power, we
break the search tree into sections using a depth-
limited tree search. If we have no prior knowledge
on the search tree, a possible solution is to use
iterative deepening. We then pack many adja-
cent sections into one initial workunit. We thus
generate the batch of initial workunits.

– Workunit execution:

– Server: The server sends out the ini-
tial workunits and collects results. Upon
receiving a result that is an unfinished
checkpoint file, the server checks its san-
ity and repackages it as a new workunit,
called a recycled workunit, and send it
out again. Each workunit, initial or recy-
cled, generates at least two replicas. Val-
idation of the result is done by verbatim
comparison of the result files of these
replicas.

– Client: The client computes all worku-
nits in the same way, regardless whether
they are initial or recycled ones. There
is an explicit workload limit set in
the client, and the client maintains a
workload counter using the approximate
workload measure. If the workunit ter-
minates before reaching the workload
limit, the client simply sends back the
end result. Otherwise, when the limit is
reached during computation, the client
halts, writes a checkpoint and sends it
back as the result.

– Convergence phase: When the number of avail-
able workunits in the system has lower to the
point that it is no longer possible to keep most of
the clients busy, we enter the convergence phase.
The server then sets shorter deadline, sends out
more replica than necessary or distributes worku-
nits only to ”fast clients” to get faster returns. The
server may eventually stop distributing workunits,
and computes them locally instead.

652



Parallel Tree Search in Volunteer Computing: a Case Study

Figure 2 illustrates the workunit execution work-
flow. In this model, each initial workunit leads to a
succession of recycled workunits, which is called its
lineage. The parallelism of this model is only limited
by the number of lineages, since workunits in the same
lineage must be computed sequentially. As long as
there are enough unfinished lineages for all clients, we
reach full parallelism potential of the distributed sys-
tem. However, when we enter the convergence phase,
there will not be enough workunits for every client,
which hurts the throughput. We thus need extra effort
for mitigation. We should note that the notion of con-
vergence phase is not mathematically defined, but can
be seen in the practice as a shortage of workunits.

There are some empirical parameters to be tuned in
our scheme, for example the choice of the number of
initial workunits. These parameters may influence the
efficiency of the parallel search.

4 Case Study

We now access the performance of our parallel tree
search scheme in detail with two case studies of imple-
mentation. Our scheme has been implemented as two
applications for different problems in discrete math-
ematics, run under the volunteer computing project
yoyo@home. The first application is called Harmo-
nious Tree, which aims to verify a conjecture in graph
theory. The second one is called Odd Weird Search,
which aims to find an odd weird number, a class of
numbers defined in number theory whose existence is
still unsettled. The two problems can be modeled as
search problems with uneven search trees, and they
both require a large amount of computational power
to solve, making them good candidates for experimen-
tal evaluation of our scheme. The first application was

a partial success, while the second application fully
demonstrated the viability of our scheme.

4.1 Case 1: Harmonious Tree

A tree graph (or simply a tree) is a simple acyclic
graph. Let G = (V , E) be a tree graph with n = |V |
vertices. A labeling of G is a bijection f : V →
{1, 2, . . . , n} from vertices to integers from 1 to n. A
labeling f is called harmonious if the induced label-
ing on edges, which is the absolute difference of the
labels of vertices adjacent to an edge, is also unique
for each edge. It was conjectured that every tree graph
is harmonious. The effort of proving this conjecture
has so far yielded few results, with no known counter-
example. A more detailed summary of the current
status of this conjecture can be found in [19].

In the application Harmonious Tree, we perform
the verification of the aforementioned conjecture on
tree graphs whose number of vertices varies from 32 to
37, using essentially the same procedure in the arXiv
preprint 1106.3490 of one of the authors, in which
the verification for trees with at most 31 vertices
was done. The whole computation was done during
the years 2011–2013. In our algorithm, trees are rep-
resented as the “level sequence” of its canonically
rooted version. We use the algorithm in [37] to gen-
erate all trees with a given number of vertices under
the level sequence representation with constant amor-
tized time. Given a tree, this algorithm generate the
next tree in lexicographical order. For each generated
tree, we try to find a harmonious labeling using the
algorithm in the arXiv preprint 1106.3490, composed
by a randomized backtracking search and a stochastic
search. All randomness used here is provided by a cus-
tomized random number generator and a random seed
given in the workunit, which makes the computation

Fig. 2 An illustration of our parallel tree search scheme

653



W. Fang, U. Beckert

deterministic. The numbers of backtracks in the back-
tracking search part and iterations taken in the stochas-
tic search part are jointly used as workload indicator.
We should note that the time taken to find a harmo-
nious labeling for each tree varies greatly, which is
why we did not use the number of trees processed as
workload indicator. The random seed after the run also
serves as a defense against malicious users, since its
value is highly correlated to the whole computation.

To parallelize the verification, we pack trees into
workunits. It is possible to evenly distribute trees by
generating all trees on the server side. However, since
the number of trees grows exponentially with the
number of vertices, the computational power needed
quickly explodes beyond the affordable limit on the
server side. We thus need another way to generate
workunits with less resources. Our solution is to pack-
age trees sharing the same first sub-tree in the level
sequence representation into a section, then several
sections into an initial workunit. Since the number of
possible first sub-trees is much smaller (but still large)
than the total number of trees, the computational cost
of their generation is manageable. However, the number
of trees contained in each section can vary greatly.

The Harmonious Tree project had 6 batches, each
deals with trees with a given number of vertices. Since
our method was gradually developed during this sub-
project, only in the last batch for n = 37 was our
method fully applied. Therefore, only data from the
last batch contributes to the analysis of our method.
Unfortunately, the importance of time series statistics
was underestimated at that time, and no useful statis-
tics can be drawn from the available data. We here
only report some qualitative aspects of the batches.

During the batches, volunteer’s computing power
stayed fully utilized except for the convergence phase.
Average running time of a workunit stabilizes at
around 3 h, with occasional large fluctuations. This
is due to some extremely large workunits. In fact, in
the last batch (n = 37), there were around 40 worku-
nits that took too long for volunteers to finish, and
are thus computed locally, which has taken a consid-
erable amount of time (some reached several months).
These workunits comes from the incorrect assumption
that the number of trees with the same first sub-tree
is independent of the first sub-tree itself. In fact it is
largely dependent, and sections with similar first sub-
trees tend to be of similar size. Furthermore, similar
first sub-trees tend to be grouped together in the same

initial workunit. The clustering of sections of simi-
lar sizes thus created extremely large workunits, much
larger than what we expect when large sections are
distributed randomly.

On the human factor side, there was also serious
design flaw on the progress bar, which ignored the
recycling mechanism, reporting the progress in the lin-
eage instead of the workunit, thus made progressing
workunits look like stagnant. It generated instability
in the volunteer community. In conclusion, our first
implementation of our parallel tree search scheme on
Harmonious Tree was not entirely satisfactory, and the
lack of data makes it hard to access the performance
of our model through this example. Nevertheless, this
first implementation still satisfies some of the pre-
scribed requirements, such as moderate running time
and integrity, and it successfully reached its computa-
tional goal. Therefore, we can still conclude that our
scheme applies. Furthermore, we should note that our
scheme was still in development while Harmonious
Trees is in progress, and we have learned a good lesson
about how delicacies in our scheme should be dealt
with to get good performance, allowing us to extract
full potential of our scheme in the second case study.

4.2 Case 2: Odd Weird Search

In number theory, an abundant number is a number
with the sum of its proper factors larger than itself. A
weird number is an abundant number that has no sub-
set of its proper factors that sums to itself. An example
of weird number is 70. An odd weird number is a
weird number that is odd. The existence of an odd
weird number is an open problem in number theory.

In the application Odd Weird Search, we search
for odd weird numbers smaller than a certain upper
bound. To check if a number is weird, we first com-
pute all its proper factors to see if it is abundant,
then use standard techniques to solve a subset sum
problem of the set of its proper factors with the num-
ber itself as target. To get all the proper factors of a
number, we need its full factorization, which is expen-
sive to directly compute. Hence, instead of going
through numbers in increasing order and factorizing
each of them, we explore integers according to their
factorization.

For a natural number n, its unique factorization can
be written as n = p

e1
1 p

e2
2 · · · pek

k , where k ≥ 0 is the
number of distinct prime factors, p1 < p2 < · · · < pk

654



Parallel Tree Search in Volunteer Computing: a Case Study

primes and ei ∈ N
∗. Via this representation, we can

thus endow N
∗ with a tree structure by appointing that

the parent of n = p
e1
1 p

e2
2 · · · pek

k is np−1
k . By travers-

ing this tree structure, we can visit every number with
free access to its factorization. Furthermore, this tree
structure is also suitable for the search of weird num-
ber. A semi-perfect number is an abundant number
that is not weird. We know that any multiple of a
semi-perfect number is also semi-perfect. Therefore,
in the traversal of the search tree, once we meet a
semi-perfect number, we can backtrack.

The search strategy above has only one drawback,
that is, the search tree for numbers in the interval [1, n]
has a highly unpredictable and uneven tree structure
due to the involved multiplicative structure of inte-
gers. It is therefore a problem particularly suitable for
our parallel tree search scheme. Using our scheme,
we have checked all numbers less than 1021 and num-
bers less than 1028 with an excess (i.e., sum of proper
divisors minus itself) less than 1014, but no odd weird
number was found. The two batches were done during
the years 2013–2015.

Having learned from the experience of Harmonious
Tree, we have a better design for workunit generation
and for progress bar this time. The workunit gener-
ation is solved with the change of problem, since in
this search problem, proximate search sub-trees do not
correlate so much in size, due to the intrinsic quasi-
randomness of integer factorizations. Therefore, the
correlation between sizes of nearby search sub-trees
is weaker, which gives in turn more evenly distributed
workunit sizes. There were still some large worku-
nits that needed local computation, but they only
took a few days instead of months. For workload
measure, we used the sum of sizes of subset sum prob-
lems we solve, which also serves well as an integrity
check, since it is deeply correlated to the computation.
Progress bar was computed using both the internal
workload measure versus the threshold and the per-
centage of finished sections among all sections in
the workunit. In this way, both types of progress are
represented, which satisfies the volunteers.

We now present a statistical analysis of the batches.
Table 1 lists some data about these two batches, while
Fig. 3 illustrates the distribution of lineage length in
each batch. Workunits in the first batch typically take
1.5 h on a modern machine, while those in the second
one take roughly 6 h. Therefore, the total workload of
the second batch is 1.5 times that of the first one.

Table 1 Characteristics of the two batches of Odd Weird
Search

First batch Second batch

Number of lineages 41776 47780

Number of workunits 527191 232800

Average lineage length 12.62 4.87

Median lineage length 6 3

Maximum lineage length 333 496

We first look at some general statistics presented in
Table 1. In the first batch, the longest lineage was recy-
cled 333 times, while in the second one, the longest
lineage was recycled 496 times. In contrast, the aver-
age length is 12.62 for the first batch and 4.87 for
the second. We conclude that most of the lineages are
relatively short, but there are also a few lineages sig-
nificantly longer than others, suggesting a heavy tail
distribution of lineage lengths.

We now look at Fig. 3 for the detailed distribu-
tion of lineage lengths. We observe that they seem to
follow a power law distribution, which means their
distribution comes with a heavy tail. More precisely,
let p(k) be the proportion of workunits of length k,
then we have

p(k) ∝ k−α, (1)

where α > 0 is the exponent of the power law. How-
ever, the power law assumption works less well on
the number of lineages of length 1 or 2. This devia-
tion is typical for naturally arisen distributions, and is
also reasonable in our case, since when we pack the
lineages, we make sure that few lineages take trivial
time to be computed. We also observe that the sec-
ond batch has a smaller average length of lineages but
a larger maximum lineage length than the first batch,
which means that the second batch has a longer tail,
thus a smaller exponent. By regression, we have α ≈
4.09 (R2 = 0.86) for the first batch, and α ≈ 2.69
(R2 = 0.98) for the second batch (taking only lineages
of medium-to-long length). These values agree with
the observation that the second batch has a longer tail.
Furthermore, the exponents fall in the regime α > 2.

We suspect that the power law behavior is a general
phenomenon for many search problems treated with
backtracking search. Further supporting arguments are
laid out in Section 5. Since if we ignore the conver-
gence phase, the time taken for the batch will roughly

655



W. Fang, U. Beckert

Fig. 3 Distribution of
lineage lengths for the two
batches 1021 and 1028

depend on the longest lineage, to reduce the total com-
putation time, we should try to mitigate the influence
of the heavy tail.

In Odd Weird Search, we were also able to record
some interesting time series statistics during each
batch run. Figure 4 shows the daily workunit statis-
tics for the two batches, with the number of returned
workunits, the number and the proportion of com-
pleted workunits. The surge of the percentage of com-
pleted workunits at the end of the second batch was
due to a re-issue of missing workunits. We note that,
since the computational power donated by volunteers
is nowhere constant, the number of returned workunits
cannot be used to determine the convergence phase,
where the consumed computational power ought to

be lower due to limited parallelism. This variation of
computational power is especially pronounced at the
end of the second batch, as a curious result of the
badge system of yoyo@home. In some volunteer com-
puting projects, when the contribution (accumulated
computation time, normalized credit or financial
donation) of a volunteer reaches certain thresh-
olds, a badge (sometimes taking the shape of a
medal or a trophy) will be displayed on pages
related to the volunteer as a recognition. The
data of these badges are often exported and made
into signatures in online forums, as a proof of
contribution. Therefore, badges are generally con-
sidered desirable by volunteers. In the case of
yoyo@home, each application has its set of badges,

Fig. 4 Daily workunit statistics of the two batches 1021 and 1028

656



Parallel Tree Search in Volunteer Computing: a Case Study

using credits (a normalized measure of donated
computational power) as evaluation. When entering
the convergence phase, some volunteers observed the
low workunit supply and the shortened deadline, but
they still need to process some more workunits to
get the next badge. As a consequence, they put more
computers (thus more computational power) to our
sub-project, which induced a peak at the end of the
batch. This badge-scooping behavior helps shorten the
convergence phase, and is also an interesting phe-
nomenon coming from the unique human factor of
volunteer computing.

To identify the convergence phase, the percentage
of finished workunit among returned workunits may
be a better indicator. In the main processing phase,
this percentage should remain roughly constant, since
we are dealing with the bulk of the batch with full
parallelism. However, in the convergence phase, we
should expect the same percentage to slowly decrease,
since we will be dealing with a few long lineages
with limited parallelism. This partially confirms what
we observe from Fig. 4, which is also relatively close
to the real convergence phase. In the first batch, the
convergence phase was roughly the last 40 days, cor-
responding to 22% of the whole computation time. In
the second batch, the convergence phase was from day
200 to day 300, taking roughly 33% of the whole time.
We can thus tentatively conclude that the convergence
phase takes roughly a constant fraction of total time.

5 A Simplified Mathematical Analysis of Our
Scheme

In this section, we access the performance of our
scheme using formal method. We will prove that,
under some reasonable assumptions, in a simplified
model, our scheme is asymptotically only a constant
factor away from perfect parallelism.

In the following, we assume that the distribution
of lineage lengths is a power law with exponent
α > 2 (i.e., with finite expectation). This assump-
tion agrees with the experimental results discussed
in the case study. One may doubt whether this is
the correct assumption, as it comes from only two
samples. It would also be nice to analyze experi-
mentally the structure of more problems in discrete
mathematics and constraint satisfaction to see if they
also obeys the power law. However, such large scale

experiments take a lot of time, even on volunteer
computing projects. It took at least half a year for each
of our batches in Odd Weird Search, and there are
few volunteer computing projects of our kind whose
related statistics are available. The lack of sample can
be made up from similar observations from related
fields. For instance, power law distributions appear in
run-time of a homogeneous ensemble of backtracking
computations for constraint satisfaction problems (see
[21, 26], mind the different definition of exponent).
These observations are clearly related to our situation.
Breaking down a constraint satisfaction problem into
smaller ones by fixing a set of its variables gives a
homogeneous set of problems. But since backtracking
is also a tree search, this breakdown is equivalent to
breaking down the search tree by considering all sub-
trees obtained from cutting the whole tree at a certain
depth, and this is exactly what we do when generat-
ing initial workunits. Nevertheless, exponents appears
in constraint satisfaction problems are typically with
1 < α < 2 (i.e., with infinite expectation), which is
different from our situation (α > 2, i.e., with finite
expectation) here in tree search parallelization. The
reason is that we can change how we break down the
tree if a probe test shows an exponent α < 2, thus
avoiding the problematic region of infinite expecta-
tion. Another reason that we do not treat the infinite
expectation case is due to its intrinsic hardness to par-
allelize, which will be discussed later at the end of this
section.

As discussed in Section 3, there are two phases in
the model, one is the normal phase where there are
enough workunits for all clients, and the other is the
convergence phase, where there is a deficit in worku-
nits.We now perform a simplifiedmathematical analysis
to determine the length of the convergence phase.

Let m be the threshold of the number of lineages
to enter convergence phase, i.e., when there are less
than m unfinished lineages in the system, we enter the
convergence phase. The value of m is correlated to the
number of active clients, and is given as a fixed input.
We now consider a simplified model of workunit pro-
cessing. We suppose that all lineages form a circular
list, and we process lineages in parallel without chang-
ing their order. We can imagine that the circular list
is form by N boxes, the ith box containing a random
integer Xi , which is the length of the correspond-
ing lineage. All Xi’s are independent and identically
distributed with the probability law P[Xi = k] =

657



W. Fang, U. Beckert

ζ(α)−1k−α . Here, ζ(s) = ∑∞
n=1 n−s is the Riemann ζ

function, and α is the exponent of power law. We sup-
pose that α > 2, where X has a finite mean (but not
necessarily a finite variance). This probability setup
can be seen as a randomization of our observation in
(1). When there are at least m boxes, we take m boxes
starting from the current pointer at once, subtract their
numbers by 1, retire all boxes with number 0, and
move the pointer to the box next to boxes we just
processed. Where there are no more thanm boxes (lin-
eages), we enter the convergence phase by definition.
In the convergence phase, at each step we subtract the
number of every box by 1 and retire boxes with 0, until
no box is left. This is our simplified model.

We now analyze the simplified model. Since α >

2, the distribution X has a finite mean E[X] =
ζ(α)−1ζ(α − 1). The expectation of total workunit
number, that is, the sum of lengths of lineages, is given by

W = E

[
N∑

i=1

Xi

]

= NE[X] = Nζ(α − 1)ζ(α)−1.

We now study the length of the two phases. Let
X′
1 > X′

2 > · · · > X′
N the sorted list of

X1, X2, . . . , XN . The probability distribution of X′
1 is

given by

P[X′
1 = k] = Nζ(α)−1k−α

⎛

⎝1 − ζ(α)−1
∑

i≥k

i−α

⎞

⎠

N−1

.

We start by the probabilistic aspects of these random
variables. Since for k ≥ 1, we have
∫ k+1

k

x−αdx ≥ k−α ≥
∫ k+1

k

(x + 1)−αdx

=
∫ k+1

k

x−α(1 + O(x−1))dx.

We deduce the following estimate:

∑

i≥M

k−α =
∫ +∞

M

x−α(1 + O(x−1))dx

= (α − 1)−1M−α+1 + O(M−α).

We thus have the following expression of X′
1:

P[X′
1 = k] = Nζ(α)−1k−α

(

1 − k−α+1

(α − 1)ζ(α)
− O(k−α)

)N−1

.

The mean of X′
1 is the sum

E[X′
1] = Nζ(α)−1

∑

k≥1

Ak, where

Ak = k−α+1
(

1 − k−α+1

(α − 1)ζ(α)
− O(k−α)

)N−1

.

We define the function B(k) = logAk , which is

B(k) := logAk = (1 − α) log(k) + (N − 1)

log

(

1 − k−α+1

(α − 1)ζ(α)
− O(k−α)

)

= (1 − α) log(k) + (N − 1)
k−α+1

(α − 1)ζ(α)
(1 + O(k−1))

The expression of B(k) extends to R
+. The

maximal of B(k) is asymptotically at k∗ =
(

N−1
(1−α)ζ(α)

) 1
α−1 + O(1). We notice that k∗ =

O(N
1

α−1 ) and exp(B(k∗)) = O(N−1). We verify
that logAk is increasing before k∗ and decreasing
after k∗. By approximating the sum as an integral, we
have

E[X′
1] = Nζ(α)−1

∫ +∞

1
exp(B(x))dx + O(1).

Given ε > 0, we consider the contribution of three
intervals [1, k1−ε∗ ], [k1−ε∗ , k1+ε∗ ] and [k1+ε∗ , +∞).
When N → +∞, we have
∫ k1−ε∗

1
exp(B(x))dx ≤ k1−ε∗ exp(B(k1−ε∗ ))

= k(1−ε)(2−α)∗ O(exp(−cNε)) = O
(
N

2−α
1−α

(1−ε)
)

,
∫ +∞

k1+ε∗
exp(B(x))dx =

∫ +∞

k1+ε∗
O(x1−α)dx = O

(
k(1−α)(1+ε)∗

)

= O
(
N

2−α
1−α

(1+ε)
)

,

∫ k1+ε∗

k1−ε∗
exp(B(x)) ≤

∫ k1+ε∗

k1−ε∗
exp(B(k∗))dx = O

(
N

1+ε
α−1 −1

)
.

658



Parallel Tree Search in Volunteer Computing: a Case Study

The first estimate uses the monotonicity of B(k) to
bound all function values by B(k1−ε∗ ), while the sec-
ond uses B(x) = O(x1−α) for large x, and the last
uses the fact that k∗ maximizes B(k). The estimates
are valid for all ε > 0. By letting ε → 0, we see

that all three estimates contribute O
(
N

2−α
α−1

)
. Further-

more, a simple computation shows that the interval

[k∗/2, 2k∗] contributes already cN
2−α
α−1 for some con-

stant c. Therefore, for some constant cE, we have

E[X′
1] = cEN

1
α−1 (1 + o(1)).

Using the same method, by supposing that m � 1 and

m � N , we have E[X′
m] = c′

E
N

1
α−1 (1 + o(1)) for

another constant c′
E
.

We now determine the range of parameterN , which
is the number of initial workunits, that minimizes
the total computation time, given the fixed number
of active clients m in the system. We see that the
processing enters the convergence phase after Y =
m−1 ∑N

i=m X′
i steps, and the convergence phase takes

Z = X′
1 − X′

m steps. We have

E[Y ] ≤ E[Wm−1] = Nm−1ζ(α − 1)ζ(α)−1,

E[Z] = E[X′
1] − E[X′

m] = cmN
1

α−1 (1 + o(1)).

Here, cm is a constant that depends only on m and
α, but not on N . In practice, we have no control on
the number of active clients on which m depends. We
now have the following bound on the ratio between
our model and perfect parallelism:

E[Y + Z]
E[Wm−1] ≤ 1 + mcmN

2−α
α−1 (1 + o(1))

Nζ(α − 1)ζ(α)−1

We observe that, as long as N = �(m
α−1
α−2 ), the

efficiency of our model is only a constant factor away
from perfect parallelism when m tends to infinity. Any

further increase in N beyond N = �(m
α−1
α−2 ) will still

decrease the total length of the two phases, but only
marginally. This bound on N gives us an indication
on the choice of the number of lineages. We note that
we also want N to be small to reduce the computation
needed to split the whole workload into sections and
to regroup them into initial workunits. Therefore, we

should take N of the same order as m
α−1
α−2 .

We should remind readers that our analysis here,
although mathematically rigorous, is oversimplified in

the modeling. Nevertheless, we expect our mathemat-
ical model to be a close approximation of the real
situation.

We now check the theoretical results above against
simulation results. We use parameters m and α from
our second case study. In general, it is difficult to esti-
mate m in a volunteer computing project, since avail-
ability of volunteer machines varies greatly, with a
power-law distribution [29]. We estimate that, in both
batches, the average computational power is around
150–200 single cores. We thus pick m = 175 in the
following. The exponent α depends on the problem
structure. We thus pick α = 4.09 and α = 2.69 as in
the first and the second batch of our second case study.

Here are the simulation results in Fig. 5. The opti-
mal lineage number N from the analysis above is in
the order of magnitude of N ≈ 2100 for α = 4.09
and N ≈ 310000 for α = 2.69. We observe that effi-
ciency improves when N grows, but the improvement
slows down significantly around the order of magni-
tude of respective optimal values, which corresponds
well to our theoretical prediction. Therefore, the opti-
mal choice of N we computed is sound. Although we
only tested for a fixed value of m, but since the accu-
racy of the model gets better when m grows, we can
say that the theoretical prediction holds for larger m.

By simulation, we can also see how good an
approximation is our simplified model comparing to
real-world situations. We have done some simulations
with the exact histogram data of the two batches of
Harmonious trees. In simulations, the convergence
phase of the first batch takes up on average 7% of
the whole time, and that of the second batch takes up
26% on average, both shorter than real-world situa-
tions. In general, we should expect the convergence
phase in real world to take longer than theoretical pre-
diction, because we suppose full availability in our
simplified model, which never occurs in real-world
volunteer computing. The difference for the second
batch is less significant, always thanks to the surge of
badge-scooping volunteers at the end of the run. We
thus conclude that our simplified model is a relatively
good approximation to the real world.

In practice, when we try to determine the numberN
of initial workunits into which we partition the whole
search tree, we do not know the value of α in advance.
An approximation of α can be computed either by
sampling or by using the value for a smaller search
in the same search space. Since the distribution to be

659



W. Fang, U. Beckert

Fig. 5 Simulation results of the efficiency of our simplified
mathematical model, showed in the form of the ratio from max-
imal efficiency, for m = 175, α = 4.09 (left, averaged over 100

instances for each point) and α = 2.69 (right, averaged over
300 instances for each point)

determined is a power law at the tail, in a sampling, it
would be difficult to see the tail whose exponent we
want to find out. Special care should thus be taken in
the sampling, for instance by increasing the sampling
size and by using a proper estimator, such as explained
in [11].

After the exponent α of a certain partition of the
search tree is estimated, we can use it to determine the
quality of the partition, that is, how well suited it is to
our scheme. The bigger α is, the better the partition
works under our scheme. It is because, when α is too
close to 2, that is, when the tail is too heavy, the value

of N = m
α−1
α−2 may be too large even for reasonable

m, therefore not realistic. In this case, we may want
to change the way to partition the search tree to get a
better α. Possible ways of achieving this goal include
changing the algorithm and reordering choices related
to the branching of the search tree.

When we get a good enough α, we then determine
the number of initial workunits to generate, which
is the number of lineages N . Since the efficiency
always improves when N grows, we should partition
the whole search tree into as many parts as possible
within reasonable pre-computation time, while avoid-
ing extremely short workunits. The optimal valueN =
m

α−1
α−2 serves as an indication of how many is enough

and where the trade-off should be between workunit
splitting and overall efficiency.

As a final remark, we should note that our scheme
still works for any α > 2, only that when α is too close

to 2 it may give unreasonable value of optimal number
of lineages N . If all attempts to get a better α fail, one
can still proceed by taking the maximal N within rea-
sonable pre-computation time. Our scheme will still
work, but the performance will not be a constant factor
away from perfect parallelism. But in this case, since
the tail is too heavy, there will be a few workunits tak-
ing enormous time, rendering any parallelization of
these tasks in volunteer computing difficult. This is
also the reason that we do not consider the case α < 2,
although it occurs often in constraint satisfaction prob-
lems. It is because, in this case, the expectation of the
run-time of a workunit is infinite, which means there
will be a constant number of workunits that takes on
a constant proportion of the whole computation task,
thus nearly impossible to parallelize.

6 Conclusion

Volunteer computing is a special parallel computing
paradigm, with only a minimal communication abil-
ity while having an extra human factor. Few attempts
have been done in volunteer computing to parallelize
massive tree searches with an uneven search tree. We
gave a solution of this problem by first listing some
requirements of such a parallelization, then proposing
a working scheme with implementation examples. The
first example (Harmonious Tree) was only a half suc-
cess, while the second (Odd Weird Search) was fully

660



Parallel Tree Search in Volunteer Computing: a Case Study

successful. We gave some details of our implementa-
tions, especially for the second one, and we also gave
a formal analysis on the efficiency of our scheme. We
thus conclude that our model is practical, and may be
used on other problems.

One direction of future work is the verification of
the power law assumption on more problems in dis-
crete mathematics and constraint satisfactions, prefer-
ably in the context of volunteer computing, where
problems treated are enormous. It takes time to deal
with this kind of huge problems, but also interesting
and the data we get may provide further insight on how
to better parallelizing the solution of these problems
in volunteer computing.

We now discuss some possible ways to improve our
framework. The most problematic part of our model
is the convergence phase, where active clients are not
fully occupied due to a lack of workunits because
clients are unable to return workunits in a timely fash-
ion. To mitigate the situation, we can issue workunits
only to clients with a short turnaround time, shorten
the deadline, or issue extra replica. The first two ideas
are straight-forward, but the third is more interesting.
In [25], it was showed that the power law distribution
of client availability in volunteer computing projects
might induces a biased distribution on turnaround time
with a somehow heavy tail (see Fig. 4 therein). Issuing
extra replica is then interesting, as it can be used to
“avoid” the heavy tail. Other more advanced schedul-
ing in volunteer computing, such as the one in [23],
can also be used in combination to accelerate the
convergence phase.

If we have multiple batches to be computed, and
we do not care as much the completion time of a sin-
gle batch than the whole throughput of the system, we
can mitigate the loss of efficiency in the convergence
phase by issuing a new batch in the system to provide
enough workunits for all the clients.

Lastly, we can also rely on the human factor that
is unique for volunteer computing. We have seen that
the badge-scooping at the end of the second batch of
OddWeird Search greatly accelerated the computation
in the convergence phase. This is because workunits
become a scarcity in the convergence phase, and as
they are regenerated only when results are returned,
volunteers craving for badges have the incentive to
return the result of each workunit as fast as possible, in
order to get workunits faster for the badges. Therefore,
a badge system based on computational contribution is

highly recommended for volunteer computing projects
adopting our scheme. It may be also a good idea to set
up special “rush” badges that compensate volunteers
for finishing workunits in the convergence phase.

Acknowledgements Open access funding provided by Graz
University of Technology. The first author was partially sup-
ported by IRIF (previously LIAFA) of Université Paris Diderot.
Both authors thank Prof. David Anderson, Prof. Anne Benoit,
Linxiao Chen and the anonymous referees for their useful
advises. We also thank the volunteers in yoyo@home that
contributed to Harmonious Trees and Odd Weird Search.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

References

1. Abbott, B., Abbott, R., Adhikari, R., Ajith, P., Allen, B.,
Allen, G., Amin, R.S., Anderson, S.B., Anderson, W.G.,
Arain, M.A., et al.: Einstein@Home search for periodic
gravitational waves in early S5 LIGO data. Phys. Rev. D
80(4), 042003 (2009)

2. Aichholzer, O., Krasser, H.: Abstract order type exten-
sion and new results on the rectilinear crossing number.
In: Proceedings of the Twenty-First Annual Symposium on
Computational Geometry, pp. 91–98. ACM (2005)

3. Anderson, D.P.: BOINC: a system for public-resource com-
puting and storage. In: Proceedings. Fifth IEEE/ACM Inter-
national Workshop on Grid Computing, pp. 4–10. IEEE
(2004)

4. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M.,
Werthimer, D.: SETI@home: an experiment in public-
resource computing. Commun. ACM 45(11), 56–61 (2002)

5. Apt, K.: Principles of Constraint Programming. Cambridge
University Press, Cambridge (2003)

6. Bazinet, A.L., Cummings, M.P.: Subdividing long-running,
variable-length analyses into short, fixed-length BOINC
workunits. J. Grid Comput. 14(3), 429–441 (2016)

7. Blelloch, G.E., Gibbons, P.B., Matias, Y.: Provably efficient
scheduling for languages with fine-grained parallelism. J.
ACM 46(2), 281–321 (1999)

8. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson,
C.E., Randall, K.H., Zhou, Y.: Cilk: an efficient multi-
threaded runtime system. J. Parallel Distrib. Comput. 37(1),
55–69 (1996)

9. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded
computations by work stealing. J. ACM 46(5), 720–748
(1999)

10. Bouguerra, M.S., Kondo, D., Trystram, D.: On the schedul-
ing of checkpoints in desktop grids. In: 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Com-
puting (CCGrid), 2011, pp. 305–313. IEEE (2011)

661

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


W. Fang, U. Beckert

11. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law dis-
tributions in empirical data. SIAM Rev. 51(4), 661–703
(2009)

12. Dagum, L., Menon, R.: OpenMP: an industry standard API
for shared-memory programming. IEEE Comput. Sci. Eng.
5(1), 46–55 (1998)

13. Distler, A., Jefferson, C., Kelsey, T., Kotthoff, L.: The semi-
groups of order 10. In: Principles and Practice of Constraint
Programming, pp. 883–899. Springer, Berlin (2012)

14. Distributed.net: Distributed.net Faq-O-Matic: why is
progress of OGR-28 stubspaces 1 and 2 so slow? http://faq.
distributed.net/cache/299.html, Cited: 21 Jan 2015

15. Distributed.net: Distributed.net: Project OGR. http://www.
distributed.net/OGR, Cited: 21 Jan 2015

16. Drakakis, K., Iorio, F., Rickard, S., Walsh, J.: Results of
the enumeration of Costas arrays of order 29. Adv. Math.
Commun. 5(3), 547–553 (2011)

17. Estrada, T., Flores, D.A., Taufer, M., Teller, P.J., Kerstens,
A., Anderson, D.P.: The effectiveness of threshold-based
scheduling policies in BOINC projects. In: Second IEEE
International Conference on e-Science and Grid Comput-
ing, 2006 (e-Science’06), p. 88. IEEE (2006)

18. Fischetti, M., Monaci, M., Salvagnin, D.: Self-splitting of
workload in parallel computation. In: International Confer-
ence on AI and OR Techniques in Constriant Programming
for Combinatorial Optimization Problems, pp. 394–404.
Springer, Berlin (2014)

19. Gallian, J.A.: A dynamic survey of graph labeling. Electron.
J. Comb. Dynamic Surveys, DS6 (2014)

20. Golle, P., Mironov, I.: Uncheatable distributed computa-
tions. In: Proceedings of the 2001 Conference on Topics
in Cryptology: The Cryptographer’s Track at RSA, pp.
425–440. Springer, Berlin (2001)

21. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed
phenomena in satisfiability and constraint satisfaction prob-
lems. J. Autom. Reason. 24(1), 67–100 (2000)

22. Grama, A., Kumar, V.: State of the art in parallel search
techniques for discrete optimization problems. IEEE Trans.
Knowl. Data Eng. 11(1), 28–35 (1999)

23. Heien, E.M., Anderson, D.P., Hagihara, K.: Computing
low latency batches with unreliable workers in volunteer
computing environments. J. Grid Comput. 7(4), 501 (2009)

24. Jaffar, J., Santosa, A.E., Yap, R.H.C., Zhu, K.Q.: Scalable
distributed depth-first search with greedy work stealing.

In: 16th IEEE International Conference on Tools with
Artificial Intelligence, 2004, pp. 98–103. IEEE (2004)

25. Javadi, B., Kondo, D., Vincent, J.M., Anderson, D.P.:
Discovering statisticalmodels of availability in largedistributed
systems: An empirical study of SETI@home. IEEE Trans.
Parallel Distrib. Syst. 22(11), 1896–1903 (2011)

26. Jia, H., Moore, C.: How much backtracking does it take
to color random graphs? Rigorous results on heavy tails.
In: Proceedings of Principles and Practice of Constraint
Programming - CP 2004, pp. 472–476 (2004)

27. Karp, R.M., Zhang, Y.: Randomized parallel algorithms
for backtrack search and branch-and-bound computation. J.
ACM 40(3), 765–789 (1993)

28. Mersenne Research Inc.: GIMPS history. http://www.
mersenne.org/various/history.php, Cited: 21 Jan 2015

29. Nurmi, D., Brevik, J., Wolski, R.: Modeling machine avail-
ability in enterprise and wide-area distributed computing
environments. In: Euro-Par 2005 Parallel Processing, pp.
612–612. Springer, Berlin (2005)

30. Pataki, M., Marosi, A.C.: Searching for translated plagia-
rism with the help of desktop grids. J. Grid Comput. 11(1),
149–166 (2013)

31. Rechenkraft.net e.V.: yoyo@home. http://www.rechenkraft.
net/wiki/index.php?title=Yoyo%40home en, Cited: 21 Jan
2015

32. Régin, J.C., Rezgui, M., Malapert, A.: Embarrassingly
parallel search. In: Principles and Practice of Constraint
Programming, pp. 596–610. Springer, Berlin (2013)

33. Reinefeld, A., Schnecke, V.: Work-load balancing in highly
parallel depth-first search. In: Proceedings of the Scalable
High-Performance Computing Conference 1994, pp. 773–
780. IEEE (1994)

34. Sonnek, J., Chandra, A., Weissman, J.: Adaptive reputation-
based scheduling on unreliable distributed infrastructures.
IEEE Trans. Parallel Distrib. Syst. 18(11) (2007)

35. Stolee, D.: TreeSearch user guide. http://www.math.uiuc.
edu/stolee/SearchLib/TreeSearch.pdf (2011)

36. Thain, D., Tannenbaum, T., Livny, M.: Distributed comput-
ing in practice: the Condor experience. Concurr. Comput. -
Pract. E 17(2–4), 323–356 (2005)

37. Wright, R.A., Richmond, B., Odlyzko, A., McKay, B.D.:
Constant time generation of free trees. SIAM J. Comput.
15(2), 540–548 (1986)

662

http://faq.distributed.net/cache/299.html
http://faq.distributed.net/cache/299.html
http://www.distributed.net/OGR
http://www.distributed.net/OGR
http://www.mersenne.org/various/history.php
http://www.mersenne.org/various/history.php
http://www.rechenkraft.net/wiki/index.php?title=Yoyo%40home_en
http://www.rechenkraft.net/wiki/index.php?title=Yoyo%40home_en
http://www.math.uiuc.edu/ stolee/SearchLib/TreeSearch.pdf
http://www.math.uiuc.edu/ stolee/SearchLib/TreeSearch.pdf

	Parallel Tree Search in Volunteer Computing: a Case Study
	Abstract
	Introduction
	Problem Statement
	Our Parallel Tree Search Scheme
	Case Study
	Case 1: Harmonious Tree
	Case 2: Odd Weird Search

	A Simplified Mathematical Analysis of Our Scheme
	Conclusion
	Acknowledgements
	Open Access
	References


