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Abstract. Obstacle detection is an important and
critical module of autonomous navigation. Majority
of modern obstacle detection algorithms are based
on semantic segmentation and scene understand-
ing. Most of these methods were developed for au-
tonomous ground vehicles and their performance has
not yet been evaluated for autonomous boats. In this
paper, we (i) benchmark and analyze the most com-
mon segmentation algorithms for autonomous driv-
ing on a marine environment, (ii) propose a new,
pixel-wise annotated, maritime training set for fine-
tuning segmentation methods, (iii) conduct an in-
depth study of their performance on Modd2 dataset,
pinpoint their drawbacks along with their qualities
and (iv) compare the results of classical segmen-
tation metrics against obstacle detection metric in
terms of USV safety.

1. Introduction

Small-sized unmanned surface vehicles (USVs)
are an affordable tool for navigating in shallow wa-
ters and narrow marinas. They are mainly used
for coastal environmental patrol and remote inspec-
tion of difficult-to-reach man-made structures. These
tasks require a high level of autonomy which pri-
marily depends on timely detection and avoidance
of nearby obstacles and floating debris. Lightweight
and information-rich sensors, such as cameras, com-
bined with computer vision algorithms are gaining
prominence as leading obstacle detection mecha-
nisms.

Obstacles can be detected by various image-
processing approaches, for instance background sub-
traction [33], foreground extraction [12], 3-D recon-

Figure 1 Sample image and its ground truth segmen-
tation. Sky, obstacles and water are represented with
deep blue, yellow and cyan color respectively.

struction [34], semantic segmentation [17, 6, 7, 5]
etc. Recently, the use of deep learning has con-
tributed significantly to the striking progress in the
field of semantic segmentation. The main goal of se-
mantic segmentation methods is to perform a pixel-
wise classification of the image, that provides neces-
sary information for scene understanding. Scene un-
derstanding is a crucial part for a successful and safe
autonomous navigation. Many methods [4, 3, 20, 24,
21], developed for navigation of autonomous ground
vehicles, rely on semantic segmentation algorithms
to detect obstacles in a scene. Siam et al. [32] have
done an in-depth comparison of such semantic seg-
mentation methods for autonomous driving and pro-
posed a real-time segmentation benchmarking frame-
work. However, in marine environment different as-
sumptions hold and different segmentation tasks pose
a challenge. For instance, the appearance of water
varies significantly due to waves and weather con-
ditions. Moreover, submerged and small obstacles
might also present a significant threat to the USV.

In this paper we benchmark three commonly used
state-of-the-art deep learning semantic segmentation
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methods (U-Net [31], PSP-Net [37] and DeepLab-
v2 [8]) on a marine environment. We evaluate
each method based on traditional segmentation met-
rics and compare the results against metrics used in
a marine Multi-modal obstacle detection dataset 2
(Modd2) [7]. The Modd2 is currently one of the
largest publicly-available datasets. It consists of a
challenging sequences where the sky and the wa-
ter component are not always distinguishable due to
the unfavouring weather conditions. To accurately
train selected deep learning segmentation methods,
we provide 280 representative images of a marine en-
vironment with pixel-wise ground truth annotations.

2. Related work

Obstacle detection for unmanned surface vehicles
is still a relatively young research area. A com-
mon practice for obstacle detection in marine envi-
ronment is the use of range sensors - for instance
radar [2, 25], sonar [15] etc. Range sensors have
difficulties discriminating between water and land in
the far field [11] and suffer from scanning rate lim-
itations. Moreover radar also has problems detect-
ing small, non-metallic obstacles. Larson et al. [18]
presented advances in obstacle avoidance for USVs
and pointed out the use of camera as an affordable
and information rich alternative. Prasad et al. [27]
have done an extensive survey of various background
subtraction methods and evaluated their performance
on Singapore Marine Dataset (SMD) [28] as obstacle
detection mechanisms. Analysis shows that spurious
dynamics of water and wakes are a leading cause of
multiple false detections.

Estimating the water-edge in an image can signif-
icantly limit the region of interest (ROI) where ob-
stacles occur. Wang et al. [35] combine saliency de-
tection and motion estimation to search for obstacles
below the estimated water edge. Their assumption
of a sharp boundary between water and sky when
estimating the water edge is in practice often vio-
lated. In [34], Wang et al. introduced the use of a
stereo camera system to perform 3-D reconstruction
of the scene, which enables them to detect obstacles
above the water surface. However, only obstacles
that significantly protrude through the water can be
detected. Another problem arises in the state of a
calm sea, where water lacks a texture, thus leading to
a degraded 3-D reconstruction of the scene and con-
sequently inaccurate water surface estimation. Al-
ternatively Kristan et al. [17] proposed a graphical

model (SSM) for monocular obstacle detection via
semantic segmentation. The algorithm generates a
water-segmentation mask and treats all blobs inside
the water region as obstacles. SSM successfully de-
tects both obstacles protruding through the surface
and the floating ones, it does not assume a straight
water edge and runs in real-time. Nevertheless, it still
fails in the presence of visual ambiguities. For exam-
ple, when the boat faces open water and the horizon
is obscured by haze.

The line separating the water and sky component
might not be clear due to the unfavouring weather
conditions like haze. Bovcon et al. [6] addressed
this issue by introducing measurements from the on-
board IMU into the segmentation model. The IMU
measurements are used to project the horizon into
camera view and automatically adjust the priors and
hyper-priors of the segmentation model. Their algo-
rithm can correctly estimate the horizon even when
obscured. In their recent work [5] the problem of nu-
merous false positive detections has been addressed
by a joint stereo image segmentation, where cor-
responding pixels in the left and right image are
assigned to the same semantic region which con-
sequently improves obstacle detection through en-
forced segmentation consistency. Paccaud et al. [26]
focus on a lake-deployed USVs, where surrounding
land is visible most of the time and the water surface
is predominantly calm and without distinct waves.
Similar to [6] they use IMU sensor to project the
horizon line to the image and define the ROI in which
they search for the water edge with RANSAC. On the
obtained water component area they use Sobel oper-
ator along x- and y-axis in combination with thresh-
old to find blobs representing obstacles. Detected
blobs are tracked within consecutive frames to iden-
tify false detections caused by glint and reflections.
Method assumes that obstacles have sharp edges and
is thus unable to detect partially submerged obsta-
cles. Jeong et al. [16] use a scene parsing network
(PSPNet [37] pre-trained on ADE20k dataset) to per-
form general segmentation of the image. The horizon
approximation is obtained by searching for maximal
vertical location corresponding to the sea component
in each column of the segmentation mask. Location
of the horizon is refined by iteratively applying least-
squares regression on its points. The method was
evaluated on SMD [28] where it achieved promising
results. However, the SMD does not contain images
with intense fog, where line between sea and sky is
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not visible. Lee et al. [19] proposed using deep learn-
ing network to detect and classify ships. They use
a general Faster R-CNN [30], in combination with
Bayesian framework to detect ships. Method is able
to detect and classify seven different types of ships
and cannot be used to distinguish arbitrary obstacles
in the water without providing a large amount of ad-
ditional training data.

3. Semantic Segmentation CNNs

In this section we present three commonly used
neural network architectures for semantic segmenta-
tion. In Section 3.1 we outline the architecture of the
U-Net [31], in Section 3.2 we mark out scene pars-
ing network PSP-Net [37], while in Section 3.3 we
describe the model of the DeepLab-v2 [8].

3.1. U-Net [31]

The U-Net, proposed by Ronneberger et al. [31],
was initially designed for bio-medical image seg-
mentation. Since then, it was used for various seg-
mentation purposes ranging from segmentation of ur-
ban planning maps [13] to the road detection through
segmentation [22, 36]. Its architecture, shown in Fig-
ure 2 top, incorporates an encoder which captures
context and a symmetric decoder that provides pre-
cise localization. The encoder part consists of a re-
peated application of convolutions and a max pool-
ing operation which halves the feature map size. Af-
ter each down-sampling, the number of feature chan-
nels is doubled. In contrast, the decoder part of the
network is comprised of an up-sampling of the fea-
ture map size, followed by a convolution that halves
the number of feature channels. A skip connection,
in form of a concatenation which combines the in-
formation from a corresponding layer in the encoder
part, is followed by two convolutions. Each convo-
lution in the network is followed by a rectified linear
unit (ReLU). With a proper data augmentation, the
network can be trained end-to-end and pixel-to-pixel
on a set of very few images and still produce good
results [31].

3.2. PSP-Net [37]

Zhao et al. [37] designed a state-of-the-art scene
parsing network PSP-Net. Its architecture is visu-
alized in Figure 2 middle. They use a pre-trained
ResNet-50 [14] backbone with a dilated network
strategy to extract features from the input image. The
extracted feature map is then fed to pyramid pooling

module, where features are fused under four different
pyramid scales. After each pyramid level, a convo-
lution is applied to reduce the dimension of context
representation and maintain the weight of a global
feature. Low dimension feature maps are up-sampled
to the size of the original feature map via bi-linear in-
terpolation and concatenated with the initial feature
map. Concatenation is sent through a convolution to
generate the final prediction map, which is further
up-sampled to the original resolution.

3.3. DeepLab-v2 [8]

Chen et al. [8] proposed a segmentation model
that uses ResNet-101 [14] backbone with atrous con-
volutions to extract features from the input image.
Atrous convolutions enable them to explicitly control
the resolution at which feature responses are com-
puted and to enlarge the field-of-view (FOV) of fil-
ters. The main benefit of a larger FOV is obtaining a
preponderant context without increasing the number
of parameters. Passing multiple rescaled versions of
the original image to parallel CNN branches allows
them to perform a multi-scale semantic segmenta-
tion. The responses are combined with a fully con-
nected Conditional Random Field (CRF) which im-
proves the localization of object boundaries. Tuning
of the CRF is done separately as a post-processing
step. The architecture of DeepLab-v2 is shown
in Figure 2 bottom.

4. Experimental setup

The dataset and evaluation protocol are described
in Section 4.1 while implementation details of evalu-
ated methods are given in Section 4.2.

4.1. The dataset and evaluation protocol

The performance of segmentation methods was
analyzed on Modd2 [7], which consists of 11675
stereo images captured by a small-sized USV in the
coastal waters of Marina Koper, Slovenia. The on-
board cameras can accurately estimate the depth up
to 185m and their frame-rate is limited to 10 frames
per second. Obstacles and water-edge in the dataset
were manually annotated with bounding boxes and
a polygon respectively. The segmentation CNNs
from Section 3 require sufficient training data to
produce satisfactory results. We have captured and
handpicked 280 images under different weather con-
ditions from Marina Koper using the acquisition sys-
tem of [7]. These images were pixel-wise annotated
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Figure 2 Architecture illustration of tested CNNs.
Black arrows represent 2-D convolutions, red arrows
denote max pooling, while unpooling is marked with
green arrows. The blue box corresponds to a multi-
channel feature map, beneath which a number of fea-
ture channels is written. The gray box represents a
copied feature map.

for three classes (water, sky and environment) by hu-
man annotators (see Figure 1). The annotated im-
ages were further color augmented to increase diver-
sity of the training set and replicate weather condi-
tions from Modd2. For color augmentation we have
handpicked seven descriptive images from Modd2

Figure 3 Sample image from the train set (top left)
surrounded by its color augmentation variations.

which were used as target images in the color transfer
method [29] proposed by Reinhard et al. With data
augmentation we have generated 1960 new training
samples with accurate ground truth annotations. Fig-
ure 3 shows a sample image from the train set and
its color augmentations. Timely and accurate obsta-
cle detection is of central importance for autonomous
navigation, so we rescaled images from Modd2 on
two different resolutions - low (512× 288) and high
(896×512) to test the detection accuracy against pro-
cessing speed.

For image segmentation evaluation purposes we
have used metrics inspired by Long et al. [23]. These
metrics are mean pixel accuracy

(∑
i nii∑
i ti

)
, mean IOU

(
1
ncl

∑
i

nii
ti+

∑
j nji−nii

)
and frequency weighted

IOU
(
(
∑

k tk)
−1∑

i
tinii

ti+
∑

j nji−nii

)
, where ncl de-

notes the number of classes in the ground truth, nji
represents the number of pixels of the class j pre-
dicted to belong to the class i, while ti stands for the
total number of pixels of class i in the ground truth
segmentation. Segmentation metrics do not provide
information on how many obstacles were detected,
neither how accurately the sea-edge was approxi-
mated. For this task, the evaluation protocol of [7]
was used. It measures the accuracy of the pixel-wise
water-edge estimation by mean-squared error over all
sequences, while the accuracy of obstacle detection
is measured by the number of true positives (TP),
false positives (FP), false negatives (FN) and by the
overall F-measure, i.e., a harmonic mean of precision
and recall.

4.2. Implementation details

A softmax-cross-entropy loss function and a
stochastic gradient descent (SGD) optimization were
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used to train the segmentation networks. The initial
learning rate was set to a low value of 0.009 and a
weight decay factor of 0.7 was applied after every
5th epoch.

In our implementation of U-Net (Section 3.1) we
have employed batch-normalization after each con-
volution and before ReLU activation to speed-up the
training process. In the PSP-Net (Section 3.2) im-
plementation we have initialized ResNet-50 weights,
which were pre-trained on the ADE20k [38, 39]
dataset, while in the DeepLab-v2 (Section 3.3) im-
plementation we have restored ResNet-101 weights,
which were pre-trained on the ImageNet [10] dataset.
Additionally, we have modified the number of output
channels in the last layer of both DeepLab-v2 and
PSP-Net according to our dataset. The fine-tuning
process was carried out for 60 epochs. A single-
scale version of DeepLab-v2 (Section 3.3) is denoted
as DeepLab-v2S, while its multi-scale counterpart is
denoted as DeepLab-v2M.

The semantic segmentation methods were imple-
mented in Python and use Tensorflow [1] back-end.
All experiments were run on a desktop computer
with Intel Core i7-7700 3.6GHz CPU and nVidia
GTX1080 Ti GPU.

5. Experimental results

We begin our analysis with Section 5.1 where we
analyze semantic segmentation results, in Section 5.2
we interpret obstacle detection results, while Sec-
tion 5.3 serves for qualitative comparison. Results
of methods from Section 3 were compared against a
baseline method ISSM [7]. The speed of the tested
methods is analyzed in Section 5.4.

5.1. Semantic segmentation results

The semantic segmentation results are summa-
rized in Table 1. On low-resolution images DeepLab-
v2S achieves the highest accuracy, followed by
DeepLab-v2M, PSP-Net and U-Net in the order
given. The differences in results between DeepLab-
v2S and DeepLab-v2M are 0.11%, 0.14% and 0.10%
for the mean pixel accuracy, the mean IOU and the
frequency weighted IOU, respectively.

On high-resolution images, DeepLab-v2M
achieves the highest accuracy based on the mean
pixel accuracy and the frequency weighted IOU,
followed by DeepLab-v2S, PSP-Net and U-Net. The
differences in results between the top two methods
are 0.09% and 0.10% for the mean pixel accuracy

Resolution 512× 288

Mean Pixel Accuracy Mean IOU Frequency Weighted IOU

U-Net [31] 93.12 88.82 86.27
PSPNet [37] 96.32 93.33 93.02
DeepLab-v2S [8] 98.07 96.18 95.93
DeepLab-v2M [9] 97.96 96.04 95.83

Resolution 896× 512

Mean Pixel Accuracy Mean IOU Frequency Weighted IOU

U-Net [31] 90.91 85.59 82.30
PSPNet [37] 94.69 90.42 89.98
DeepLab-v2S [8] 96.91 94.26 93.56
DeepLab-v2M [9] 97.00 94.15 93.66

Table 1 Semantic segmentation results with tra-
ditional metrics - mean pixel accuracy, mean
intersection-over-union and frequency weighted
intersection-over-union. All reported results are in
percentages.

and the frequency weighted IOU, respectively.
Based on the mean IOU metric, DeepLab-v2S
outperforms DeepLab-v2M by 0.11%.

Additional smaller input images of DeepLab-
v2M only detriment its performance compared to
DeepLab-v2S, because bouys and other tiny obsta-
cles disappear in the process of re-scalling. This
is substantiated by a lower number of detections
(shown in Table 2).

U-Net is very sensitive to reflections and sun-
glitter in water, which causes a lot of false positive
detections (Table 2), subsequently leading to a low
segmentation accuracy. Based solely on given seg-
mentation metrics and their results we cannot fully
determine which method detects more obstacles and
how well it approximates navigable surface.

5.2. Obstacle detection results

Table 2 summarizes results based on metrics used
in [7]. On low-resolution images DeepLab-v2S ap-
proximates the water-edge the most accurately, fal-
lowed by DeepLab-v2M, PSP-Net, ISSM and U-
Net. DeepLab-v2S outperforms its multi-scale coun-
terpart DeepLab-v2M by 3.6% on the water-edge
estimation task. The highest F-measure score is
achieved by PSP-Net, followed by DeepLab-v2S,
ISSM, DeepLab-v2M and U-Net. PSP-Net outper-
forms second-best DeepLab-v2M by 14.1% on the
obstacle detection task.

On high-resolution images DeepLab-v2M approx-
imates the water-edge the most accurately, fol-
lowed by DeepLab-v2S, ISSM, PSP-Net and U-
Net in the order given. DeepLab-v2M outperforms
its single-scale counterpart DeepLab-v2S by 2.2%
on the water-edge estimation task. It also obtains
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Baseline

µedg TP FP FN F-measure

ISSM [5] 0.056 (0.066) 538 1641 144 0.376

Resolution 512× 288

µedg TP FP FN F-measure

U-Net [31] 0.098 (0.090) 296 2329 383 0.179
PSP-Net [37] 0.050 (0.063) 322 203 357 0.535
DeepLab-v2S [8] 0.027 (0.035) 245 121 434 0.469
DeepLab-v2M [8] 0.028 (0.041) 121 25 558 0.293

Resolution 896× 512

µedg TP FP FN F-measure

U-Net [31] 0.128 (0.115) 153 4686 526 0.055
PSPNet [37] 0.073 (0.101) 318 94 361 0.583
DeepLab-v2S [8] 0.045 (0.065) 388 447 291 0.513
DeepLab-v2M [8] 0.044 (0.058) 361 117 318 0.624

Table 2 Modd2 [7] reports water-edge estimation er-
ror µedg and its standard deviation, the number of
true positive (TP), false positive (FP), false negative
(FN) detections and the F-measure.

the highest F-measure score, followed by PSP-Net,
DeepLab-v2S, ISSM and U-Net. DeepLab-v2M out-
performs PSP-Net by approximately 7% on the task
of obstacle detection.

In general DeepLab-v2 variations approximate
the water-edge most accurately. The difference
in the number of detections between DeepLab-v2S
and DeepLab-v2M is significant, especially on low-
resolution images, where multiple re-scalled inputs
of DeepLab-v2M suppress small obstacles. This
causes a reduction of true positive as well as false
positive detections. The difference in the water-edge
approximation is less significant, because the water
edge does not disappear in the process of re-scaling.
PSP-Net is able to detect a lot of true positives, yet
it has problems with over- and under-estimating the
water edge when overlooking the open sea. Simi-
larily to U-Net, the ISSM method is also sensitive
to sun-glitter and reflections, causing a considerable
amount of false positive detections and poor water-
edge approximation compared to DeepLab-v2, re-
gardless of having an additional IMU sensor. ISSM
detects significantly more true positives than any
method from Section 3, but its high number of false
positive detections deteriorates its overall F-measure
score.

5.3. Qualitative comparison

In this section we present a qualitative compari-
son of methods from Section 3. We limit ourselves

to the input resolution of 512×288, where the differ-
ence between single-scale and multi-scale version of
DeepLab-v2 is most prominent. Figure 4 depicts seg-
mentation performance in various challenging sce-
narios.

The first row in Figure 4 shows a problem of
a small obstacle detection. DeepLab-v2S detects
a smaller buoy, while its multi-scale version sup-
pressed the detection. The water-edge is also bet-
ter estimated in a single-scale version. The water-
edge estimation of U-Net is severely over-estimated,
however its sensitivity allows it to correctly detect the
buoy. PSP-Net is unable to detect obstacles (boat and
buoy) in the scene and it drastically under-estimates
the water-edge. ISSM correctly detects all obsta-
cles in the scene. These observations are reflected
in quantitative results (Table 1,Table 2) as well.

The second row in Figure 4 portraits the difficulty
of water segmentation in presence of significant sun-
glitter. As stated in Section 5.1, U-Net and ISSM are
sensitive to sun-glitter. This causes a lot of false posi-
tive detections and poor water-edge estimation. Most
of the falsely classified patches are relatively large,
which has a negative effect on a segmentation accu-
racy presented in Table 1. In general, PSP-Net and
DeepLab-v2 do not have problems with sun-glitter
which is reflected in segmentation (Table 1) and ob-
stacle detection (Table 2) results.

The third row in Figure 4 depicts a challenge of
detecting an obstacle (i.e., a green buoy) whose color
resembles the surrounding water. U-Net detects only
a top part of the obstacle, however the bottom is the
more important part for safe navigation. It also dras-
tically over-estimates the water edge, which has a
significant negative impact on the segmentation ac-
curacy. The obstacle in a scene is big enough to not
get suppressed in a multi-scale version of DeepLab-
v2. Moreover, the various scales of DeepLab-v2M
allow it to refine the outline of an obstacle more
precisely. PSP-Net does not detect obstacle at all
and its water-edge approximation is severely over-
estimated. ISSM approximates the water-edge the
most precisely. It detects obstacle as a whole plus
a part of its reflection in the water.

The last row in Figure 4 shows a scene in a har-
bour with water droplets on a camera lens. The water
droplets were correctly ignored by all methods. They
have also correctly estimated the water-edge, how-
ever none of the CNN methods was able to detect a
pole in close proximity, which is a critically danger-
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ous misclassification. On the other hand, ISSM is
able to correctly detect the pole, but its water-edge
estimation is affected by sun-glitter.

5.4. Speed analysis

The processing speed of methods, described
in Section 3, is presented in Table 3. On low-
resolution images U-Net is the fastest, followed by
DeepLab-v2S, PSP-Net and DeepLab-v2M. Simi-
larly, U-Net is also the fastest on high-resolution
images, followed by PSP-Net, DeepLab-v2S and
DeepLab-v2M.

U-Net is the fastest method due to its low-
complexity architecture and fewer parameters com-
pared to those of PSP-Net and DeepLab-v2. Both
PSP-Net and DeepLab-v2 use ResNet backend archi-
tecture, however PSP-Net uses ResNet-50 architec-
ture, while DeepLab-v2 uses ResNet-101 architec-
ture. Besides this DeepLab-v2 also has a fully con-
volutional CRF layer, which explains the slower per-
formance. Despite the segmentation of multi-scale
images in DeepLab-v2M is done parallel, we wit-
ness a slow-down of approximately 50% compared
to DeepLab-v2S. The ISSM method is the fastest,
however its performance was measured on images of
size 100× 100.

The on-board cameras from Modd2 [7] are lim-
ited to 10 frames-per-second, meaning that all of the
methods from Section 3 would be capable of running
in real-time when inputted with low-resolution im-
ages. However, only U-Net and PSP-Net would be
able to run at real-time when using high-resolution
images.

6. Conclusion

In this paper, we benchmarked three popular se-
mantic segmentation methods on a marine environ-
ment and prepared an in-depth analysis of their per-
formances. As expected, the results showed that
complex networks are able to estimate the water-edge
more accurately. DeepLab-v2 produced the most
promising results for the task of water-edge estima-
tion as well as for the obstacle detection task. This
could be due to deeper backbone model (ResNet-
101) compared to PSP-Net (ResNet-50). U-Net per-
formed the worst, which could be a consequence of
training it from scratch.

On the task of water-edge approximation CNN
methods, described in Section 3, mostly over-
estimate the water-edge location. In contrast, non-

Baseline

tseg [ms] ω [fps]

ISSM [7] 33.8 29.6

Resolution 512× 288

tseg [ms] ω [fps]

U-Net [31] 37.6 26.6
PSPNet [37] 57.9 17.3
DeepLab-v2S [8] 48.5 20.6
DeepLab-v2M [8] 98.6 10.1

Resolution 896× 512

tseg [ms] ω [fps]

U-Net [31] 93.2 10.7
PSPNet [37] 98.1 10.2
DeepLab-v2S [8] 114.8 8.7
DeepLab-v2M [8] 218.7 4.6

Table 3 Times required for single image segmen-
tation, measured in milliseconds, is denoted with
tseg, while the corresponding frame-rate, measured
in frames-per-second (fps), is denoted as ω.

CNN ISSM does not over-estimate the water-edge
location due to embedded IMU sensor, which serves
for horizon calculation and segmentation restriction.
Nevertheless, due to its sensitivity to sun-glitter, it
under-estimates the water-edge location in special
cases. This reduces the potential navigable surface,
but it does not cause dangerous instances. On the task
of obstacle detection, certain obstacles, which visual
appearance is similar to water, remain undetected in
all compared methods. Detection of buoys far away
also proved to be difficult, but such misclassification
do not pose an immediate danger to USVs. False
positive detections are mainly caused by reflections
and prominent sun-glitter.

When processing low-resolution images, all meth-
ods are capable of running in real-time. However,
low-resolution images also produce low F-measure
scores. When processing high-resolution images,
presented CNN methods achieve higher F-measure
scores due to mostly larger number of true posi-
tive detections. DeepLab-v2 cannot run in real-time
when processing high-resolution images, while other
methods are on the verge of running in real-time.

In our future work, we plan a deeper analysis of
tested methods, accompanied by additional state-of-
the-art segmentation methods. For a fair compar-
ison we plan on re-train all methods on the same
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Input image U-Net DeepLab-v2MPSP-Net DeepLab-v2S

Resolution 512 x 288

ISSM

100 x 100

Figure 4 Qualitative comparison of methods for resolution 512×288. The sky, obstacles and water components
are denoted with deep-blue, yellow and cyan color, respectively. The ground truth sea edge is annotated with
a pink line, while ground truth obstacles are outlined with a dotted bounding box. False positives are marked
with a red bounding box, whereas correctly detected obstacles are marked with a green bounding box.

dataset and use a significantly larger training set for
fine-tunning. We will explore a new evaluation met-
rics, specifically designed for a marine environment,
which takes into account the size of obstacles and
their distances from the USV. We also plan to exper-
iment with optimization of the segmentation process
and embedding different sensor modalities into deep-

learning segmentation algorithms.
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