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Abstract—CPS, that consist of a cyber part – a computing system
– and a physical part – the system in the physical environment – as
well as the respective interfaces between those parts, are omnipresent
in our daily lives. The application in the physical environment drives
the overall requirements that must be respected when designing the
computing system. Here, reliability is a core aspect where some of the
most pressing design challenges are:
• monitoring failures throughout the computing system,
• determining the impact of failures on the application constraints,

and
• ensuring correctness of the computing system with respect to

application-driven requirements rooted in the physical environment.
This paper provides an overview of techniques discussed in the special
session to tackle these challenges throughout the stack of layers of the
computing system while tightly coupling the design methodology to the
physical requirements.

I. INTRODUCTION

Cyber-physical systems (CPS) [1] are smart systems that integrate
computing and communication capabilities with the monitoring and
control of entities in the physical world reliably, safely, securely,
efficiently, and in real-time. These systems involve a high degree of
complexity on numerous scales and demand for methods to guarantee
correct and reliable operation. Existing CPS modeling frameworks
address several design aspects such as control, security, verification
or validation, but do not deal with reliability or automated debug
aspects.

Techniques presented in this overview paper for the related special
session are developed in the EU Horizon 2020 project IMMORTAL1.
These techniques target reliability of CPS throughout several ab-
straction layers during design and operation, considering fault effects
from different error sources ranging from design bugs via wear-outs
and soft errors towards environmental uncertainties and measurement
errors.

We consider CPS at four layers of abstraction shown in Figure 1.
The analogue/mixed-signal layer models the components, especially
sensors and actuators, using Matlab/Simulink or VHDL-AMS. In
this layer we focus on the aging behavior of the design. Thermal
and electrical stress can degenerate sensor quality, actuator quality,
or reduce the overall performance characteristics of the design. In
Section II we present a health monitoring approach, to warn the
system early if functional parts of the system degenerate to such
an extent that reliable operation can no longer be ensured and, e.g.,
redundant components must be activated.

At the digital hardware layer the CPS is either described at the
Register Transfer (RT)-level, e.g., in a synthesizable subset of VHDL
or Verilog, or as gate-level netlists. At this layer the analog signals

1Integrated Modelling, Fault Management, Verification and Reliable Design
Environment for Cyber-Physical Systems, http://www.h2020-immortal.eu

Figure 1. The stack of layers of a CPS.

of the analogue/mixed-signal layer are abstracted to binary values.
During operation of the CPS, even correctly designed systems may
behave incorrectly, e.g., radiation may change values in latches or
change the signal level in wires. Such effects are called soft errors
and appear as bit-flips at the digital hardware layer. Error detection
codes, e.g., parity bits, or Error Correction Codes (ECC), e.g.,
Hamming codes, are used to mitigate soft errors. In Section III we
present approaches to automatically detect storage-elements that are
not protected by error detection or error correction codes or prove
that storage-elements are protected. Moreover, Section IV provides
advanced online-checker technology beyond traditional ECC schemes
achieving full fault coverage.

At the architectural layer, we consider the CPS as a set of
computational units with different capabilities, a communication
network between those computational units, and a set of tasks, that
are described at a high level of abstraction, which should be executed
on the CPS. Section V proposes an infrastructure for reading out
the information about occurrences of faults in the lower layers and
accumulating this information for preventing errors resulting from
those faults. Section VI explains how to use this infrastructure to
(re)allocate and (re)schedule resources and tasks of the CPS if a
computational unit can no longer provide reliable operation. As a
result the CPS is enabled for fault tolerant operation.

The behavioral layer considers the functional behavior and tasks
of the CPS. The elements at this layer are modelled as behavioral
descriptions of the system’s functionality and can be either realized
in software or hardware. In Section VII we consider the generation
of test strategies from a system’s specification given as temporal
logic formulæ. Here, we focus on specifications which are agnos-
tic of implementations and allow freedom for the implementation.
Therefore the generated test cases must be able to adept to different
implementations. In Section VIII we present an approach to auto-



matically synthesize parameters for behavioral descriptions of a CPS.
The parameter synthesis approach can be used to assist a designer
in finding suitable values for important design parameters such that
given requirements are meet, eliminating the need for manual error
prone decisions.

II. HEALTH MONITORING AT THE ANALOG/MIXED SIGNAL

LAYER

CPSs have to cope with analog input and provide analog output
signals in the physical world, and be able to carry out computational
tasks in the digital world. Practice has shown that major problems
in terms of failures occur in the analog/mixed-signal part, which
includes (on-chip) sensors and actuators. In contrast to the digital
world, the (parametric) faults in the analog/mixed-signal parts of a
CPS are much more complex to detect and repair.

In the case of wear-out, e.g., resulting from Negative-Bias Tem-
perature Instability (NBTI) [2], it has been shown that analog
stress signals cause different wear-out results as compared to digital
ones, leading to more sophisticated NBTI models. The NBTI aging
mechanism usually results in increased delay times (lower clock
frequencies) in pure digital systems [3] while in analog/mixed-signal
systems several key system-performance parameters will change, like
for instance the offset voltage in OpAmps and data converters [4].
Experiments have also shown that drift of sensors [5] and actuators
are often key parameters to cause faulty behaviour in a CPS as a
result of aging.

Stress voltages, stress temperatures and duration of them (mission
profile) are the principal factors of wear-out. Hence, in the case
of a real CPS, these stress parameters must be measured during
life-time and subsequently handled as mission profiles cannot be
predicted accurately in advance. A combination of environmental
Health Monitors (HMs) [6] and key performance parameters [4],
nowadays implemented as embedded instruments, are required for
this purpose. Temperature, voltage and current health monitors, as
well as gain, offset and delay monitors have been developed for this
purpose. It is obvious that these embedded instruments should be
extremely robust against aging and variability. In order to obtain
highly dependable CPS, which includes reliability, availability and
maintainability [7], more than just health monitors and embedded
instruments are required. It also includes software and computational
capabilities to extract the correct information from the HMs, and cal-
culate the remaining lifetime of Intellectual Property (IP) components
being part of a CPS from that [3]. Useful HMs for the digital cores
have shown here to be IDDQ and IDDT embedded instruments as
well as delay monitors.

For digital systems, like multi-core processor System-on-
Chips (SoCs) this platform is already well on the way. To know
the remaining life-time is essential in dependable CPS, as many
applications are safety-critical and hence do not allow any down-time
to ensure high availability. Existing digital systems have already been
shown to be capable to react after a failure has occurred, mainly by
the use of pseudo on-line Build-In Self Test (BIST) of processor cores.
In addition, the (on-chip) repair in the case of multi-core processor
SoCs has been successfully accomplished by shutting down the faulty
core and replace it by a spare processor core, or increase the workload
of a partly-idle processor core.

In the case of the analog/mixed-signal part of a CPS-on-Chip (CP-
SoC), the situation is much more difficult. Phenomena like NBTI
aging result in this case in changing key system parameters of IPs
(OpAmps, filters, ADCs, and DACs), like offset, gain and changing
frequency behaviour. Using our new analogue/mixed-signal NBTI

Figure 2. Simulation of a redundant and digital IP tuning platform for highly
dependable mixed-signal CPS system for four different degradation scenarios.

model in our local designs of 65nm and 40nm TSMC OpAmps and
SAR-ADCs, higher-level system key parameters were derived which
were used subsequently in a Matlab environment. Figure 2 shows
four possible degradation scenarios, as well as the application of
our two-stage repair approach. First, key parameters are monitored
and digitally tuned if changing; when the maximum tuning range is
accomplished, a bypass and spare IP counter action is carried out.

One can see from the figure that the CPSoC remains within its
green boundaries (of parameter P ) of correct operation. The figure
also shows that the different degradation mechanisms trigger tuning
and replace counter measures at different times. The dependability
improves by several factors at the cost of more sophisticated health
monitors, software and embedded computational resources, all trans-
lating into more silicon area.

III. COMPREHENSIVE AND SCALABLE RT-LEVEL RELIABILITY

ANALYSIS

The dependability of CPSs crucially depends on the reliability and
availability of their digital hardware components. Even if all digital
hardware components are free of design bugs, they may still fail at
runtime due to, e.g., environmental influences such as radiation or
aging and wear-out effects that result in occasional misbehavior of
individual hardware components. In the following we subsume such
transient errors under the term soft error [8].

A common approach to achieve resiliency against soft errors adds
circuitry to automatically detect or even correct such errors [9]. This
can be achieved by including redundancy, e.g., in the form of parity
bits or more sophisticated error detection or correction codes [8].
Soft error reporting in the RT level can be done, e.g., by using error
checkers. Once a soft error is reported via a checker, it is up to the
Fault Management Infrastructure (FMI) to decide how to react to this
transient fault.

The ability to understand the reliability of a given hardware
component in a CPS thus becomes a key aspect during the design
phase of those components. In order to cope with the ever shrinking
design cycles it is highly desired that this analysis is performed in
pre-silicon. Many methods for pre-silicon resiliency analysis have
been proposed. Those methods can be roughly classified into two
categories: simulation-based methods, e.g., [10], [11], [12], [13],
and formal methods, e.g., [14], [15], [16]. At the heart of the
simulation-based methods lies the concept of error injection. In this
approach the design is simulated and verified whether it is robust
enough in the presence of transient faults injected deliberately during
simulation. This approach is workload-dependent and achieves low
state and fault coverage due to the enormous state space size. In
an attempt to alleviate the coverage issues of the simulation-based



approach formal methods have been suggested. A common practice
in this approach is to perform formal verification using a fault model
which models single event upsets. Being applied monolithically this
approach suffers from capacity limits inherent to formal verification
methods which makes it impractical in many real-life industrial cases.

Many hardware mechanisms used for soft error protection are
local in nature. For example, parity-based protection, Error Correction
Code (ECC) logic and residue checking mechanisms are all examples
of design techniques aimed at protecting relatively small parts in the
design, referred to as protected structures. An error detection signal is
a Boolean expression that is True when an error occurred. A protected
structure consists of an error checker fed by error detection signals,
of protected sequential elements and of various gating conditions
on the way to the checker. Gating conditions are required in high
performance designs to turn off reliability checks when certain parts
of the logic are not used.

We take advantage of the locality of the protected structures and
propose a novel approach for reliability analysis and verification, a
basic version of which presented in [17]. We separate the reliability
verification process to an analysis stage and a verification stage. In
the analysis stage the local protection structures are identified and
in the verification stage it is verified that the protection structures
work properly. There are aspects of the verification that can be
proved with formal verification, e.g., it can be proved formally that
a certain latch is protected by a certain checker under certain gating
conditions [17]. Since each protection is local in nature, applying
formal techniques is scalable. Other aspects could require dynamic
simulation; for example, proving that the gating conditions are not
over gating the protected structure. In the following we provide an
overview of our new approach, and give a glimpse as to the technical
“how”.

A. Analysis stage

The analysis stage identifies the protected structures and is divided
into two sub-stages. The error detecting signals identification stage
and the structural analysis stage.

Error detecting signals identification. In this stage the building
blocks of the error detection and correction logic are identified. To
this end, we use the error checkers as anchors and employ formal
and dynamic methods to accurately and efficiently identify various
error detection logic constructs. An example for parity checking
identification is described in [17]. Other checking logic that can be
identified accurately and locally in this stage is, e.g., residue and
one-hot checking logic. Error correction code, however, need not be
connected to error checkers. To detect ECC computations we rely on
the fact that we are looking for linear ECC, hence a computation of
the form v = Au for vectors v, u and computations over Z/2. To
that end, we iterate over all the vectors in the design and determine
whether the bits in that vector are the roots of a XOR-computation
tree as described in [17]. After discovering an ECC-like matrix we
first purge non ECC instances (such as the case of the identify matrix,
or matrix with too many one-hot columns indicating most input bits
are used only once). We determine whether this is an ECC generation
or an ECC check by searching for a unit submatrix with dimensions
corresponding to the output size.

Structural analysis. In order to identify the protected structure of
each error detection signal, we analyze the topology of the netlist
representing the design. The objective is to identify for each error
detecting signal what is the set of sequential elements it protects,
either by reporting to an error checker or by performing ECC. The
challenge here is twofold:

Figure 3. A parity protected structure.

• Understating the boundaries of the protection, e.g., if the pro-
tection is parity-based, the parity generation logic and the parity
checking logic form the boundary of the protected latches.

• Properly identifying the corresponding gating logic.
For example, in Figure 3 the rightmost pink latch is the gating
condition of the error detecting signal - an erroneous parity check
will make the error checker fire only if the value of the latch is
1 - and this latch is not part of the protected structure. Also, the
yellow bus is located before the parity generation logic and thus is
not part of the protected structure either. In order to cope with these
challenges, the analysis is performed in word level. In the word level
it is easier to keep track of the high level picture and distinguish,
e.g., between the data and the gating than in the more common bit
level computation model. Due to lack of space, the full algorithm for
detecting the protected structure will not be provided here.

B. Verification stage

This stage is based on the analysis stage; namely, the classical
problem of reliability verification is reduced to a much easier problem
of verifying that the given protection constructs indeed protect the
latches they are supposed to protect. The verification that is required
here has two aspects (a) verifying that under the relevant gating
conditions the relevant latches are indeed protected by the relevant
error detections signals or error correction logic; (b) verifying that the
gating conditions are not overgating, and will not prevent a checker
from firing when it should, causing silent data corruption.

For the former, formal verification can be used, taking advantage
of the locality of each protection structure. In [17] we perform it for
simple parity protection. Some research is still required to expand
the approach from [17] to more protection types and more complex
parity structures. In addition, some research has to be done for finding
an efficient method to verify that the gating conditions are not over
gating. However, clearly the problem of verifying that given gating
conditions are not overgating a given protection is dramatically easier
than the classical reliability verification problem.

IV. QUALIFICATION AND MINIMIZATION OF CONCURRENT

ON-LINE CHECKERS

Besides standard approaches for fault detection we also consider
advanced error detection schemes on the digital hardware layer
for CPS. Particularly, the proposed on-line checkers enable cost-
efficient mechanisms for detecting faults during life-time of state-
of-the-art many-core systems. These mechanisms must detect errors
within resources and routers as well as enable reconfiguration of the
routing network in order to isolate the problem and provide graceful
degradation for the system.



Our approach [18], [19] exceeds the existing state-of-the-art in
concurrent online checking by proposing a tool flow for automated
evaluation and minimization of the verification checkers. We show
that starting from a realistic set of verification assertions a minimal
set of checkers are synthesized that provide 100% fault coverage
with respect to single stuck-at faults at a low area overhead and the
minimum fault detection latency of a single clock-cycle. The latter
is especially crucial for enabling rapid fault recovery in reliable real-
time systems.

An additional feature of the proposed approach is that it allows
formally proving the absence or presence of true misses over all
possible valid inputs for a checker, whereas in the case of traditional
fault injection only statistical probabilities can be calculated without
providing the user with full confidence of fault detection capabilities.
The formal proof as well as the minimal fault detection latency is
guaranteed by reasoning on a pseudo-combinational version of the
circuit and by the application of an exhaustive valid set of input
stimuli as the verification environment.

The checker qualification and minimization flow starts with synthe-
sizing the checkers from a set of combinational assertions. Thereafter,
a pseudo-combinational circuit is extracted from the circuit of the
design under checking. The pseudo-combinational circuit is derived
from the original circuit by breaking the flip-flops and converting
them to pseudo primary inputs and pseudo primary outputs. Note
that, at this point, additional checkers that also describe relations on
the pseudo primary inputs/outputs may be added to the checker suite
in order to increase the fault coverage.

Subsequently, the checker evaluation environment is created
by generating exhaustive test stimuli for the extracted pseudo-
combinational circuit. These stimuli are fed through a filtering tool
that selects only the stimuli that correspond to functionally valid
inputs of the circuit. As a result, the complete valid set of input
stimuli that serve as the environment for checker evaluation is
obtained. The obtained environment, pseudo-combinational circuit
and synthesized checkers are applied to fault-free simulation. The
simulation calculates fault-free values for all the lines within the
circuit. Additionally, if any of the checkers fires during fault-free
simulation, it means a bug in the checker or an incorrect environment.

If none of the checkers is firing in the fault-free mode, then checker
evaluation takes place. The tool injects faults to all the lines within the
circuit one-by-one and this step is repeated for each input vector. As
a result, the overall fault detection capabilities for the set of checkers,
in terms of fault coverage metrics are calculated. In addition, each
individual checker is weighted by summing up the total number of
true detections by the checker. Finally, the weighting information is
exploited in minimizing the number of checkers, eventually allowing
to outline a trade-off between fault coverage and the area overhead
due to the introduction of checker logic.

Experiments carried out on the control part (routing and arbitration)
of a Network-on-Chip (NoC) router showed on a realistic application
the feasibility and efficiency of the framework and the underlying
methodology. Experimental results showed that the approach allowed
selecting the minimal set of 5 checkers out of 31 verification
assertions with the fault coverage of 100% and area overhead of
only 35% [18], [19].

V. MANAGING FAULTS AT SOC LEVEL DURING IN-FIELD

OPERATION OF CPS

When a fault occurs during in-field operation in a complex SoC
within a CPS, which is working under the control of the software, it
is necessary that the latter becomes aware of the fault as quickly

as possible. The SoC management software, e.g., Operating Sys-
tem (OS), must then take actions to isolate and mitigate the effects
of the fault. This implies a cross-layer Fault Detection, Isolation and
Recovery (FDIR) procedure, since the faults can be detected on the
hardware layer, and recovery actions can be taken throughout the
stack of layers.

In the following we present an infrastructure and related data
structures to store information about the health status of the system.

A. Fault management infrastructure

In order to deliver the information from the instruments, store
health and statistics information and provide the required inputs to
the OS, the SoC contains the FMI which consists of both hardware
and software side (see Figure 4).
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Figure 4. Overview of the fault management infrastructure.

We propose a hierarchical in-situ FMI with low resource overhead
and high flexibility during operation. IEEE 1687 IJTAG is used
as a backbone of FMI to implement a hierarchical instrumentation
and monitoring network for efficient and flexible access to the
instruments which are attached to the monitored resources. The main
benefit of using IEEE 1687 IJTAG infrastructure for in-situ fault
management is based on considerable reuse of existing test and
debug infrastructure and instrumentation later in the field for the new
purpose of fault management. In our architecture, traditional IJTAG
is extended with asynchronous fault detection signal propagation to
significantly improve the fault detection latency.

The Fault Manager (FM) is a part of OS (kernel) which is
responsible for updating both health and resource maps. If a fault
is detected in the system, FM must start a diagnostic procedure to
find out the location of the fault as precisely as possible. This location
information must be reflected in the Health Map (HM) by setting the
fault flag for the appropriate resource and updating the fault statistics.
In case if the resource usability is affected, FM must also update the
resource map.

The Instrument Manager (IM) is a hardware module which is
responsible for the communication with the instruments through
IJTAG network. Whenever FM needs to access the instruments to
get the diagnostic information, it gives a read/write command to IM
which in turn opens the path to the instrument through the hierarchical
IJTAG network and performs the requested operation.

The HM is a data structure in a dedicated memory which holds the
detailed information about the faults and the fault statistics. The HM
is the runtime model of CPS including fault monitors and implements



a structural view of the system’s hardware resources and its important
parts identified by the static (design time) analysis. The HM augments
the information about detected faults with the statistical information
(e.g. number and frequency of occurrences). To retain the information
about the known faults in the system when the system is powered
off, the HM should be stored in a reliable non-volatile memory to
maintain the prediction capability across the power cycles.

The Resource map (RM) is a data structure in the system memory
which holds the information about the currently available (healthy)
resources of the system. It should be modified on the fly during sys-
tem’s normal operation, should a fault be detected by an instrument
or a diagnostic routine. The initial state of the RM (from factory,
with all resources operational) can be stored in ROM and serve as
a starting point for the initialization during system start-up. During
the initialization, information from the HM about the known resource
faults is transferred to the RM. The RM is used by the OS scheduler
to check which resources are available.

VI. MANY-CORE RESOURCE MANAGEMENT FOR FAULT

TOLERANCE

On the architectural layer advanced CPS will rely on heterogeneous
many-core SoCs to provide the demanded throughput computing
performance within the allowed energy budget. Heterogeneous many-
core architectures typically have many redundant and distributed
resources for processing, communication, memory, and IO. This
inherent redundancy can potentially be used to implement systems
that are fault-tolerant and degrade gradually. To realize this potential,
we combine the FMI with run-time resource management software.
First, the many-core architecture is instrumented with FMI and online
checkers and health monitors. As we have explained in the previous
sections, the online checkers and health monitors report faults and
physical degradation at the lower hardware layers through the FMI
that makes the information available for system and application
software. The proposed instrumentation can thus provide a system
wide HM showing the health and the functioning of the hardware
resources of the running system. It reports on faulty components and
also on health issues warning about fault expectancy. The former
allows reacting on and recovering from faults whereas the later allows
anticipating and reconfiguring before faults occur. Second, the health
information is lifted and abstracted to augment run-time resource
management software [20], [21] with information about hardware
resources to be used less or entirely avoided by reconfiguring the
way tasks and communications are mapped to resources.

In [22], [23] and [24] it was shown how reconfigurable multi/many-
core architectures in combination with run-time resource management
software can be used to implement fault-tolerance features. This work
depended on ad hoc detection and reporting of faults and did not
include health information about physical wear-out or accelerated
aging. Here an important next step is taken to combine resource
management with detailed health information systematically reported
by a cross layered fault management infrastructure at run-time.

The run-time resource management [20], [21] is made health-
aware. Figure 5 illustrates the resource management with integrated
HM information. Through the fault manager described in the previous
section, measurements of health monitors and checkers provide
domain-specific and/or hardware specific information. For separation
of concerns and extensibility, it is desired to hide this domain-specific
knowledge from the upper software layers. At the lower layers, the
domain-specific knowledge is required to map the sensor/checker data
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Figure 5. Health information in resource management.

(the domain) onto a fixed range of values. So, the health data stored
in the HM is modelled as a health function

health : R→ [0, 1]

that maps each hardware resource (provider) r ∈ R to a health
value v ∈ [0, 1], where R is the finite set of resources in the target
architecture. A high health value health(r) indicates that a resource
r ∈ R is functioning correctly, whereas a low health value indicates
the deterioration of the resource.

The advantages of using a health function with a range in the
real numbers, as opposed to a function with a Boolean range, is that
degradation can be modeled. The resource manager may circumvent
the use of specific resources to reduce aging and hot spots. These
resources are assumed to function correct when the health function
is still positive, and can, therefore, still be activated when the system
utilization increases.

The health function can be further extended to cover more details
about the resource providers which could help the resource manager
to choose best fitting resources for each task. As Figure 5 illustrates,
the fault manager reads the sensor/checker data out of the FMI,
and processes the measurements by mapping the outcome to the
range of the health function. Multiple sensors measuring the same
hardware component should apply sensor fusion to conform to this
HM function. In this fusion, again domain-specific knowledge is
leveraged to weight the importance and possible relation between
the sensors.

The health function is subsequently used in the selection process
of the resource management, in which two use case are identified:

1) New resource requests are handled according to the information
contained in the HM.

2) For a resource in use, if the health indicator exceeds a config-
urable threshold, the resource manager will isolate the resource
and attempt to reconfigure the applications currently using the
corresponding resource.

For use case (1), a new request for resources is made by an
application and the resource manager consults the RM to find the
most suitable resources to fulfill the request. Both the assignment of
tasks to processing elements and inter-task communication through
the interconnect are taken into account. In this process, the resource
manager uses a cost function to determine the best fit of the
(partial) application onto the available resources of the platform. The
configurable cost function takes the health map into account to define
optimization objectives such as wear levelling. The cost function is
designed to assign a hardware resource r ∈ R, which should less or



no longer be used according to the HM, increasingly high costs, such
that (

lim
health(r)→0

cost(r)
)
=∞

For use case (2) whenever the HM is updated with new measure-
ments, the new values are compared with a configurable threshold.
When the threshold is exceeded, action needs to be taken to reduce
the usage of that resource or completely stop using it. A resource may
be in used by several applications requiring one or multiple granted
resource request to be reassigned to a different resource.

In a system including the proposed FMI and fault management
approach, the FDIR procedure is facilitated by the results of the
fault classification based on different fault categories determined by
monitoring in lower layers, information from the instruments as well
as the accumulated fault statistics.

VII. DERIVING ADAPTIVE TEST STRATEGIES FROM

LTL-SPECIFICATIONS

To obtain confidence in the correctness of a CPS system at the
behavioral layer, model checking [25], [26] can prove that (a model
of) the system satisfies desired properties. However, it cannot always
be applied effectively.

This may be due to third-party IP components for which no source
code or model is available, or due to high effort for building system
models that are precise enough. Since our System Under Test (SUT)
is safety critical, we desire high confidence in its adherence to
specification ϕ. Nevertheless, even though ϕ may be simple, the
implementation of the SUT can be too complex for model checking.
Especially, if it considers further signals to synchronize with other
systems. And finally, model checking can only verify an abstracted
model and never the final and “live” system.

Testing is a natural approach to complement verification, and
automatic test case generation allows to keep the effort at reason-
able size. Deriving tests from a system specification instead of the
implementation, called black-box testing, is particularly attractive as
(1) tests can be generated way before the actual implementation work
starts, (2) these tests can be reused on various realizations of the same
specification, and (3) the specification is usually way simpler than
the actual implementation. In addtion, the specification focuses on
the most important aspects that require intesive testing. Fault-based
techniques [27], in which test cases are generated to detect certain
fault classes, are particularly interesting to detect bugs.

Various methods focusing on coverage criteria exist to generate
test sets from executable system models (e.g., finite state machines).
Methods to derive tests from declarative requirements (see, e.g., [28])
are less common, as the properties still allow implementation freedom
and, therefore, cannot be used to fully predict the system behavior
under given inputs. Thus, test cases have to be adaptive, i.e., able
to react to observed behavior at runtime. This is especially true
for reactive systems that interact with their environment. Existing
techniques often get around this by requiring a deterministic model
of the system behavior as additional input [29].

Figure 6 outlines our proposed testing setup. The user provides a
specification ϕ, expressing requirements for the system under test
in Linear Temporal Logic (LTL) [30]. The specification can be
incomplete. The user also provides a fault model, for which the
generated tests shall cause a specification violation, in form of an
LTL formula that has to be covered.

Based on hypotheses from fault-based testing [31], we argue that
tests that reveal faults as specified by our fault models are also
sensitive to more complex bugs. We assume permanent and transient
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Figure 6. Our testing setup using our approach for test strategy synthesis.

faults by distinguishing various fault occurrence frequencies and
computing tests to reveal faults for the lowest frequency for which this
is possible. Test strategies are generated using reactive synthesis [32]
with partial information [33], providing strong guarantees about all
uncertainties: If the synthesis is successful and if the computed tests
are executed long enough, then they reveal all faults satisfying the
fault model in every system that realizes the specification. Finally,
existing techniques from runtime verification [34] can be used to
construct an oracle that checks the system behavior against the
specification while tests are executed.2

If the specification is incomplete, tests may have to react to ob-
served behavior at runtime to achieve the desired goals. Such adaptive
test cases have been studied by Hierons [38] from a theoretical
perspective, however, relying on fairness (every non-deterministic
behavior is exhibited when trying often enough) or probabilities.

Testing reactive systems can be seen as a game between two
players: the tester providing inputs and trying to reveal faults, and
the SUT providing outputs and trying to hide faults, as pointed out
by Yannakakis [39]. The tester can only observe outputs and has,
therefore, partial information about the SUT. The goal for the game
is to find a strategy for the tester that wins against every SUT. The
underlying complexities are studied by Alur et al. [40]. Our work
builds upon reactive synthesis [32] (with partial information [33]).
This can also be seen as a game, however, we go beyond the
basic idea. We combine the concept of game theory with fault
models defined by the user. Nachmanson et al. [41] synthesize
game strategies as tests for non-deterministic software models. Their
approach, however, is not fault-based and focuses only on simple
reachability goals.

To mitigate scalability issues, we compute test cases directly
from the provided specification ϕ. Our goal is to generate test
strategies that enforce certain coverage objectives independent of
any freedom due to incomplete specification. Some uncertainties
about the behavior of the SUT may also be rooted in uncontrollable
environment aspects like weather conditions. For our proposed testing
approach, this makes no difference.

We follow a fault-centered approach. The user defines a class of
faults, which can be permanent or transient. Certain test goals may
not be enforceable with a static input sequence. We thus synthesize
adaptive test strategies that direct the tester based on previous
inputs and outputs and, therefore, can take advantage of situational
possibilities by exploiting previous system behavior. Our generated
test strategies reveal all instances of a user-defined fault class for
every realization of a given specification and do not rely on any
implementation details.

VIII. PARAMETER SYNTHESIS FOR CPS

Many problems in the context of computer-aided design and
verification of CPS can be reduced to deciding the satisfiability of
logic formulæ modulo background theories. In parameter synthesis,
the logic formulæ describe how the CPS evolves over time from a set

2The semantics of LTL are defined over infinite execution traces, however,
we can only run the tests for a finite amount of time. This can result in
inconclusive verdicts [34]. To overcome this problem, we refere to existing
research on interpreting LTL over finite traces [35], [36], [37].
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of initial states, where some parameters are kept open and have to be
filled such that none of a given set of bad states is ever reached. In
the context of CPS, parameter synthesis can be effectively reduced
to solving instances of ∃∀-queries over mixed domains. An ∃∀-query
asks for the existence of parameter values such that for all possible
state sequences, the CPS avoids reaching a bad state.

Solving such ∃∀-queries is especially challenging when the vari-
ables are quantified over countably infinite or uncountably infinite
domains. Different approaches for parameter synthesis for hybrid
automata, e.g., [43], [44], [45], have been proposed. The approaches
considered the problems of computing one value for the parameters
as well as all possible parameter values, but are restricted to hybrid
automata with linear and multiaffine dynamics. In [46], we presented
a Satifiability Modulo Theories (SMT)-based framework for synthe-
sizing one value for open parameters of a CPS using Counterexample-
Guided Inductive Synthesis (CEGIS) [42] and introduced the notion
of n-step inductive invariants to reason about unbounded CPS
correctness.

A. CEGIS

CEGIS is an attractive technique from software synthesis to infer
parameters in a sketch of a program leveraging the information of
a provided correctness specification. In software synthesis, CEGIS
was able to infer those parameters in many cases, where existing
techniques from quantifier elimination failed. Suppose correct :
I ′ ×K → B, (i′, k) 7→ correct(̂i′, k̂), is a correctness formula that
evaluates to true if and only if the CPS with concrete parameter
values k̂ ∈ K is correct when executed on the concrete input
sequence î′ ∈ I ′. The CEGIS approach repeats two steps to compute
parameter values k̂ ∈ K such that ∀i′ ∈ I ′ : correct(i′, k̂) holds.
The basic idea of CEGIS is to iteratively refine candidate values
for parameters based on counterexamples until a correct solution is
obtained. The CEGIS loop is depicted in Figure 7. CEGIS maintains
a database D ⊆ I ′ of concrete parameter values, which is initially
empty. The database is used to lazily approximate the domain of I ′

with a small set of values. In the first step, a candidate parameter k̂
is computed such that

∧
î′∈D correct(̂i′, k̂) holds, i.e., the parameter

values k̂ guarantee correctness of the CPS for (at least) all input
sequences stored in the database D. The candidate parameters are
then verified by checking if a counterexample î′ exists that refutes
∀i′ ∈ I : correct(i′, k̂) considering the whole domain I ′ of input
sequences. If so, the counterexample î′ is added to the database D.
Otherwise, if no counterexample exists, the approach terminates and
returns the parameters k̂. In the general case, three outcomes are
possible: parameters k̂ ∈ K can be found such that the formula
∀i′ ∈ I ′ : correct(i′, k̂) becomes true (Done), the unsatisfiability of
the formula ∃k ∈ K : ∀i′ ∈ I ′ : correct(i′, k) is proven because no
new parameters can be computed (Fail), or the CEGIS loop does not
terminate but refines the candidate values for the parameters forever.
To guarantee termination of the loop, at least one of the two involved

domains, K or I ′, has to be finite. However, even if both domains
are infinite, the approach is typically able to synthesize parameters.

B. n-Inductive invariants

To define the correctness of a CPS, an invariant-based approach is
used. By induction, a CPS is safe and correct if:

1) all initial states satisfy the invariant, i.e.,

A(q, k) =
(
init(q, k)→ inv(q, k)

)
,

2) all states that satisfy the invariant are also safe, i.e.,

B(q, k) =
(
inv(q, k)→ safe(q, k)

)
,

3) from a state that satisfies the invariant, the invariant is again
satisfied after at most n steps of the transition relation T and
all states that can be reached in the meantime are safe, i.e.,

C(q0, i1, . . . , in, k) =(
inv(q0, k)→

n∨
j=1

inv(qj , k) ∧
j−1∧
l=1

safe(ql, k)
)
,

where qj is an abbreviation for T (qj−1, ij , k) for all j > 0.
The CPS is correct if parameter values k ∈ K exist such that

∀q0 ∈ Q : ∀i1, . . . , in ∈ I :

A(q0, k) ∧B(q0, k) ∧ C(q0, i1, . . . , in, k)

holds. We define the correctness formula correct by I ′ = Q× In.

C. Heuristics

We implemented to the approach as a proof-of-concept tool based
on an SMT solver and developed three simple heuristics to improve
convergence of the CEGIS loop presented in Figure 7 applied to CPS,
where typically infinite domains are considered.

1) Counterexample randomization: To avoid the generation of too
similar counterexamples, the proof-of-concept tool attempts to
randomize every second counterexample. In an iterative loop, for
each value of the counterexample, a random value of the same
type is generated and substituted. If the adapted counterexample
still violates the correctness check, i.e., is still a counterexample,
the randomized value is kept. Otherwise, it is rejected.

2) Restart strategy: Inspired by the implementation of today’s
solvers for Boolean Satisfiability, we implemented a restart
strategy. The restart strategy serves a simple heuristic to aid
the SMT solver to recover from learned information that does
not help in deciding the overall ∃∀-query. When a restart
happens, all counterexamples are removed from the database
and the CEGIS synthesis loop starts from the beginning without
a priori knowledge. After each restart, the period of the restart
is increased.

3) Demand for progress: Given two subsequent values k̂a and
k̂b of the same parameter, we measure their progress by
progress(k̂a, k̂b) =

∥∥∥k̂a − k̂b∥∥∥. This measure is used to restart
the synthesis procedure when the CEGIS loop gets stuck by pro-
ducing similar counterexamples, but counterexample randomiza-
tion is not effective. In each iteration, for the last pair of param-
eter values k̂c−1 and k̂c, the progress value progress(k̂c−1, k̂c)
is computed. If the progress value repeatedly falls below a
fixed progress threshold δ, e.g., more than 10 times, a restart
is initiated.

Parameter synthesis automates the task of finding good values
for important design parameters in CPS and eliminates the error



prone design steps involved in determining those parameter values
manually.

IX. CONCLUSIONS

Within the IMMORTAL project, we have identified several chal-
lenging problems in the context of reliabiliy and automated debug
considering advanced CPS’ throughout the stack of layers and the
design flow. For each of these problems we presented in this paper
a glimpse on how to solve the issues and how tool automation can
improve the overall design process. For further details on each of the
solutions we refer to the respective publications.

Overall, reliable CPS design and the corresponding design automa-
tion is a vivid and on-going research topic. CPS design automation
links traditional hardware-oriented aspects with software engineering
and the large body of work in control theory.
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