24" Computer Vision Winter Workshop

Friedrich Fraundorfer, Peter M. Roth, Fabian Schenk (eds.)

Stift Vorau, Austria, February 6-8, 2019

DOI: 10.3217/978-3-85125-652-9-03

A Spatiotemporal Generative Adversarial Network
to Generate Human Action Videos

Stefan Ainetter, Axel Pinz
Graz Univerisity of Technology
stefan.ainetter@student.tugraz.at,

axel.pinz@tugraz.at

Abstract. We propose a method to generate high
resolution human action videos, by extending a 2D
generator network to the spatiotemporal domain.
Our generative model consists of a fully convolu-
tional 3D generator, combined with a domain spe-
cific video classifier. By using activation maximiza-
tion in the spatiotemporal domain, we are able to
generate action videos at a spatial resolution of
227 x 22Tpx. Our model, evaluated on the UCF-101
dataset, achieves a state-of-the-art Inception Score
of 23.44. Additionally, we improve the accuracy of a
video classifier using our videos for data augmenta-
tion, which proves high quality and variance of our
generated videos.

1. Introduction

Introduced in 2014, Generative Adversarial Net-
works (GANs) [13] have been continuously re-
searched due to their ability to learn perceptual repre-
sentations of images in an unsupervised manner. Es-
pecially in computer vision, GANs can be beneficial
for a variety of tasks like clustering, classification,
and sample generation. Recent research on GANs
for image generation has led to methods which can
synthesize images up to a spatial resolution of 2
megapixels [4, 42]. However, video generation lags
behind, with current resolutions of, e.g. 64 x 64 pix-
els [29], so that further research is needed to extend
the use of GANs towards the generation of realistic
looking videos.

This work addresses the generation of videos in
the domain of action recognition. Training a model
to generate videos of human actions will provide fur-
ther insight into this domain, and therefore might im-
prove the performance and design of current action
recognition classifiers. For this purpose, we persent

23

A

® ® ®
st st st

Figure 1. Visualization of generated videos using our
STGAN. Each video consists of 16 consecutive frames.
Results are shown for the UCF-101 classes Baseball
Pitch (top) and Billiard (bottom).

a spatiotemporal GAN (STGAN), which can gen-
erate videos in the domain of action recognition at a
spatial resolution of 227 x 227px. Figure 1 shows
two examples of our generated video clips with a du-
ration of 16 frames.

We quantitatively evaluate our results using the In-
ception Score (IS) [32]. In comparison to other ap-
proaches for action video generation, we establish a
new state-of-the-art both in terms of IS and spatial
resolution. Furthermore, we demonstrate that it is
possible to fool the Inception Score metric by gen-
erating samples that are optimized to achieve a high
score, as claimed by [32]. We show how to use IS to
obtain valid results, by strictly separating the video
generation process and the evaluation. In addition,
we use our generated videos for data augmentation,
by training an action recognition classifier with both,
real and generated data. This increases the accuracy
of the classifier and indicates an overall high image
quality and variance in our generated videos.

2. Related Work

Generative models for image generation. The
idea of GANs was first proposed in [13], outperform-
ing other generative models like autoencoders [20,
40] and Boltzmann machines [23, 31] according to
image quality. Since then, GANs have been a pop-
ular field of research, and are used in different do-
mains like image in-painting [17], image-to-image
translation [24, 43] and super resolution [22]. GAN
training using the loss function proposed in [13] is
considered as unstable. Therefore, Dosovitskiy and
Brox [7] combined the GAN loss with additional
losses in image and feature space to make the train-
ing more stable. Their loss function proved to be
stable during training and generated realistic looking
images. Several attempts [25, 11, 26] used this loss
function in combination with activation maximiza-
tion [45, 9, 46, 33] to generate class specific images.

Another popular approach is the Wasserstein-
GAN [2], where the loss function is modeled by
the Earth-Mover or Wasserstein-1 distance. Several
GANSs [28, 14, 32, 3, 1] adapted this loss function to
improve quality, stability and variation of the gener-
ated images.

GANSs have also been used in the context of super-
resolution [34, 22] to create high resolution output
from low resolution input. Denton et al. [5] proposed
a framework that generates images in a coarse-to-
fine fashion, combining a conditional GAN model
with a Laplacian pyramid representation. Karras et
al. [19] were able to generate images at a resolution
of 1024 x 1024px using GANs and a coarse-to-fine
network structure. For this approach, both the gen-
erator and discriminator grow progressively during
training.

Video Generation using GANs. Video recogni-
tion and classification received a lot of attention
in recent past. Therefore, generating videos via
generative models is also drawing much attention.
TGAN [29] generates videos for action recognition
using two generators, where one generator learns to
generate images, and the other one models tempo-
ral coherence. It produces frames with the spatial
resolution of 64 x 64px. Vondrick et al. [41] pro-
posed a model to generate videos with a spatiotem-
poral convolutional architecture that separates fore-
ground and background. Tulyakov et al. [39] pro-
posed a video generator which decomposes motion
and content of videos. They use an additional re-

24

current neural network combined with an image gen-
erator, to model a sequence of consecutive frames.
Recently, TGANV2 [30] was introduced, which uses
subsampling layers in the generator and several sub-
discriminators for video generation. Fuchs [11] used
a similar network architecture compared to our ap-
proach to generate videos of arbitrary length, with
the goal to visualize deep driving models. Koltun and
Chen [4], and Wang et al. [42] are able to synthesize
videos with a spatial resolution of 2048 x 1024pz,
also using progressively growing network architec-
tures. However, they use semantic layouts instead of
noise as input, which simplifies the process of gener-
ating samples.

Evaluation methods for generative models. Di-
rectly comparing the images of two different gener-
ative models, in terms of image quality, is hard to
achieve. Salimans et al. [32] proposed an evaluation
metric called the Inception Score (IS). To achieve a
high IS, images should contain meaningful objects
and the GAN should generate varied images. This
metric is widely used to evaluate the quality of gener-
ated images [14] and videos [36, 29, 39, 30]. Another
way of GAN evaluation is to measure the variance of
the generated data. This can be achieved using struc-
tural similarity [44], and was used as evaluation met-
ric in [27, 19]. Another popular method is using the
Fréchet Inception distance [15], which is based on
the Fréchet distance [8].

3. Generative Adversarial Networks for Im-
age Generation

Our spatiotemporal GAN is based on a 2D gener-
ative model provided by [7], which is used for image
generation. This section briefly summarizes the im-
portant aspects about the spatial network architecture
and the loss function for image generation. Note that
we did not train the 2D generator on our own, but
used a pre-trained version provided by [7], before we
extended the architecture to generate videos instead
of images.

3.1. Spatial Network Architecture

The 2D generative model consists of a generator
and a discriminator, with an additional encoder net-
work used for feature extraction. During training,
the extracted features (which are provided by the en-
coder) serve as input code vector z for the generator
and the discriminator. All code vectors z belong to
a low-dimensional input space, which we denote as

latent space.

Generator. The generator network consists of fully-
connected layers, followed by convolutional and up-
convolutional layers to map a code vector z to an
image. Upconvolutional layers make it possible to
up-sample the respective layer input so that the code
vector z with dimension 1 x 4096 maps to an image
of 256 x 256pzx. Rectified Linear Units (ReLUs) are
used as nonlinear activation functions in all layers.
Discriminator. The architecture of the discrimina-
tor network consists of five convolutional layers, fol-
lowed by a pooling layer to extract features of the
input images. These features are concatenated with
a code vector z, which is extracted from real images
by the encoder network. Dropout [37] is performed
on the resulting feature vector before it is further pro-
cessed by two fully-connected layers and then classi-
fied as real or fake image.

Encoder network. The network architecture of the
encoder is AlexNet [21] pre-trained on ImageNet.
During training, the encoder network is used as aux-
iliary network to extract features from real and gener-
ated images. These features are then used for several
purposes: 1) During training, the generator uses fea-
tures from real images as input vector, rather than
randomly generated ones. This helps to identify
compact regions in the latent space which correspond
to natural images. 2) The discriminator gets a copy
of the same features, to prevent unbalanced training.
3) The extracted features of the encoder are used to
calculate the loss function.

3.2. Loss Function for Image Generation

Dosovitskiy and Brox [7] proposed a generator
loss function which minimizes distances in image
and feature space, additionally to the adversarial
loss. This boosts the invariance with respect to
irrelevant transformations, and the sensitivity to
local image statistics, according to [7]. The com-
position of these three losses leads to better results
in image quality, because the additional feature loss
reflects the perceptual similarity of images. The
loss in image space helps to stabilize the training
process, as adversarial training is known to be un-
stable and sensitive to hyperparameter selection [13].

The composite loss function £ according to [7]
is defined as

L=)\imgﬁimg +)‘featﬁfeat +)\advﬁadva (l)

25

with the Euclidean loss in image space L;;,4, the Eu-
clidean loss in feature space Lf.q:, and the adver-
sarial loss L,q,. All three parts are weighted with a
specific parameter .

The loss in image space Ly, 4 is written as

Limg = _[G(z) — x|l5,)
h,w

where G(z) and x are the generated and real images,
respectively, with the dimensionality [H x W x 3],
where H and W define the spatial resolution of the
RGB image. The indices h,w are therefore the spa-
tial indices of the images.

The feature loss L ¢, is defined as

Licar =Y |E(G(z) - E®3, @)
h,w

using the encoder network E to extract features form

real and generated images. The adversarial 1oss L4,
is defined as

£adv = - IOg D(G(Z))v 4

where D(-) defines the discriminator function.

Furthermore, it is also necessary to optimize
the discriminator, to successfully classify real and
fake images. The generator and discriminator are
trained concurrently, using

Laiser = —[log(D(x)) +1og(1 — D(G(2)))], (5)

as the loss function for the discriminator.

4. Spatiotemporal Network Structure and Pa-
rameter Transfer

We extended the network structures described in
Subsection 3.1 to generate videos instead of images.
The main idea is to convert the filters from spatial
to spatiotemporal kernels using the approach pro-
posed in [10]. Then, the parameters of the pre-
trained networks provided by [7] are transferred to
the spatiotemporal domain. The new spatiotemporal
weights wsp are initialized layerwise, by following
these steps:

1. The temporal weights for each layer are defined
as wop with the dimensions [W x H x C],
where W and H define the spatial filter size,
and C defines the number of channels. In the
first step, the dimensions of the spatiotemporal
weights wsp are defined as [W x H x T x C],
where T" describes the temporal filter depth.

Layer Kernel | Stride Output Size
G_fc8 / / 16, 4096
G_fc7 / / 16, 4096
G_fc6 / / 16, 4096
reshape layer / / 4x4x16, 256
G_upconv5 | 4x4x3 | 2x2x1 8x8x16, 256
G_conv5 3x3x3 | IxIx1 8x8x16, 512
G_upconv4 | 4x4x3 | 2x2x1 | 16x16x16, 256
G_conv4 3x3x3 | IxlIx1l | 16x16x16, 256
G_upconv3 4x4x3 | 2x2x1 | 32x32x16, 128
G_conv3 3x3x3 | IxIx1 | 32x32x16, 128
G_upconv2 | 4x4x3 | 2x2x1 | 64x64x16, 64
G_upconvl 4x4x3 | 2x2x1 | 128x128x16, 32
G_upconvO | 4x4x3 | 2x2x1 | 256x256x16, 3

Table 1. Network structure of 3D generator. The spa-
tiotemporal dimensions for kernel, padding and stride are
shown in the order [width x height x time]. The output
size is written as [width x height x time, # channels]. We
applied [1 x 1 x 1] padding at all convolutional and up-
convolutional layers. For video generation, the temporal
duration was set to 7' = 16 frames.

2. All spatial weights wop are then copied to each
temporal position ¢ of the weights wWsp. This
step can be written as

W3D<t> = Wsyp, Vt € [1,T’]. (6)

3. The last step is to divide the spatiotemporal
weights w3 p by the temporal filter depth 7"

W3D
T

(7

W3D =

This step is used to average the weights across
time, and therefore serves as temporal smooth-
ing.

We decided to use a temporal filter depth of 77 = 3
for all convolutional and upconvolutional layers.
All biases and weights from the fully-connected
layers are directly copied from the 2D to the 3D
architecture.

The temporal stride is kept dense throughout
all network layers, to ensure that the full duration
of the sequence is preserved through the whole
network. Table 1 shows a detailed overview of our
3D generator architecture after parameter transfer.

26

4.1. Generating Videos using Activation Maxi-
mization

To generate videos for a specific action, we use
our spatiotemporal generator with Activation Maxi-
mization (AM) [9, 46, 33] to maximize the probabil-
ity that a generated video belongs to a specific class.
For this purpose, we use a task specific condition net-
work ®. This condition network is a pre-trained clas-
sifier, and delivers output probabilities for each class
in the dataset. The goal of this technique is to find a
specific code vector that maximizes the activation of
a neuron h. Formally, the objective function can be
written as

z = argmax(®,(G(z)) — \|z|),

z

®)

with the parameter A\ weighing the regularization
term. To perform activation maximization in com-
bination with a generative model, we build on the
PPGN framework [25], which is an extension of [26].
The experimental setup using our generator in com-
bination with a condition network is shown in Fig-
ure 2. In the forward path, our 3D generator pro-
duces videos given a random code vector z. These
generated videos serve as input for the condition net-
work, which calculates the softmax probability that
the video belongs to a specific UCF-101 class. As
we want to maximize the activation for a specific
output neuron h, we can back-propagate the gradi-
ent %Z(G(z)) through the condition network and
the 3D generator, to update the code vector z. Note
that Gaussian noise NV'(0, 10717) is added to the gra-
dient before it is applied, to boost the variance of the
generated videos.

We perform up to 100 iterations of AM, where the
learning rate for the update function starts at 1.0 and
linearly decays to 0.1. Other AM specific parameters
are taken from [25]. Figure 3 shows the iterative pro-
cess of AM, transforming random code vectors to a
specific action video.

The generator serves as a learned natural image prior,
which makes it possible to synthesize interpretable
videos. Without using the generator as prior, it would
not be possible to generate realistic looking samples,
because the set of all possible outputs is too vast.

4.2. Condition Networks

A condition network is a trained classifier, which
is used to perform activation maximization. There-
fore, the generator and the condition network should

-._ Backward

s pass -7 lo
AN target neuron
Y ® 9 -

[]

[]

[]

[]

[]

O

O

3D Generated Condition

2(t) ~ N0, 1) Generator Video Network —

Figure 2. Video generation using activation maximization. The 3D generator G uses a random code vector z(t), which
consists of multiple 1 x 4096 latent vectors, where each vector corresponds to one frame of the generate video. This video
serves as input for a pre-trained condition network ®. The goal is to maximize the activation for a specific target neuron
h, and to back-propagate the gradient through both networks to adjust the code vector z(t).

Figure 3. Visualization of activation maximization for
class Billiard. Top to bottom shows the process of ac-
tivation maximization applied to 8 frames at different it-
eration steps. The sequence of images changes from ran-
dom patterns at top to billiard at bottom. The videos were
generated with our spatiotemporal GAN and the LRCN
condition network.

operate in a similar domain, using similar datasets
for training. As we want to generate videos for ac-
tion recognition we were looking for classifier net-
works trained on datasets like UCF-101 [35] and
Sports-1M [18]. Therefore, we used LRCN [6]
and C3D [38] as condition networks in our experi-
ments. Note that the spatial resolution of our gen-
erated videos directly depends on the spatial input
dimension of the condition network. Although our
3D generator would be able to generate output videos
with 256 x 256px, our generated videos after AM are

27

restricted to 227 x 227pzx, which is the spatial reso-
lution for the input of LRCN (which we used in our
main experiments).

5. Evaluation

The evaluation of our STGAN is divided into
three different parts:

1. Qualitative evaluation of the generated videos
with analysis of findings and potential failure
cases.

2. Quantitative evaluation using the Inception
Score, and comparison to state-of-the-art ap-
proaches.

3. Using our generated videos for data augmenta-
tion, to increase the performance of an action
recognition classifier.

5.1. Qualitative Evaluation

We performed AM for each class in the UCF-101
dataset, where the input for our generator is a se-
quence of random code vectors, each of them drawn
from a Gaussian distribution A/(0, 1). We decided to
sample videos with a length of 16 frames in all main
experiments, to be consistent in our evaluations. Fig-
ure 4 shows generated image sequences for several
classes, using our STGAN.

General findings, according to the quality of gener-
ated samples are:

1) One can see that our STG AN does have problems
to generate faces correctly, shown in the example for
the class Apply Lipstick (Figure 4 top). This is be-
cause our STGAN is not able to learn the correct
number of face parts, like eyes and nose. Similar

problems occur for all classes which focus on hu-
man faces. The reason for this problem could be the
usage of max-pooling at some stage of the convolu-
tional neural network, which makes the representa-
tion invariant to small translations of the input. This
means, that the network only focuses on a feature be-
ing absent or present, but not on how many times it
occurs [12].

2) Videos generated for the class Billiard (Figure 4
middle) show results with high image quality. This
means, that the quality for each individual frame is
high, and the whole video shows a reasonable se-
quence of consecutive frames which represent a spe-
cific action. According to temporal coherence, it
seems that the combination of weight transfer to 3D
and a condition network pre-trained on video ac-
tion recognition are enough to generate meaningful
videos. Our STGAN, which was never trained on
video data, seems to inherit the information of tem-
poral coherence from the condition network (which
was trained on action videos) during AM.

3) Because we use AM, the generated videos indi-
cate what is most important for the condition net-
work to differentiate between different classes. For
the class Clean and Jerk (Figure 4 bottom), the net-
work clearly focuses on the weights. It seems that
the human body is not important for classifying this
action, and therefore the frames contain no human
body. This insight could possibly be used to further
understand how convolutional neural networks work,
and could therefore help to improve the quality of ac-
tion recognition classifiers.

5.2. Quantitative Evaluation

We quantitatively evaluated our STGAN using
the Inception Score (IS). We compare our results to
other state-of-the-art GANs, which also operate in
the domain of video generation for action recogni-

tion.
Evaluation procedure. In order to compute the IS,

we generated 10000 videos, which were randomly
sampled from a uniform distribution over all UCF-
101 classes. Afterwards, we used the C3D action
recognition classifier provided by [16] to calculate
the IS. The resolution and the number of frames for
a C3D input video are 112 x 112pzx and 16, respec-
tively. Therefore, we resized our generated samples
to match the spatial dimension. Additionally, we cal-
culate the IS for the whole UCF-101 dataset. This
serves as a key score indicating the IS for real videos.
Table 2 shows the IS of our approaches compared

28

28822288
2828232939
b e b b o Bl

©

¥ @Y @W v @u O8N N o O
(%] 3
®e | © e 1L e 1 o (4 @ (]

Figure 4. Visualization of generated videos using
STGAN in combination with LRCN as condition net-
work. Each video consists of 16 consecutive frames. Re-
sults are shown for the classes Apply Lipstick, Billiard
and Clean and Jerk (top to bottom).

Method Inception
Score
MoCoGAN [39] 12.42
Conditional TGAN [29] 15.83
TGANvV2 (bs = 64) [30]! 22.70
TGANvV2 (bs = 256) [30]' | 24.34
STGAN 23.44
STGAN (C3D) 66.33
UCF101 dataset 70.07

Table 2. IS for different models trained on UCF-
101. State-of-the-art approaches (MoCoGAN, TGAN and
TGANV2) are compared to our STGAN. Also, the IS for
the UCF-101 dataset is stated. Our IS, achieved by us-
ing different networks for conditioning and classifying, is
written in boldface. Please note that we outperformed all
published competitors [39, 29] by a large margin®.

to other state-of-the-art GANs for video generation.
Note that the evaluation procedure of all approaches
in Table 2 is the same, which enables us to directly
compare the methods with each other. The IS of the
other approaches is provided by the authors in their
papers.

Our STGAN achieves state-of-the-art Inception
Scores. Using LRCN as condition network and
the C3D network for evaluation, we achieve an
IS of 23.44, which outperforms several other ap-
proaches and is comparable to TGANv2 [30]'. It
is also worth mentioning that our STGAN gener-

"During the preparation of our paper, we note the appear-
ance of [30] on arXiv. This is, to our knowledge, the only work
presenting results comparable to ours.

Figure 5. Visualization of generated videos using
STGAN and C3D as condition network. Each video con-
sists of 16 consecutive frames. Results are shown for the
classes Baseball Pitch (top) and Clean and Jerk (bot-
tom). Although these generated samples achieve a high IS
(see Table 2), the videos to not contain any real action sce-
narios. Therefore, we label them as adversarial examples,
which fooled the classifier used for the IS calculation.

ates videos with the highest spatial resolution, com-
pared to the approaches in Table 2. Note that the high
IS of TGANV2 comes with high computational cost.
Our STGAN runs on a single 12Gb GPU, whereas
TGANvV2 needs four and 16 GPUs (12Gb) to run
their model with a batch size of 64 and 256, respec-
tively (corresponds to the IS of TGANV2 (bs = 64)
and TGANv2 (bs 256) in Table 2). Therefore,
our model has a clear advantage in terms of compu-
tational cost and memory consumption.

Fooling the Inception Score is possible. If the
same classifier is used as condition network for AM
and to calculate the IS, the IS can be fooled, because
the generated samples are in fact generated to have
a high probability with a certain condition network.
We proved this by using the C3D network for sample
generation and calculation of the IS (corresponds to
STGAN (C3D) in Table 2). The IS for this setup is
66.33, which would indicate samples that are com-
parable to real data, in terms of image quality and
variance. However, Figure 5 shows examples using
STGAN (C3D) for video generation. By analyz-
ing these samples, one can see that the videos do not
contain any real objects, indicating that these are ad-
versarial examples. Salimans et al. [32] stated that
directly optimizing the IS would lead to adversarial
examples, but did not provide results to prove this
claim. Our experiments prove this claim, and show
that it is easily possible to fool the IS.

5.3. Supervised Learning using Generated Videos

Additional to the previous evaluations, we used
our generated videos for data augmentation, to train

29

an action recognition classifier. We used a C3D
implementation [16] as classifier, and the UCF-101
dataset for training and evaluation.

5.3.1 Dataset Preprocessing

Our STGAN enables us to generate videos for all
101 classes of the UCF-101 dataset. However, not
all generated samples have the same image quality,
due to the variance in the generated data. Therefore,
we analyzed the results of our Inception Score cal-
culation, and chose samples for data augmentation
that contributed to a high score. Furthermore, we
limited the number of samples per class to 100, to
prevent unbalancing the training data too much. Fig-
ure 6 shows a comparison of the UCF-101 train split
1 and our generated samples.

5.3.2 Training Schedule

We used the pre-trained C3D model, which was
trained on the Sports-1M dataset as initialization for
our network parameters. The pre-trained model is
available online>. Other training parameters were
taken from the original code [16]. We fine-tuned the
classifier on UCF-101, using our generated videos,
the UCF-101 train split 1, and a combination of both.
For each experiment, the training data were ran-
domly shuffled at the beginning of training. After
200 iterations of training, using a batch size of 10, we
evaluated the performance of the classifier by calcu-
lating the random clip accuracy on the UCF-101 test
split 1. This helped to determine the optimal point to
stop training and avoided overfitting.

5.3.3 C(lassification Results

Table 3 provides the accuracy of our trained clas-
sifiers. If we use our generated samples without
any real data for training, we achieve an accuracy
of 15.6%. This is significantly lower than the accu-
racy for train split 1, which is 50.6% in our experi-
ments. However, this experiment indicates that our
generated samples provide meaningful information
about the UCF-101 dataset. Using both, the real and
generated data for training the classifier, we achieve
an accuracy of 52.2%. This improvement shows
that there is some additional information in the aug-
mented data, although the generated data do not have

“https://github.com/hx 173149/C3D-tensorflow, last visited:
Dec. 2018

Data Distribution for UCF-101 Train Split and Generated Samples

12} N .
S 100 B UCF-101 Train Split
E B STGAN Generated Samples
& 75
(=)
g 50
Q
E 25
Z,
0
o, < o DS g X 2 D90 5 0 n DDDOo g9 X D DE DD D w o T oYy O o D0 0 D aD n X 0 DD
-1 [Ca—1 — = o o =
SEERERERE GRS w“:mmx*—'f-<s=s=°u>:::B’Uogcﬂzganmav:ocg—‘oann
280 9 = © 5 & 5 © g = m.,‘mmowm..H,:_:.—‘.—‘.Am,‘_,ulg._.o,!:&:;.m g5 &= 2@ & o g o
2253t ESac A St e b TR Ut EE iS558 52 82052 FE39%%
(= A R I =T~ L~ R~ = = R 3 6 £ 0N 5 R 3e5AEgao g 2 2L gE 5825322 T s &2 2 & 258
2 d< 5588w gEg _QOUm'”“’“:%wm&Q Y gE=ER - 5L =8 EEEEZT
s "0 fz8 888 M"EBEMSR2IEE8C0:s EMREESS T ELERTS R de iy
> 28T 8M@% R SE2 E£E%0EEO0LED A L2a52gfC 2 EER3TIET ST L BES
2% 2858 = EEE FE&ES L°% S8 E ESEE £ S
a < m M M a 32 = (@) =} =} 5] S5 %oz L=
=) M = = =i M &) = T 9 jas) °
o /M m g g L = o T T g
< S 'gm O ,?)Lu 58
- i = T
@
3
2 100
s
&
=]
g 50
S
£
=
“ 0
20 0 DR VY DOYE QRO NS RE OV .S YD DDETEDDRE DD DD oDOEYE 2 DY DD ¥ DD YT O
E8S 28 22 R 8 CE2E83 L SL 2B e SR8 22828288E2
SEEEE Em 28 o REfaseSSEBEResss i i fEe e Esuszs28e8mEqE 22
BEEE5 5800000 LA S EE LR 2En o BsER G tEgaEnsAEER
g =] S5 E S E g 2350¢CA oE g 2w 9 22EEE 2z 2 as £
S [= R - - g & e 0 © g m ?““3 = g2 2% 2= & O
A 3 B2 ENprpopE g nE & £% o g o) [z 3 g [T DS B
=) d N G M o > o S g S Q o =5 g = <
5 SFEHEfT"rRZEfEg2fE £ g5 g 3 ss B 5 S£2 525525
= [~ S o g o o 5 = o X =
s > Y Y = M %} @ S »n =4 a 2 Q= B
)] %) 3 =3
v = g o= =
3} [>
2 &=

Figure 6. Comparison of data distribution between UCF-101 train split 1 and our generated samples. The generated
samples for data augmentation were chosen according to the IS, and the number of samples per class is restricted to at
most 100 samples. The data distribution shows that our STG AN is not able to produce high quality samples for certain

classes e.g. JumpRope, Nunchucks, Pizza Tossing.

Training Procedure Accuracy
Generated Samples Only 15,6%
Train Split 1 50,6%
Train Split 1 +
Generated Samples 52,2%

Table 3. Accuracy of C3D action recognition classifier.
The accuracy was calculated for the UCF-101 test split 1,
where we randomly extracted 16 consecutive frames from
each clip for testing. Training with generated samples
leads to a lower score, compared to training with real data.
However, training with both, real and generated data leads
to an increase of accuracy, which indicates that our gener-
ated samples contain valuable additional information for
action recognition.

the same image quality as the real ones. Note that
the goal of this experiment was to show the practical
benefit of our ST G AN, rather than competing for a
state-of-the-art accuracy for UCF-101. This means,
that another network architecture, and a more careful
selection of hyperparameters, combined with an op-
timized training schedule, would certainly lead to a
higher overall accuracy for all experiments.

6. Conclusion

We have presented a method to generate human
action videos for 101 action classes at a spatial res-

30

olution of 227 x 227px, by extending a generative
model proposed for image generation to the spa-
tiotemporal domain. A condition network performs
activation maximization, where our generator is used
as image prior. In terms of image quality measured
by the Inception Score, our approach outperforms all
published state-of-the-art methods by a large margin,
and also improves with respect to spatial resolution
of the generated videos.

Our evaluations also demonstrate a major weak-
ness of the Inception Score metric: We were able
to generate adversarial examples, which contained
no meaningful objects, but achieved an exceptionally
high Inception Score. This means that (a) adversarial
examples deserve in-depth research in the future, and
(b) Inception Score should be reconsidered.

Action videos generated by our approach can
readily be used for data augmentation, in addition to
real training data. This leads to an increased accu-
racy of the classifier, which underlines the high qual-
ity and variance of our videos, and highlights direct
benefits towards improved recognition.

References

[1] M. Arjovsky and L. Bottou. Towards princi-
pled methods for training generative adversarial net-

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

works. In International Conference on Learning
Representations (ICLR), 2017. 2

M. Arjovsky, S. Chintala, and L. Bottou. Wasser-
stein generative adversarial networks. In Proceed-
ings of the 34th International Conference on Ma-
chine Learning (ICML), pages 214-223,2017. 2

D. Berthelot, T. Schumm, and L. Metz. Began:
boundary equilibrium generative adversarial net-
works. arXiv preprint arXiv:1703.10717,2017. 2
Q. Chen and V. Koltun. Photographic image syn-
thesis with cascaded refinement networks. In The
IEEE International Conference on Computer Vision
(ICCV), pages 1520-1529, 2017. 1,2

E. L. Denton, S. Chintala, R. Fergus, et al. Deep
generative image models using a laplacian pyramid
of adversarial networks. In Advances in Neural In-
formation Processing Systems (NIPS), pages 1486—
1494, 2015. 2

J. Donahue, L. Anne Hendricks, S. Guadarrama,
M. Rohrbach, S. Venugopalan, K. Saenko, and
T. Darrell. Long-term recurrent convolutional net-
works for visual recognition and description. In The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2625-2634, 2015. 5

A. Dosovitskiy and T. Brox. Generating images
with perceptual similarity metrics based on deep net-
works. In Advances in Neural Information Process-
ing Systems (NIPS), pages 658-666, 2016. 2, 3

D. Dowson and B. Landau. The fréchet distance be-
tween multivariate normal distributions. Journal of
Multivariate Analysis, 12(3):450-455, 1982. 2

D. Erhan, Y. Bengio, A. Courville, and P. Vincent.
Visualizing higher-layer features of a deep network.
Technical report, University of Montreal, 2009. 2, 4
C. Feichtenhofer, A. Pinz, and R. Wildes. Spa-
tiotemporal residual networks for video action
recognition. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 3468-3476, 2016. 3

H. Fuchs. Visualizing and Understanding Deep
Driving Models. Masters Thesis at Institute of Elec-
trical Measurement and Measurement Signal Pro-
cessing, Graz University of Technology, 2017. 2

I. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT Press, 2016. 6

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative adversarial nets. In Advances
in Neural Information Processing Systems (NIPS),
pages 2672-2680, 2014. 1,2, 3

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin,
and A. C. Courville. Improved training of wasser-
stein gans. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 5767-5777,2017. 2

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler,
and S. Hochreiter. Gans trained by a two time-scale

31

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

update rule converge to a local nash equilibrium. In
Advances in Neural Information Processing Systems
(NIPS), pages 6626-6637, 2017. 2

HouXin. C3D-tensorflow. https://github.
com/hx173149/C3D-tensorflow, 2018. last
visited: Sep 2018. 6,7

S. lizuka, E. Simo-Serra, and H. Ishikawa. Globally
and Locally Consistent Image Completion. ACM
Transactions on Graphics (TOG), 36(4):107:1—
107:14, 2017. 2

A. Karpathy, G. Toderici, S. Shetty, T. Leung,
R. Sukthankar, and L. Fei-Fei. Large-scale video
classification with convolutional neural networks. In
The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1725-1732, 2014.
5

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Pro-
gressive growing of GANs for improved quality, sta-
bility, and variation. In International Conference on
Learning Representations (ICLR), 2018. 2

D. P. Kingma and M. Welling. Auto-encoding varia-
tional bayes. In International Conference on Learn-
ing Representations (ICLR), 2014. 2

A. Krizhevsky, 1. Sutskever, and G. Hinton. Ima-
genet classification with deep convolutional neural
networks. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 1097-1105, 2012. 3

C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cun-
ningham, A. Acosta, A. P. Aitken, A. Tejani, J. Totz,
Z. Wang, and W. Shi. Photo-realistic single image
super-resolution using a generative adversarial net-
work. In The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 105—
114,2017. 2

H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Con-
volutional deep belief networks for scalable unsu-
pervised learning of hierarchical representations. In

Proceedings of the 26th International Conference on
Machine Learning (ICML), pages 609-616, 2009. 2

M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised
image-to-image translation networks. In Advances

in Neural Information Processing Systems (NIPS),
pages 700-708, 2017. 2

A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy,
and J. Yosinski. Plug & play generative networks:
Conditional iterative generation of images in latent
space. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3510-3520,
2017. 2,4

A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and
J. Clune. Synthesizing the preferred inputs for neu-
rons in neural networks via deep generator networks.
In Advances in Neural Information Processing Sys-
tems (NIPS), pages 3387-3395, 2016. 2,4

[27]

[29]

[31]

[34]

[37]

A. Odena, C. Olah, and J. Shlens. Conditional image
synthesis with auxiliary classifier gans. In Proceed-
ings of the 34th International Conference on Ma-
chine Learning (ICML), pages 2642-2651, 2017. 2

A. Radford, L. Metz, and S. Chintala. Unsupervised
representation learning with deep convolutional gen-
erative adversarial networks. In International Con-
ference on Learning Representations (ICLR), 2016.
2

M. Saito, E. Matsumoto, and S. Saito. Temporal
generative adversarial nets with singular value clip-
ping. In The IEEE International Conference on
Computer Vision (ICCV), pages 2849-2858, 2017.
1,2,6

M. Saito and S. Saito. TGANv2: Efficient training of
large models for video generation with multiple sub-
sampling layers. arXiv preprint arXiv:1811.09245,
2018. 2,6

R. Salakhutdinov and H. Larochelle. Efficient learn-
ing of deep boltzmann machines. In Proceedings of
the 13th International Conference on Artificial In-
telligence and Statistics (AISTATS), pages 693-700,
2010. 2

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung,
A. Radford, and X. Chen. Improved techniques for
training gans. In Advances in Neural Information
Processing Systems (NIPS), pages 2234-2242,2016.
1,2,7

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep
inside convolutional networks: Visualising image
classification models and saliency maps. Inter-
national Conference on Learning Representations
(ICLR),2014. 2,4

C. K. Soenderby, J. Caballero, L. Theis, W. Shi,
and F. Huszar. Amortised map inference for im-
age super-resolution. In International Conference
on Learning Representations (ICLR), 2017. 2

K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A
dataset of 101 human actions classes from videos in
the wild. Technical report, Center for Research in
Computer Vision (CRCV), November 2012. 5

C. Spampinato, S. Palazzo, P. D’Oro, F. Murabito,
D. Giordano, and M. Shah. Vos-gan: Adversar-
ial learning of visual-temporal dynamics for unsu-
pervised dense prediction in videos. arXiv preprint
arXiv:1803.09092, 2018. 2

N. Srivastava, G. Hinton, A. Krizhevsky,
I. Sutskever, and R. Salakhutdinov. Dropout:
a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning
Research (JMLR), 15:1929-1958, 2014. 3

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and
M. Paluri. Learning spatiotemporal features with
3d convolutional networks. In The IEEE Inter-
national Conference on Computer Vision (ICCV),
pages 4489-4497, 2015. 5

32

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz.
Mocogan: Decomposing motion and content for
video generation. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018.
2,6

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Man-
zagol. Extracting and composing robust features
with denoising autoencoders. In Proceedings of the
25th International Conference on Machine Learning
(ICML), pages 1096-1103, 2008. 2

C. Vondrick, H. Pirsiavash, and A. Torralba. Gen-
erating videos with scene dynamics. In Advances
in Neural Information Processing Systems (NIPS),
pages 613-621, 2016. 2

T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, G. Liu, A. Tao,
J. Kautz, and B. Catanzaro. Video-to-video synthe-
sis. In Advances in Neural Information Processing
Systems (NIPS), 2018. 1,2

T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz,
and B. Catanzaro. High-resolution image synthesis
and semantic manipulation with conditional gans. In
The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2018. 2

Z. Wang, E. P. Simoncelli, and A. C. Bovik. Mul-
tiscale structural similarity for image quality assess-
ment. In Asilomar Conference on Signals, Systems
& Computers, volume 2, pages 1398-1402, 2003. 2

J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and
H. Lipson. Understanding neural networks through
deep visualization. In Deep Learning Work-
shop, International Conference on Machine Learn-
ing (ICML), 2015. 2

M. D. Zeiler and R. Fergus. Visualizing and under-
standing convolutional networks. In European Con-
ference on Computer Vision (ECCV), pages 818—
833,2014. 2,4

