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Abstract

Modern processor optimizations such as branch prediction
and out-of-order execution are crucial for performance. Re-
cent research on transient execution attacks including Spec-
tre and Meltdown showed, however, that exception or branch
misprediction events may leave secret-dependent traces in
the CPU’s microarchitectural state. This observation led to
a proliferation of new Spectre and Meltdown attack vari-
ants and even more ad-hoc defenses (e.g., microcode and
software patches). Unfortunately, both the industry and
academia are now focusing on finding efficient defenses
that mostly address only one specific variant or exploitation
methodology. This is highly problematic as the state-of-the-
art provides only limited insight on residual attack surface
and the completeness of the proposed defenses.

In this paper, we present a sound and extensible system-
atization of transient execution attacks. Our systematiza-
tion uncovers 7 (new) transient execution attacks that have
been overlooked and not been investigated so far. This in-
cludes 2 new Meltdown variants: Meltdown-PK on Intel,
and Meltdown-BR on Intel and AMD. It also includes 5 new
Spectre mistraining strategies. We evaluate all 7 attacks in
proof-of-concept implementations on 3 major processor ven-
dors (Intel, AMD, ARM). Our systematization does not only
yield a complete picture of the attack surface, but also allows
a systematic evaluation of defenses. Through this systematic
evaluation, we discover that we can still mount transient exe-
cution attacks that are supposed to be mitigated by rolled out
patches.

1 Introduction

Processor performance over the last decades was continu-
ously improved by shrinking processing technology and in-
creasing clock frequencies, but physical limitations are al-
ready hindering this approach. To still increase the perfor-
mance, vendors shifted the focus to increasing the number of
cores and optimizing the instruction pipeline. Modern pro-

cessors have deep pipelines allowing operations to be per-
formed in parallel in different pipeline stages or different
units of the execution stage. Many processors additionally
have a mechanism which allows executing instructions not
only in parallel but even out-of-order. These processors have
a reordering element, which keeps track of all instructions
and commits them in order, i.e., there is no functional differ-
ence to regular in-order execution. Intuitively, instructions
executed on in-order and out-of-order pipelines cannot be ex-
ecuted, if they have a dependency on a previous instruction
which has not been executed (and committed) yet. Hence,
to keep the pipeline full at all times, it is essential to predict
the control flow, data dependencies, and possibly even the
actual data. Flushed instructions, those whose results are not
made visible to the architectural level due to a roll-back, are
called transient instructions [56, 50, 84]. On modern pro-
cessors, virtually any instruction can raise a fault (e.g., page
fault or general protection fault), requiring a roll-back. Al-
ready without prediction mechanisms, processors sometimes
have to flush the pipeline, e.g., upon interrupts. With pre-
diction mechanisms, there are more situations when partial
pipeline flushes are necessary, namely on every mispredic-
tion. The pipeline flush reverts any architectural effects of
instructions, ensuring functional correctness. Hence, the in-
structions are executed transiently (first they are, and then
they vanish), i.e., we call this transient execution.

While the architectural effects and results of transient in-
structions are discarded, microarchitectural side effects re-
main beyond the transient execution. This is the foundation
of Spectre [50], Meltdown [56], and Foreshadow [84]. These
attacks exploit transient execution and encode secrets in the
microarchitectural side effects (e.g., cache state) to transmit
them (to the architectural level) to an attacker. The field
of transient execution attacks emerged suddenly and grew
rapidly, leading to a situation where people are not aware
of all variants and their implications. This is apparent from
the confusing naming scheme that already led to an arguably
wrong classification of at least one attack [48]. Even more
important, this confusion leads to misconceptions and wrong
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assumptions for defenses. Many defenses, e.g., , focus ex-
clusively on hindering exploitation of a specific covert chan-
nel, instead of addressing the microarchitectural root cause
of the leakage [47, 45, 88, 50]. Other defenses critically rely
on state-of-the-art CPU features that have not yet been thor-
oughly evaluated from a transient security perspective [83].
We also debunk implicit assumptions including that AMD
processors are immune to Meltdown-type effects, or that se-
rializing instructions mitigate Spectre Variant 1 on any CPU.

In this paper, we present a sound and extensible system-
atization of transient execution attacks, i.e., Spectre, Melt-
down, Foreshadow, and related attacks. Using our univer-
sal decision tree, all known transient execution attacks were
accurately classified through a universal and unambiguous
naming scheme (cf. Figure 1). The hierarchical and extensi-
ble nature of our classification methodology allows to easily
identify residual attack surface, leading to 7 new transient
execution attacks (Spectre and Meltdown variants) that we
describe in this work. These 7 new attacks have been over-
looked and not been investigated so far. Two of the attacks
are Meltdown-BR, exploiting a Meltdown-type effect on the
x86 bound instruction on Intel and AMD, and Meltdown-
PK, exploiting a Meltdown-type effect on memory protec-
tion keys on Intel. The other 5 attacks are previously over-
looked mistraining strategies for Spectre-PHT and Spectre-
BTB attacks. We demonstrate all 7 attacks in practical proof-
of-concept attacks on vulnerable code patterns and evaluate
them on processors of Intel, ARM, and AMD.

We also provide a systematization of the state-of-the-art
defenses. Based on this, we systematically evaluate defenses
with practical experiments and theoretical arguments to show
which work and which do not or cannot work. This system-
atic evaluation revealed that we can still mount transient exe-
cution attacks that are supposed to be mitigated by rolled out
patches. Finally, we discuss how defenses can be designed
to mitigate entire types of transient execution attacks.
Contributions. The contributions of this work are:
1. We provide a concise overview of all known transient ex-

ecution attacks and defenses.
2. We systematize all transient execution attacks based on

the element (Spectre-types) or the exception (Meltdown-
types) they exploit, revealing clear gaps in the attack sur-
face. Exploring these gaps, we identify 7 new attacks.

3. We systematize all defenses against transient execution
attacks based on which precondition they try to eliminate,
again revealing clear gaps. Hence, we find existing and
new variants which are not mitigated by current defenses.

Outline. Section 2 provides background. We present the
systematization of Spectre in Section 3, Meltdown in Sec-
tion 4, and defenses in Section 5. We conclude in Section 6.
Responsible Disclosure. We responsibly disclosed our re-
search to Intel, ARM, and AMD. Intel and ARM acknowl-
edged our findings.

2 Transient Execution

Out-of-Order Execution. On modern processors, individ-
ual instructions of a complex instruction set are first decoded
and split-up into simpler micro-operations (µOPs) that are
then processed. This design decision allows for superscalar
optimizations and to extend or modify the implementation
of certain instructions through so-called microcode updates.
Furthermore, to increase performance, CPU’s usually imple-
ment a so-called out-of-order design. This allows the pro-
cessor to execute µOPs not only in the sequential order pro-
vided by the instruction stream but to dispatch them in paral-
lel, exhausting the CPUs execution units as much as possible
and, thus, improving the overall performance. If the required
operands of a µOP are available, and its corresponding exe-
cution unit is not busy, the processor starts its execution even
if µOPs earlier in the instruction stream have not finished
yet. As immediate results are only made visible on the ar-
chitectural level if all previous µOPs have finished, CPUs
typically keep track of the status of µOPs in a so-called Re-
order Buffer (ROB). When µOPs finish their execution, they
retire in-order, and their results are committed to the archi-
tectural state. Furthermore, exceptions and interrupts that
occurred during the execution of the µOP are handled dur-
ing the retirement. Therefore, it is possible that the CPU
executed instructions whose results are never committed to
the architectural state. These instructions are called transient
instructions [56].
Speculative Execution. Complex software is mostly not
linear but instead contains (conditional) branches or data
dependencies between instructions. In theory, the proces-
sor would have to stall until a branch or dependencies are
resolved before it can continue the execution. As stalling
decreases the performances significantly, processors deploy
various mechanisms to predict the outcome of a branch or a
data dependency. Thus, processors continue executing along
the predicted path, buffering the results again in the ROB
until the correctness of the prediction is verified as its de-
pendencies are resolved. In the case of a correct prediction,
the processor can retire the precomputed results from the re-
order buffer, increasing the overall performance. However,
if the prediction was incorrect, the processor needs to squash
the pre-computed results and perform a roll-back to the last
correct state by flushing the pipeline and the ROB. Thus,
the processor also executed transient instructions, which are
never committed to the architectural state.
Transient Execution Attacks. While the execution of tran-
sient instructions does not influence the architectural state
and, thus, cannot be observed architecturally, the microar-
chitectural state can change. Transient execution attacks ex-
ploit these microarchitectural state changes to extract sensi-
tive information by transferring the microarchitectural state
into an architectural state. Usually, these attacks use the
CPU’s cache, as changes in it can be observed rather eas-
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Figure 1: Universal transient execution attack classification
tree with demonstrated attacks (red, bold), negative results
(green, dashed), some first explored in this work (⭑ / ⭐).

ily. However, transient execution attacks are not limited to
the cache: any microarchitectural state that can be changed
and observed can be used.

2.1 Cache Covert Channels

Modern CPUs use caches to hide memory latency. How-
ever, these latency differences can be exploited in side chan-
nels and covert channels [51, 66, 89, 26, 61]. In particu-
lar, Flush+Reload allows observations across cores at cache-
line granularity, enabling attacks e.g., on cryptographic al-
gorithms [89, 44, 27], user input [26, 55, 71], and kernel
addressing information [23]. For Flush+Reload, the attacker
continuously flushes data using the clflush instruction and
reloads the data. If the victim used the cache line, accessing
it will be fast; otherwise, it will be slow.

Covert channels are a special use case of side-channel
attacks, where the attacker controls both the sender and
the receiver. This allows an attacker to bypass all restric-
tions that exist on the architectural level to leak informa-
tion. Cache attack senders can be implemented in very little
code [57, 61, 24], for instance via “tmp = array[secret_byte

* 4096];”, i.e., a code pattern which also frequently occurs
in real-world software. In this paper, we focus on transient
execution attacks using covert channels for transmitting data
from transient execution to a persistent architectural state.

2.2 Difference between Spectre and Meltdown

Before we discuss the details of Spectre-type and Meltdown-
type attacks, we pinpoint the difference between them, as the
first level of our classification tree (cf. Figure 1). “Specula-
tive execution” is often falsely used as an umbrella term for
attacks based on speculation of the outcome of a particular
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Figure 2: Spectre (left) exploits side effects of instructions
predicted to execute next which only operate on architec-
turally accessible data. Meltdown (right) exploits that ex-
ceptions are enforced lazily (i.e., at retirement). In the tran-
sient execution window (highlighted area) between excep-
tion and retirement, the architecturally inaccessible results
of the faulting instruction are not discarded but can be used.

event (i.e., conditional branches, return addresses, or mem-
ory disambiguation), out-of-order execution, and pipelining.
The confusion is reinforced as the same method for encod-
ing and transferring secrets to the architectural domain (i.e.,
a Flush+Reload covert channel) is used in many Meltdown-
and Spectre-type attacks. However, Spectre and Meltdown
exploit fundamentally different properties of CPUs. A CPU
can be vulnerable to Spectre but not Meltdown (e.g., AMD),
and vice versa. The only common property of both attacks
is that they exploit side effects within the transient execution
domain, i.e., within never-committed execution. Hence, the
more accurate term is transient execution [56, 50], accurately
describing the common underlying effect.

For Spectre, transient instructions only work with data
which the application can access architecturally. Transiently
executed instructions could also be executed in the normal
control flow of the application, e.g., if the branch condition
is different. Note that although Spectre-BTB can jump to an
arbitrary location in the current address space, it still works
with data which the application can access architecturally.

For Meltdown, in contrast, the transient instructions work
with data which are architecturally inaccessible for the appli-
cation. In a typical control flow, the data is never accessible
for the application. Thus, Meltdown exploits the property
that transient instructions following a fault have access to
the data of the faulting instruction.

Figure 2 illustrates the difference between Meltdown and
Spectre. The mere continuation of the transient execution
after a fault itself is required, but not sufficient for Meltdown.
Replacing the data of a faulting instruction with a dummy
value (i.e., as it is done for Meltdown-US in AMD CPUs) is
sufficient to mitigate Meltdown in hardware.

While Meltdown-type attacks so far exploit out-of-order
execution, in-order pipelines may allow similar attacks. As
such, Meltdown-type attacks are a category separate from
Spectre-type attacks. This becomes even more clear when
discussing defenses against these attacks in Section 5.



Table 1: Spectre-type attacks and the microarchitectural ele-
ment they exploit ( ), partially target ( ), or not affect ( ).

Attack
Element

B
T

B

B
H

B

PH
T

R
SB

ST
L

F

Spectre-PHT (Variant 1) [50]
Spectre-PHT (Variant 1.1) [48]

Spectre-BTB (Variant 2) [50]
Spectre-STL (Variant 4) [29]

Spectre-RSB (ret2spec) [52, 60]

3 Spectre

In this section, we provide an overview of all known variants
of Spectre (cf. Figure 1). Spectre-type attacks exploit tran-
sient execution after a prediction or data dependency. We
propose a categorization based on, first, the prediction mech-
anism exploited, and second, the mistraining mechanism.
Systematization of Spectre Variants. Table 1 shows all
known Spectre-type attacks and the element they exploit.
Branch prediction is a fundamental building block of sev-
eral attacks. Modern processors have many different mech-
anisms for different types of branches. Intel [33] provides
prediction mechanisms for all of them, distributed among
different processor components, e.g., the Branch History
Buffer (BHB) [11], the Branch Target Buffer (BTB) [54, 18],
the Pattern History Table (PHT) [20], and the Return Stack
Buffer (RSB) [20]. The corresponding microarchitectural el-
ements are not shared among physical cores [21], but some
are shared across logical cores [60]. We propose to combine
all attacks that exploit the same microarchitectural element:
• Spectre-PHT: Variant 1 [50] and Variant 1.1 [48] both ex-

ploit the Pattern History Table (PHT)
• Spectre-BTB: Variant 2 [50] exploits the Branch Target

Buffer (BTB)
• Spectre-STL: Variant 4 [29] exploits the CPUs memory

disambiguation prediction, specifically store-to-load for-
warding (STLF)

• Spectre-RSB: ret2spec [60] and Spectre-RSB [52] both
primarily exploit the Return Stack Buffer (RSB)

NetSpectre [73], SGXSpectre [64], and SGXPectre [13], fo-
cus on the exploitation scenario of one or more of these
variants, i.e., they apply Spectre variants in specific attacks.
Hence, they are not part of the classification of the variants.
Systematization of Mistraining Strategies. In current lit-
erature, several strategies for mistraining branch prediction
for Spectre-type attacks have been overlooked. While they
are not new variants of Spectre, they complete the field of
Spectre-type attacks as they allow an attacker to mistrain
branch prediction in previously unknown ways. These un-
known ways are shown along the known ones in Figure 3.

There are 4 possibilities to mistrain the branch predictor:
1. within the same address space and the same branch lo-

cation that is later on exploited (same-address-space in-
place mistraining)

in place/
same address
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out of place/
same address
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Shared Branch Prediction State

Figure 3: The 4 different ways for prediction mistraining:
Either in the same process (same-address-space) or a dif-
ferent attacker-controlled process (cross-address-space). For
both variants, mistraining is done with using the vulnerable
branch (in-place), or a congruent address (out-of-place).

2. within the same address space with a different branch
(same-address-space out-of-place)

3. within an attacker-controlled address space with a branch
at the same address as the victim branch (cross-address-
space in-place)

4. within an attacker-controlled address space at a congruent
address to the victim branch (cross-address-space out-of-
place)

3.1 Spectre-PHT (Bounds Check Bypass)
Bypass on Loads. All Spectre-PHT attacks presented so
far, are same-address-space in-place attacks. Kocher et al.
[50] first introduced Spectre Variant 1, an attack that exploits
a conditional branch misprediction to load data transiently.
On Intel, the primary microarchitectural element exploited
here is the Pattern History Table (PHT). Depending on pre-
dictor mode, it is accessed based on combination of some
bits from branch instruction virtual address and shift regis-
ters [20, 19] which contain the information about the last N
branches, with N depending on the architecture [20]. The
PHT contains a biasing bit indicating whether a branch is
mostly taken or not. A code line “if (x < len(array1)) {

y = array2[array1[x] * 4096]; }”, can be “mistrained” sup-
plying valid values of x so that the branch evaluates to true.
The attacker can then supply a value for x that is out-of-
bounds. The PHT then predicts that the branch evaluates to
true and execution transiently follows along the mispredicted
path. Following the branch, there is a code line acting as a
covert channel, transmitting the value read from the out-of-
bounds access.

SGXSpectre [64] mounted this attack on SGX enclaves.
Bypass on Stores. Kiriansky and Waldspurger [48] showed
that transient writes are also possible by following the same
principle. Using this technique, the attacker breaks both type
and memory safety during transient execution. In an exam-
ple code line “if (x < len(array)) { array[x] = value; }”,
we can see that, in the case where the attacker controlled in-
put x is valid, some value gets written to the array at offset



x. Following the same approach and by manipulating the
element as discussed in Section 3.1, the attacker transiently
writes out-of-bounds. This creates a transient buffer over-
flow, allowing the attacker to execute arbitrary instruction
sequences from the code already present within the victim
domain, similar as in return-to-libc [76] and return-oriented
programming (ROP) [74] attacks.
NetSpectre (Remote Spectre Attack). With NetSpectre,
Schwarz et al. [73] proposed a new method that does not
rely on an attacker executing its own code on a victim ma-
chine. A NetSpectre attack combines two different gadgets,
namely a leak and transmit gadget, into one called a Net-
Spectre gadget. The leak gadget is responsible for accessing
a bit stream at an index controlled by the attacker and based
on that update the microarchitectural state. The transmit gad-
get then performs some operation exposing the microarchi-
tectural state through a change in runtime, e.g., lower re-
sponse time due to a cache hit. The attacker continuously
mistrains the processor as in other previous Spectre-PHT at-
tacks. However, as a remote attack, the attacker needs to
extract the information using a remote cache covert channel
instead of a simple Flush+Reload covert channel.

3.2 Spectre-BTB (Branch Target Injection)

In Spectre Variant 2 [50], the attacker poisons the branch tar-
get predictor. This poisoning can occur either in the indirect
branch predictor or the generic Branch Target Buffer (BTB)
via the fallback mechanism [50]. We refer to both types
of poisoning as Spectre-BTB. The indirect branch predictor
uses only the lowest 12 bits of the source instruction address
in combination with the Branch History Buffer (BHB) to de-
termine the jump target [30]. The BTB contains information
about the target location of all recent jumps and uses only the
lowest 31 bits [18] which are further folded together [50].
Due to collisions in target predictor structures, the attacker
can exploit transient execution of the poisoned prediction to
read arbitrary memory from another context, e.g., another
process [30]. Contrary to Spectre-PHT, where the attacker
bypasses a bounds check by mistraining with valid values,
Spectre-BTB mistrains the branch predictor with malicious
destinations. By doing so, the attacker can choose an arbi-
trary code location that gets transiently executed and exposes
secret information. This arbitrary code location is called a
Spectre gadget and is responsible for transferring the secret
data into an attacker-controlled covert channel.

To mistrain the target predictor, the attacker must know
the virtual address of the gadget in the victim’s address
space. Knowing this address, the attacker performs indirect
branches to this address within its own address space. As
the BTB is shared among logical cores, the attacker must
co-locate the two processes on the same physical core.

The basic idea of Spectre-BTB is the execution of
attacker-chosen gadgets (cf. ROP [74]). The difference to

ROP is that the attacker does not rely on a vulnerability in
the victim code, but instead exploits mistraining of the BTB
and transiently executes the resulting code path.

With SGXPectre, Chen et al. [13] showed that by using
branch target injection an attacker can extract critical infor-
mation from an SGX enclave.

3.3 Spectre-STL (Speculative Store Bypass)
Modern processors improve performance by using a store
buffer instead of writing updated values directly back to
memory. This allows the processor to continue executing
instructions. All data in the store buffer eventually gets writ-
ten back to the main memory. One complication that arises
is that a memory load reads stale memory as the store buffer
has not yet written back the updated value to the main mem-
ory. To avoid this situation, the processor checks the store
buffer for every load that it performs. As processors allow
unaligned access, allowing overlaps as addresses might not
precisely match, the search of the store buffer is complex
and time-consuming. This process is referred to as “Memory
Disambiguation”. To increase the performance further, pro-
cessors perform an optimization called “Speculative Store
Buffer Bypass”. The store buffer is only bypassed in specu-
lative execution if the memory disambiguation predicts that
the load does not conflict with any address in the store buffer.
Horn [29] exploited the Speculative Store Buffer Bypass op-
timization combined with Flush+Reload, to leak earlier (e.g.,
unsanitized) values from memory locations. One restriction
of Spectre-STL is that the attacker can only leak information
from memory residing in the same privilege level.

3.4 Spectre-RSB (Return Stack Buffer)
Maisuradze and Rossow [60] and Koruyeh et al. [52] propose
a new variant that neither exploit the BTB or the PHT, but
instead exploit the Return Stack Buffer (RSB)). The RSB is
a hardware stack, typically with 16 entries, that keeps track
of the return addresses of previous call instructions. When a
ret instruction is encountered, the top of the RSB is used to
predict the return address. On hyperthreaded systems, RSBs
are dedicated to a logical core. If the RSB is empty, Skylake
processors use the BTB as a fallback [20].

Koruyeh et al. [52] show four scenarios where misspec-
ulation occurs. In the first scenario, misspeculation occurs
due to an overfill or underfill of the RSB. An overfill occurs
when older entries are overwritten due to too many new re-
turn addresses being pushed onto the small RSB. After all the
addresses that overwrote previous entries have been popped
by ret instructions and the no longer available addresses are
reached, an underfill is caused. An underfill is handled in dif-
ferent ways based on the CPU, e.g., Intel Skylake and newer
generations use the BTB as a fallback[87], thus allowing at-
tacks that exploit the BTB.



Table 2: Spectre-type attacks performed in-place, out-of-
place, same-address-space, or cross-address-space.

Method
Attack

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Intel
same-address-space

in-place [50] [60] [29]
out-of-place [60, 52]

cross-address-space
in-place [50] [60, 52]
out-of-place [50] [52]

ARM
same-address-space

in-place [6]
out-of-place [6]

cross-address-space
in-place [6, 50]
out-of-place

AMD
same-address-space

in-place
out-of-place

cross-address-space
in-place [50]
out-of-place

Symbols indicate whether an attack is possible and known ( ), not possible
and known ( ), possible and previously unknown or not shown ( ), or not
possible and previously unknown or not shown ( ). All tests performed
with no defenses enabled. Empty fields still require testing.

In scenario two, an attacker can directly pollute the RSB
by overwriting the return address on the software stack or
deleting it. Then, the value in the RSB does not match the
one on the software stack and the processor misspeculates.

Scenario three only speculatively pollutes the RSB. Dur-
ing speculation, calls push values on the stack which do not
get removed when the processor discovers the misspecula-
tion. This allows pushing addresses that are outside the ac-
cessible address space without dealing with exceptions.

The final scenario causes misspeculation based on the
shared RSB, namely that values pushed from one executing
thread are used by another thread upon a context switch. Us-
ing any method for causing misspeculation, an attacker tries
to divert speculative execution to code leaking secret data via
an observable covert channel, e.g., cache state.

3.5 Overlooked Mistraining Strategies
Spectre-PHT so far has only been described as a same-
address-space in-place attack. We demonstrate that Spectre-
PHT works in all four variants, showing that the field of pos-
sible attack scenarios is even larger than previously believed.
We performed a vulnerability assessment for these new at-
tack vectors on Intel, ARM, and AMD. For Intel, we tested
our proofs-of-concept on a Skylake i5-6200U and a Haswell
i7-4790. Our AMD test machines were a Ryzen 1950X and
a Ryzen Threadripper 1920X. For experiments on ARM, a
NVIDIA Jetson TX1 has been used. The results of this vul-
nerability assessment are shown in Table 2. We can see that,
for Spectre-PHT, all vendors have processors that are vulner-
able to all four variants of mistraining.

Spectre-PHT is not the only variant where mistraining
strategies have been overlooked. Spectre-BTB has only been
described in the cross-address-space in-place variant, al-
though Kocher et al. [50] already mention that cross-address-
space out-of-place might be possible if only a subset of the
virtual address is used in the prediction. Our experiments

Table 3: Demonstrated Meltdown-type attacks by their orig-
inal names and the exception type or permission bit they ex-
ploit ( ) or not ( ). The systematic names are derived from
the exception type (and permission bit) they exploit.

Exception Type Permission Bit

Attack #G
P

#N
M

#B
R

#P
F

U/S P R/W RSVD
XD PK

Variant 3a [7]
Lazy FP [77]

Meltdown-BR
Meltdown [56]

Foreshadow [84]
Foreshadow-NG [86]

Meltdown-RW [48]
Meltdown-PK

have shown that we can perform mistraining in the same-
address-space in-place variant on all three vendors, although
the attack scenario is limited. On AMD and ARM, we were
not able to show the out-of-place mistraining strategies. We
assume that they are possible, but that they require a different
set of bits that we were not able to determine.

Spectre-RSB has been demonstrated in all four variants,
but only on Intel [60, 52]. ARM mentions that same-address-
space mistraining is possible, but no reference is given for
cross-address-space [6]. While we expect them to work, we
were not able to observe any leakage with any of our proofs-
of-concept. We assume that it is a timing issue. On AMD,
we were able to show all types for mistraining.

Spectre-STL exploits store-to-load forwarding, which
does not incur any history-based prediction. Hence, mis-
training is not possible, and thus, also cross-address-space
mistraining strategies are not possible.

4 Meltdown-type Attacks

This section overviews known Meltdown-type attacks, and
presents a classification scheme that led to the discovery
of two previously overlooked Meltdown variants (cf. Fig-
ure 1). Importantly, where Spectre-type attacks exploit
(branch) misprediction events to trigger transient execution,
Meltdown-type attacks rely on transient out-of-order instruc-
tions following a CPU exception. Essentially, Meltdown ex-
ploits that exceptions are only raised (i.e., become architec-
turally visible) upon the retirement of the faulting instruc-
tion. In some microarchitectures, this property allows tran-
sient instructions ahead in the pipeline to compute on unau-
thorized results of the instruction that is about to suffer a
fault. The processor’s in-order instruction retirement mech-
anism takes care to discard any architectural effects of such
computations, but as with the Spectre-type attacks above, se-
crets may leak through microarchitectural covert channels.
Systematization of Meltdown Variants. We introduce an
extensible classification for Meltdown-type attacks in two di-
mensions. In the first level, we categorize attacks based on
the exception that causes the transient execution. Second, for



Table 4: Secrets recoverable via Meltdown-type attacks and
whether they cross the current privilege level (CPL).

Attack
Leaks

Memory
Cache

Registe
r
Cross-C

PL

Meltdown-US (Meltdown) [56] 3

Meltdown-P (Foreshadow) [84, 86] 3

Meltdown-GP (Variant 3a) [7] 3

Meltdown-NM (Lazy FP) [77] 3

Meltdown-RW (Variant 1.2) [48] 7

Meltdown-PK 7

Meltdown-BR 7

Symbols indicate whether an attack can leak secrets from a target ( ) or
not ( ), respectively ( and ) if we are the first to show it and whether it
violates a security property (3) or not (7).

page faults, we further categorize based on page-table entry
protection bits (cf. Table 3). We also categorize attacks based
on which storage locations can be reached, and whether it
crosses a privilege boundary (cf. Table 4). Supporting the
completeness of our systematization, we present several pre-
viously unknown Meltdown variants exploiting different ex-
ception types as well as page-table protection bits, including
two exploitable ones. Our systematic analysis furthermore
resulted in the first demonstration of exploitable Meltdown-
type delayed exception handling effects on AMD processors.

4.1 Meltdown-US (Supervisor-only Bypass)

Modern processors commonly feature a “user/supervisor”
page-table attribute to denote a virtual memory page as be-
longing to the operating system kernel. The original Melt-
down attack [56] showed how to read kernel memory from
user space on pipelined processors that do not transiently en-
force the user/supervisor flag. The attack consists of 3 steps.
In the first step, data inaccessible to the attacker is loaded
into a register, which eventually causes a page fault. Before
the fault becomes architecturally visible, however, the at-
tacker executes a transient instruction sequence that accesses
a cache line based on the privileged data in the register. In
the final step, after the exception has been raised, the attacker
uses Flush+Reload to determine which cache line was ac-
cessed and based on that recover the privileged data.

Meltdown attackers can choose to either handle or sup-
press page faults resulting from the unauthorized access.
Lipp et al. [56] showed how to improve the attack’s band-
width by suppressing exceptions through transaction mem-
ory processor features such as Intel TSX [32]. By iterat-
ing byte-by-byte over the kernel space and suppressing or
handling exceptions, an attacker can dump the entire ker-
nel. This includes the entire physical memory if the oper-
ating system has a direct physical map in the kernel. While
extraction rates are significantly higher when the kernel data
resides in the CPU cache, Meltdown has even been shown to
successfully extract uncached data from memory [56].

4.2 Meltdown-P (Virtual Translation Bypass)

Foreshadow. Van Bulck et al. [84] presented Foreshadow, a
Meltdown-type attack targeting Intel SGX technology [41].
Unauthorized accesses to enclave memory usually do not
raise a #PF exception but are instead silently replaced with
abort page dummy values (cf. Section 5.2). In the absence of
a fault, there is no unauthorized transient computation, and
plain Meltdown cannot be mounted against SGX enclaves.
To overcome this limitation, a Foreshadow attacker clears
the “present” bit in the page-table entry mapping the enclave
secret, ensuring that a #PF will be raised upon subsequent
adversarial accesses to the unmapped enclave page. Analo-
gous to the original Meltdown-US attack, the adversary now
proceeds with a transient instruction sequence to encode and
recover the secret (e.g., via a Flush+Reload covert channel).

Intel [36] named L1 Terminal Fault (L1TF) as the root
cause behind Foreshadow. A terminal fault occurs when ac-
cessing a page-table entry with either the present bit cleared
or a “reserved” bit set. However, due to the tight connec-
tion of the L1 cache and address translation in modern mi-
croarchitectures, the physical address bits (i.e., frame num-
ber) of a page-table entry suffering a terminal fault may still
be passed on to the L1 cache. Hence, any access to a phys-
ical address that hits the L1 cache is passed on to the tran-
sient execution, regardless of access permissions. The orig-
inal Foreshadow [84] attack also shows how to recover un-
cached enclave secrets by first abusing secure page swapping
to prefetch arbitrary enclave pages into the L1 cache.
Foreshadow-NG. Foreshadow-NG [86] generalizes Fore-
shadow from the attack on SGX enclaves to bypass operating
system of hypervisor isolation. The generalization builds on
the observation that the physical frame number in a page-
table entry is sometimes under direct or indirect control of
an adversary. For instance, when swapping pages to disk,
the kernel is free to use all but the present bit to store meta-
data (e.g., the offset on the swap partition). However, if this
offset is a valid physical address, any cached memory at that
location leaks to an unprivileged Foreshadow-OS attacker.

Even worse is the Foreshadow-VMM variant, which al-
lows an untrusted virtual machine to extract the host ma-
chine’s entire L1 data cache (including data belonging to the
hypervisor or other virtual machines). The underlying prob-
lem is that a terminal fault in the guest page-tables early-outs
the address translation process, such that guest-physical ad-
dresses are erroneously passed to the L1 data cache, without
first being translated into a proper host physical address [36].

4.3 Meltdown-GP (System Register Bypass)

Meltdown-GP (named initially Variant 3a) allows an attacker
to read privileged system registers. It was first discovered
and published by ARM [7] and subsequently Intel [37] deter-
mined that their processors are also susceptible to the attack.



Unauthorized access to privileged system registers (e.g., via
rdmsr) raises a general protection fault (#GP). Similar to pre-
vious Meltdown-type attacks, however, the attack exploits
that the transient execution following the faulting instruc-
tion can still compute on the unauthorized data, and leak the
system register contents through a microarchitectural covert
channel (e.g., Flush+Reload).

4.4 Meltdown-NM (FPU Register Bypass)

During a context switch, the OS has to save all the registers,
including the floating point unit (FPU) and SIMD registers.
These latter registers are large and saving them would slow
down context switches. Therefore, processors allow for a
lazy state switch, meaning that instead of saving the regis-
ters, the FPU is simply marked as “not available”. The first
FPU instruction issued after the FPU was marked as “not
available” causes a device-not-available (#NM) exception, al-
lowing the OS to save the FPU state of previous execution
context before marking the FPU as available again.

Stecklina and Prescher [77] propose an attack targeting the
above lazy state switch mechanism. The attack consists of
three steps. In the first step, a victim performs operations
loading data into the FPU registers. Then, in the second
step, the processor switches to the attacker and marks the
FPU as “not available”. The attacker now issues an instruc-
tion that uses the FPU, which generates an #NM fault. Before
the faulting instruction retires, however, the processor has
already transiently executed the following instructions using
data from the previous context. As such, analogous to previ-
ous Meltdown-type attacks, a malicious transient instruction
sequence following the faulting instruction can encode the
unauthorized FPU register contents through a microarchitec-
tural covert channel (e.g., Flush+Reload).

4.5 Meltdown-RW (Read-only Bypass)

Where the above attacks [56, 84, 7, 77] focussed on steal-
ing information across privilege levels, Kiriansky and Wald-
spurger [48] presented the first Meltdown-type attack that
bypasses page-table based access rights within the current
privilege level. Specifically, they showed that transient exe-
cution does not respect the “read/write” page-table attribute.
The ability to transiently overwrite read-only data within the
current privilege level can bypass software-based sandboxes
which rely on hardware enforcement of read-only memory.

Confusingly, the above Meltdown-RW attack was origi-
nally named “Spectre Variant 1.2” [48]. Our systematization
revealed, however, that the transient cause exploited above is
clearly a #PF exception. Hence, this attack must be consid-
ered of Meltdown-type, but not a variant of Spectre.

4.6 Meltdown-PK (Protection Key Bypass)

Intel Skylake-SP server CPUs support memory-protection
keys for user space (PKU) [35]. This feature allows pro-
cesses to change the access permissions of a page directly
from user space, i.e., without requiring a syscall/hypercall.
Thus, with PKU, user-space applications can implement ef-
ficient hardware-enforced isolation of trusted parts [83, 28].

We present a novel Meltdown-PK attack to bypass
both read and write isolation guarantees enforced through
memory-protection keys. Thus, Meltdown-PK shows that
PKU isolation can be bypassed if an attacker has code ex-
ecution in the containing process, even if the attacker cannot
execute the wrpkru instruction (e.g., due to blacklisting).
Moreover, in contrast to cross-privilege level Meltdown at-
tack variants, there is no software workaround. Intel can
only fix Meltdown-PK in new hardware or possibly via a mi-
crocode update.
Experimental Results. We tested Meltdown-PK on an
Amazon EC2 C5 instance running Ubuntu 18.04 with PKU
support. For this purpose, we created a memory mapping
and used PKU to remove both read and write access. As ex-
pected, protected memory accesses produce a #PF. However,
our proof-of-concept manages to leak the data via an ad-
versarial transient instruction sequence with a Flush+Reload
covert channel.

4.7 Meltdown-BR (Bounds Check Bypass)

To facilitate efficient software instrumentation, x86 proces-
sors come with dedicated hardware instructions that raise a
bound range exceeded exception (#BR) when encountering
out-of-bound array indices. The IA-32 ISA, for instance, de-
fines a bound opcode for this purpose. While the bound in-
struction was omitted in the subsequent x86-64 ISA, modern
Intel processors ship with Memory Protection eXtensions
(MPX) for efficient array bounds checking.

Our systematic evaluation revealed that Meltdown-type
effects of the #BR exception have not been thoroughly in-
vestigated yet. Specifically, Intel’s analysis [40] only briefly
mentions MPX-based bounds check bypass as a possibility,
and recent defensive work by Dong et al. [16] highlights
the need to introduce a memory lfence after MPX bounds
check instructions. These observations do not shed light on
the #BR exception as the root cause for the MPX bounds
check bypass, wrongly classifying this attack as a Spectre
variant, and do not consider IA32 bound protection at all.
Experimental Results. We introduce the Meltdown-BR at-
tack which exploits transient execution following a #BR ex-
ception to encode out-of-bounds secrets that are never archi-
tecturally visible. As such, Meltdown-BR is an exception-
driven alternative for Spectre-PHT. Our proofs-of-concept
demonstrate out-of-bounds leakage through a Flush+Reload
covert channel for an array index safeguarded by either



Table 5: CPU vendors vulnerable to Meltdown-type attacks.

Vendor
Attack
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n-SS
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dow

n-X
D

Melt
dow

n-SM

Intel
ARM
AMD

Symbols indicate whether at least one CPU model is vulnerable ( ), no
CPU is vulnerable ( ), respectively ( and ) if we are the first to show it,
or not applicable ( ). All tests performed without defenses enabled.

IA32 bound (Intel, AMD), or state-of-the-art MPX protec-
tion (Intel-only). For Intel, we ran the attacks on a Skylake
i5-6200U CPU with MPX support, and for AMD we eval-
uated both a 2013 E2-2000 and a 2017 Ryzen Threadrip-
per 1920X. In this, we are the first to practically showcase a
Meltdown-type transient execution attack exploiting delayed
exception handling on AMD processors [1, 56].

4.8 Residual Meltdown (Negative Results)

We systematically studied transient execution leakage for
other, not yet tested exceptions. Following Intel’s [32] clas-
sification of exceptions as faults, traps, or aborts, we ob-
served that all known Meltdown variants so far have ex-
ploited faults, but not traps or aborts. We consistently found
no traces of transient execution beyond traps or aborts, which
leads us to the hypothesis that Meltdown is only possible
with faults (as they can occur at any moment during instruc-
tion execution). Table 5 and Figure 1 summarize experimen-
tal results for fault types tested on Intel, ARM, and AMD.
Division Errors. For the divide-by-zero experiment, we
leveraged the unsigned division instruction (idiv on x86 and
sdiv on ARM). On the ARMs we tested, there is no excep-
tion, but the division yields merely zero. On x86, the division
raises a divide exception (#DE). Both on the AMD and Intel
we tested, the CPU continues with the transient execution af-
ter the exception. In both cases, the result register is set to
‘0’, which is the same result as on the tested ARM. Thus,
Meltdown-DE is not possible, as no real values are leaked.
Supervisor Access. Although supervisor mode access pre-
vention (SMAP) raises a page fault (#PF) when accessing
user-space memory from the kernel, it seems to be free of
any Meltdown effect. Thus, Meltdown-SM is not possible.
Alignment Faults. Upon detecting an unaligned memory
operand, the processor can (optionally) generate an align-
ment check exception (#AC). We found that the results of
unaligned memory accesses never reach the transient execu-
tion. We suspect that this is because #AC is generated early-
on (even before the operand’s virtual address is translated to
a physical one). Thus, Meltdown-AC is not possible.
Segmentation Faults. We consistently found that out-of-
limit segment accesses never reach the transient execution.

Table 6: Categorization of Spectre defenses and systematic
overview of their microarchitectural target.
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We suspect that, due to the simplistic IA32 segmentation de-
sign, segment limits are validated early-on, and immediately
raise a #GP or #SS exception, without sending the offending
instruction to the ROB. Thus, Meltdown-SS is not possible.
Instruction Fetch. To yield a complete picture, we fi-
nally investigated Meltdown-type effects during the instruc-
tion fetch and decode phases. On all of our test systems,
we did not succeed in transiently executing instructions re-
siding in non-executable memory (i.e., Meltdown-XD), or
following an invalid opcode exception (i.e., Meltdown-UD).
We suspect that exceptions during instruction fetch or de-
code are immediately handled by the processor, without first
buffering the offending instruction in the ROB. Moreover, as
invalid opcodes have an undefined length, the processor does
not even know where the next instruction starts. Hence, we
suspect that invalid opcodes only leak if the microarchitec-
tural effect is already an effect caused by the invalid opcode
itself, not by subsequent transient instructions.

5 Defenses

In this section, we discuss proposed defenses in software and
hardware for the known Spectre and Meltdown variants. Fur-
thermore, we propose a classification scheme for defenses
based on their attempt to stop leakage, similar to the classifi-
cation done by Miller [63].

For Spectre-type attacks, we categorize defenses into the
following three categories:
C1: Mitigating or reducing the accuracy of covert channels

used to extract the secret data.
C2: Mitigating or aborting speculation if data is potentially

accessible during transient execution.
C3: Ensuring that secret data cannot be reached.

Table 6 lists all proposed defenses against Spectre-type
attacks and assigns them to the category they belong.

For Meltdown-type attacks, we categorize defenses into
two categories:



D1: Ensuring that architecturally inaccessible data remains
inaccessible on the microarchitectural level.

D2: Preventing the occurrence of faults.

5.1 Defenses for Spectre

C1: Mitigating or reducing accuracy of covert channels.
Transient execution attacks use a covert channel to transfer
the microarchitectural state change induced by the transient
instruction sequence such that it can be observed on an ar-
chitectural level. One approach in mitigating Spectre-type
attacks is to reduce the accuracy of said covert channels or
prevent them in the first place.
Hardware. One substantial enabler of transient execu-
tion attacks is that the transient execution sequence intro-
duces a microarchitectural state change which is observed
by the receiving end of the covert channel. In order to se-
cure processors, SafeSpec [45] introduces shadow hardware
structures that are used during the execution of transient in-
structions. Thereby, any microarchitectural state change can
be squashed if the prediction of the processor was incor-
rect. While their prototype implementation protects only
caches and, in extension, the TLB, other channels, e.g., us-
ing DRAM buffers [68], or execution unit congestion [56, 2],
remain open.

Yan et al. [88] proposed InvisiSpec, a method designed
to make transient loads invisible in the cache hierarchy. By
using a speculative buffer, all transiently executed loads are
stored in this buffer instead of the cache. Similar to Safe-
Spec, the buffer is invalidated if the prediction was incor-
rect. However, if the prediction was correct, the content of
the buffer is loaded into the actual cache. In order to deal
with memory consistency, InvisiSpec needs to compare the
loaded value during this process with the most recent, up-to-
date value from the cache. If a mismatch occurs, the tran-
sient load and all successive instructions are reverted. Since
SafeSpec only protects the caching hierarchy of the CPU, an
attacker can still exploit other covert channels.

Kiriansky et al. [47] propose a method to securely par-
tition the cache across its ways. By introducing protection
domains that isolate on a cache hit, cache miss and meta-
data level, cache-based covert channels are mitigated. This
does not only require changes to the cache and adaptions to
the coherence protocol but also enforces the correct manage-
ment of these domains in software.

Kocher et al. [50] proposed to limit data from entering
covert channels through a variation of taint tracking. The
idea is that the processor tracks data loaded during transient
execution and prevents it from being used in subsequent op-
erations which might leak it.
Software. Many covert channels require an accurate timer
in order to distinguish microarchitectural states, e.g., mea-
suring the memory access latency to distinguish between a
cache hit and cache miss. If the accuracy of timers is reduced

such that an attacker can not differentiate between the mi-
croarchitectural stages any longer, the receiver of the covert
channel cannot deduce the sent information. In order to miti-
gate browser-based attacks, many web browsers reduced the
accuracy of timers in JavaScript by adding jitter [62, 69, 80,
85]. However, Schwarz et al. [72] demonstrated that timers
can be constructed in many different ways and, thus, further
mitigations are required [70]. While Chrome initially dis-
abled SharedArrayBuffers in response to Meltdown and
Spectre [80], this timer source has been re-enabled with the
introduction of site-isolation [75].

NetSpectre requires different strategies due to its remote
nature. To mitigate the attack, Schwarz et al. [73] propose
using DDoS detection mechanisms as the attacker has to
send multiple thousands of identical packets to the victim.
The second method they propose is to add artificial noise to
the network latency. This increases the number of measure-
ments an attacker has to perform to extract a single bit. At
some point, the attack becomes infeasible in practice.
C2: Mitigating or aborting speculation if data is poten-
tially accessible during transient execution.

Since all Spectre-type attacks exploit different predic-
tion mechanisms used for speculative execution, an effec-
tive approach would be to disable speculative execution en-
tirely [50, 79]. As the loss of performance for commodity
computers and servers would be too drastic, another proposal
is to disable speculation only while processing secret data.
Software. Intel and AMD proposed to use serializing in-
structions like lfence on both outcomes of a branch [1, 37].
ARM introduced a full data synchronization barrier (DSB
SY) and an instruction synchronization barrier (ISB) that can
be used to prevent speculation [6]. Unfortunately, serializing
every branch would amount to completely disabling branch
prediction, severely reducing performance [37]. Hence, In-
tel further proposed to use static analysis [37] to minimize
the number of serializing instructions introduced. Microsoft
uses the static analyzer of their C Compiler MSVC [67] to
detect known-bad code patterns and insert lfence instruc-
tions automatically. Open Source Security Inc. [31] use a
similar approach using static analysis. Kocher [49] showed
that this approach misses many gadgets that can be exploited.

Serializing instructions can also reduce the effect of in-
direct branch poisoning. By inserting it before the branch,
the pipeline prior to it is cleared, and the branch is resolved
quickly [1]. This, in turn, reduces the size of the speculation
window in case that misspeculation occurs.

While lfence instructions stop the speculative execution,
Schwarz et al. [73] showed they do not stop speculative
code fetches and other microarchitectural behaviors happen-
ing before execution. This includes powering up the AVX
functional units, instruction cache fills, and iTLB fills which
might still leak data.

Evtyushkin et al. [19] propose a similar method to serial-
izing instructions. They propose that a software developer



can indicate branches capable of leaking sensitive informa-
tion. When indicated, the processor should not predict the
outcome of these branches. This also stops speculation.

Additionally to the serializing instructions, ARM also in-
troduced a new barrier (CSDB) that in combination with con-
ditional selects or moves controls speculative execution [6].

Speculative Load Hardening (SLH) is an approach used
by LLVM and was proposed by Carruth [12]. Using this
idea, loads are checked using branchless code to ensure that
they are executing along a valid control flow path. To do
this, they transform the code at the compiler level and in-
troduce a data dependency on the condition. In the case of
misspeculation, the pointer is zeroed out, preventing it from
leaking data through speculative execution. One prerequisite
for this approach is hardware that allows implementation of
a branchless and unpredicted conditional update of a regis-
ter’s value. As of now, the feature is only available in LLVM
for x86 as the patch for ARM is still under review. GCC
adopted the idea of SLH for their implementation, support-
ing both x86 and ARM. They provide a builtin function to
either emit a speculation barrier or return a safe value if it
determines that the instruction is transient [17].

Oleksenko et al. [65] propose an approach similar to Car-
ruth [12] called You Shall Not Bypass. They exploit that
processors have a mechanism to detect data dependencies be-
tween instructions and introduce such a dependency on the
comparison arguments. This ensures that the load only starts
when the comparison is either in registers or the L1 cache,
reducing the speculation window to a non-exploitable size.

Google proposes a method called retpoline [82], a code
sequence that replaces indirect branches with return instruc-
tions, to prevent branch poisoning. This method ensures
that the return instruction predicts to a benign endless loop
through the RSB to catch speculation. The actual target des-
tination is pushed on the stack and returned to using the ret
instruction. For retpoline, Intel [39] notes that in future pro-
cessors that have Control-flow Enforcement Technology [34]
(CET) capabilities to defend against ROP attacks, retpoline
might trigger false positives in the CET defenses. To miti-
gate this possibility, future processors also implement hard-
ware defenses for Spectre-BTB called enhanced IBRS [39].
This eliminates the need for retpoline.

To prevent the processor from speculating on the store
buffer check, Intel provides a microcode update for dis-
abling the mechanism called Speculative Store Bypass Dis-
able (SSBD). AMD also supports SSBD [3]. ARM intro-
duced a new barrier called SSBB that prevents a load follow-
ing the barrier from bypassing a store using the same virtual
address before it [6]. For upcoming CPUs, ARM introduced
Speculative Store Bypass Safe (SSBS); a configuration con-
trol register to prevent the re-ordering of loads and stores [6].

On Skylake and newer architectures, Intel [39] proposes
RSB stuffing to prevent an RSB underfill and the ensuing
fallback to the BTB. Hence, on every context switch into the

kernel, the RSB is filled with the address of a benign gad-
get. This behavior is similar to retpoline. For Broadwell and
older architectures, Intel [39] provided a microcode update
to make the ret instruction predictable, enabling retpoline
to be a robust defense against Spectre-BTB.
Hardware. One of the building blocks for some variants
of Spectre is branch poisoning where an attacker mistrains a
prediction mechanism (see Section 3). In order to deal with
mistraining, both Intel and AMD extended the instruction set
architecture (ISA) with a mechanism for controlling indirect
branches [4, 40]. The proposed addition to the ISA consists
of three controls:

• Indirect Branch Restricted Speculation (IBRS) prevents
indirect branches executed in privileged code from being
influenced by those in less privileged code. To enforce
this, the processor enters the IBRS mode which cannot
be influenced by any operations outside of it.

• Single Thread Indirect Branch Prediction (STIBP) re-
stricts sharing of branch prediction mechanisms among
code executing across hyperthreads.

• The Indirect Branch Predictor Barrier (IBPB) prevents
code that executes before it from affecting the prediction
of code following it by flushing the BTB.

For existing ARM implementations, there are no generic
mitigation techniques available. However, some proces-
sors implement specific controls that allow to invalidate
the branch predictor which should be used during context
switches [6]. On Linux, those mechanisms are enabled by
default [46]. With the ARMv8.5-A instruction set [10],
ARM introduces a new barrier (sb) to limit speculative ex-
ecution on following instructions. Furthermore, new system
registers allow to restrict speculative execution and new pre-
diction control instructions prevent control flow predictions
(cfp), data value prediction (dvp) or cache prefetch predic-
tion (cpp) [10].

To prevent Spectre-PHT attacks, Kiriansky and Wald-
spurger [48] propose SLoth, a group of three microarchitec-
tural defenses, to constrain store-to-load forwarding. The
first, SLoth Bear, prevents store-to-load forwarding from ei-
ther transient stores or to transient loads through a microcode
update. The second, SLoth, relies on the compiler marking
instructions as candidates for forwarding. The third, Arctic
SLoth, uses dynamic detection of load and store pairs to de-
termine candidates for forwarding.
C3: Ensuring that secret data cannot be reached. Differ-
ent projects use different techniques to mitigate the problem
of Spectre. WebKit employs two such techniques to limit the
access to secret data [69]. WebKit first replaces array bound
checks with index masking. By applying a bit mask, WebKit
cannot ensure that the access is always in bounds, but intro-
duces a maximum range for the out-of-bounds violation. In
the second strategy, WebKit uses a pseudo-random poison
value to protect pointers from misuse. Using this approach,
an attacker would first have to learn the poison value before



he can use it. The more significant impact of this approach
is that mispredictions on the branch instruction used for type
checks results in the wrong type being used for the pointer.

Google proposes another defense for Google Chrome
called site isolation [81]. Site isolation executes each site in
its own process and therefore limits the amount of data that is
exposed to side-channel attacks. Even in the case where the
attacker has arbitrary memory reads, he can only read data
from its own process. With Chrome 67, Google has enabled
site isolation by default [81].

Kiriansky and Waldspurger [48] propose to restrict access
to sensitive data by using protection keys like Intel Memory
Protection Key (MPK) technology [32]. They note that by
using Spectre-PHT an attacker can first disable the protec-
tion before reading the data. To prevent this, they propose to
include a lfence instruction in wrpkru, an instruction used
to modify protection keys.

5.2 Defenses for Meltdown

D1: Ensuring that architecturally inaccessible data re-
mains inaccessible on the microarchitectural level.

In the case of Meltdown-type attacks, the fundamental
problem is that the processor allows the transient instruc-
tion stream to compute on architecturally inaccessible val-
ues, and hence, leak them. By assuring that on the oc-
currence of a fault, the execution does not continue or re-
spectively does not continue with the otherwise inaccessible
value, such attacks can be mitigated in future silicon hard-
ware designs. However, mitigations for existing microarchi-
tectures are necessary, either through microcode updates, or
operating system level software workarounds. All of these
approaches aim to keep architecturally inaccessible data also
inaccessible at the microarchitectural level.

Gruss et al. originally proposed KAISER [22, 23] to mit-
igate side-channel attacks defeating KASLR. However, it
can also defend against Meltdown-US attacks by prevent-
ing kernel secrets from being mapped in user space. Besides
its performance impact, KAISER has one practical limita-
tion [56, 22]. Due to the design of x86, some privileged
memory locations must always remain mapped in user space.
KAISER has been implemented for the Linux kernel under
the name kernel page-table isolation (KPTI) [59] and has
also been backported to older versions. Microsoft provides
a similar patch as of Windows 10 Build 17035 [43] and Mac
OS X and iOS also have similar features available [42].

For Meltdown-GP, where the attacker leaks the contents
of system registers that are architecturally not accessible
in its current privilege level, Intel released microcode up-
dates [38]. While AMD is not susceptible [5], ARM incor-
porated mitigations in future CPU designs and suggests to
substitute the register values with dummy values on context
switches for CPUs where mitigations are not available [6].

Directly addressing the access control race condition ex-
ploited by Foreshadow and Meltdown may not be feasible
with microcode updates [84]. Intel therefore proposes a
multi-stage approach to mitigate Foreshadow (L1TF) attacks
on current processors [36, 86]. First, to maintain conven-
tional process isolation, the operating system kernel should
take care to sanitize the physical address field of unmapped
page-table entries. The kernel could either clear the physical
address field, or let it point to non-existent physical memory.
In case of the former, Intel clarifies that 4 KB of dummy data
should be placed at physical address 0x0, and additionaly the
PS bit should be cleared at the page directory and page direc-
tory pointer levels to prevent attackers from exploiting huge
2 MB or 1 GB pages.

For SGX enclaves or hypervisors, that cannot trust the ad-
dress translation performed by an untrusted OS, Intel pro-
poses to either store secrets in uncacheable memory (as spec-
ified in the PAT or the MTRRs), or flush the L1 data cache
when switching protection domains. With recent microcode
updates, L1 is automatically flushed upon enclave exit, and
hypervisors can additionally flush L1 before handing over
control to an untrusted virtual machine. Flushing the cache
is also done upon exiting System Management Mode (SMM)
to mitigate Foreshadow-NG attacks on SMM.

To mitigate attacks across logical cores, Intel supplied a
microcode update to ensure that different SGX attestation
keys are derived when hyperthreading is enabled or disabled.
To ensure that no non-SMM software runs while data be-
longing to SMM are in the L1 data cache, SMM software
must rendezvous all logical cores upon entry and exit. To
protect against Foreshadow-NG attacks when hyperthread-
ing is enabled, the hypervisor must ensure that no hypervisor
thread runs on a sibling core with an untrusted VM.

D2: Preventing the occurrence of faults. Since Meltdown-
type attacks exploit delayed exception handling in the CPU,
another mitigation approach is to prevent the occurrence of a
fault in the first place. Thus, accesses which would normally
fault, become (both architecturally and microarchitecturally)
valid accesses but do not leak secret data.

One example of such behavior are SGX’s abort page se-
mantics, where accessing enclave memory from the out-
side returns -1 instead of faulting. Thus, SGX has inad-
vertent protection against Meltdown-US. However, the Fore-
shadow [84] attack showed that it is possible to actively pro-
voke another fault by unmapping the enclave page, making
SGX enclaves susceptible to the Meltdown-P variant.

Preventing the fault is also the countermeasure for
Meltdown-NM [77] that is deployed since Linux 4.6 [58].
By replacing lazy switching with eager switching, the FPU
is always available, and access to the FPU can never fault.
Here, the countermeasure if effective, as there is no other
way to provoke a fault when accessing the FPU.



5.3 Evaluation of Defenses

Spectre Defenses. We evaluate all defenses based on their
capabilities of mitigating Spectre attacks. Defenses that re-
quire hardware modifications are only evaluated theoreti-
cally. In addition, we discuss which vendors have CPUs vul-
nerable to what type of Spectre- and Meltdown-type attack.

InvisiSpec, SafeSpec, and DAWG are similar in how they
approach the problem. Unfortunately, they only consider a
cache-based covert channel. An attacker can easily substi-
tute the covert channel and once again leak data through it.
Based on that, we do not consider these three techniques as
a reliable defense. DAWG has the additional problem that it
does not mitigate an attack like NetSpectre, simply because
the leak and transmit gadget are in the same domain.

WebKit’s poison value prevents Spectre-PHT-based at-
tacks as during speculation the type is confused, making the
secret inaccessible. Index masking is only a partial solution;
it only limits how far beyond the bound an access is possible.

Site isolation still allows data leakage within the same
process and is therefore not a full solution. With SLH, we
were not able to observe any leakage, indicating that it suc-
cessfully prevents Spectre-PHT-based attacks. This does not
hold for YSNB as we were still able to observe leakage after
introducing a data dependency.

IBRS, STIBP, and IBPB are heavily dependant on the
underlying architecture and the used Linux version. As
of Linux 4.19, systems supporting enhanced IBRS use this
method instead of retpoline. If it is not available, the kernel
is protected by retpoline if compiled correspondingly. IBRS
is only activated for firmware calls as retpoline has a lower
performance impact and the kernel does not contain any in-
direct branches. The IBPB support on Linux seems to be
incomplete as the BTB is not flushed if a process is set to
be dumpable. As the default behavior on Linux is to mark
a process as dumpable, all processes that do not explicitly
change that are still vulnerable to a Spectre-BTB attack. We
were not able to verify IBPB, IBRS, and STIBP on AMD as
our test machine does not support them.

Also, on current systems, STIBP is not enabled. There is
a patch enabling it if three conditions are met [53]: The CPU
has to be vulnerable to Spectre-BTB; hyperthreading must
be supported and a sibling be online; and auto-selection of
Spectre-BTB defenses must be enabled, i.e., the default case.
We verified whether a cross-address-space Spectre-BTB at-
tack still works on a patched Linux system and did not ob-
serve any leakage, indicating that STIBP seems to work on
Intel. In our tests, RSB stuffing only proved to be a reason-
able approach against Spectre-RSB from different processes.
Otherwise, we are able to circumvent it.

To use SSBD in user space, the process to be protected
must issue a prctl system call to enable it. If the kernel has
been compiled with CONFIG SECCOMP=y, then SSBD is en-
abled for all processes using seccomp. Our tests showed that

SSBD is a functional defense for Spectre-STL. We searched
projects on GitHub to verify if any use SSBD via prctl. We
found no project using this method except forks of Linux
kernels. As the number of projects supporting seccomp is
small, we conclude that SSBD is not commonly used. On
ARM, we verfied that SSBB works but it has to be explicitly
added by the developer.

In our experiments, we were not able to observe any leak-
age after a bounds check in the presence of a serializing
instruction on Intel or AMD. For ARM, we were also not
able to observe any leakage following a barrier instruction
(CSDB) in combination with conditional selects or moves, but
on some ARM implementations, we were able to leak data
from a single memory access through the TLB after the DSB
SY+ISH instructions. As a result, the static analysis approach
of Microsoft and others is only a valid defense technique on
ARM if a CSDB in combination with conditional selects or
moves is emitted. As the observed leakage is only caused
by one access and the common Spectre-PHT sequence con-
sists of two loads, DSB SY+ISH still works in most cases. On
AMD, lfence is not serializing by default. Instead, an MSR
has to be set for the instruction to serialize [4].

Taint tracking [50] theoretically mitigates all forms of
Spectre-type attacks as data that has been tainted cannot be
used in a transient execution. Therefore, the data does not
enter a covert channel and can subsequently not be leaked.

Reducing the accuracy of timers [50] is only a partial solu-
tion as Schwarz et al. [72] have shown that different methods
can be used to generate a new, accurate timer. Additionally,
it only makes it harder for an attacker to get the information,
but that can be circumvented by taking more measurements.

While the Sloth [48] family of defenses was initially pro-
posed to mitigate Spectre-PHT attacks, we argue that they
should also be able to theoretically mitigate Spectre-STL.
Meltdown Defenses. We verified whether we can still
execute our newly discovered Meltdown-type attacks on a
fully-patched system. Even with all mitigations enabled, we
were still able to execute Meltdown-BR, Meltdown-PK, and
Meltdown-RW. These results indicate that current mitiga-
tions only prevent Meltdown-type attacks that do not cross
the current privilege level.

6 Conclusion

Transient execution attacks leak otherwise inaccessible in-
formation via the CPU’s microarchitectural state from in-
structions which are never committed. We presented a sound
and extensible systematization of transient execution attacks.
Our systematization uncovered 7 (new) transient execution
attacks (Spectre and Meltdown variants) which have been
overlooked and have not been investigated so far. We demon-
strated all these variants in practical proof-of-concept attacks
and evaluated their applicability to Intel, AMD, and ARM
processors. We also systematically evaluated all defenses,



Table 7: Spectre-type attacks and whether a defense miti-
gates it.
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Symbols show if an attack is mitigated ( ), partially mitigated ( ), not mit-
igated ( ), theoretically mitigated ( ), theoretically impeded ( ), not theo-
retically impeded ( ), or out of scope ( ). Empty fields still require testing.

discovering that some transient execution attacks are not suc-
cessfully mitigated by the rolled out patches and others are
not mitigated because they have been overlooked. Hence,
we need to think about future defenses carefully and plan to
mitigate attacks and variants that are yet unknown.
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A Consistency of the Universal and Unam-
biguous Naming Scheme

While our naming and classification scheme (cf. Figure 1) is
based on the names of the microarchitectural elements and
the exceptions found on modern x86 processors, this does
not limit the generality or consistency of our systematization.
Generally, microarchitectural elements which have equiva-
lent functionality are equivalent in our classification scheme.
Other microarchitectural elements with different functional-
ity, e.g., other prediction mechanisms, can extend the given
classification scheme. Exception names are typically specific
to one architecture. However, ARM also has equivalent ex-
ceptions types, such as instruction aborts (formerly prefetch
aborts) and data aborts which correspond to the class of page
faults [8, 9]. Still, any exception which does not have a cor-
responding one in our classification scheme can be added
in a consistent way by following the existing classification
scheme up to the point where no alternative fits.
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