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Abstract—In addition to being correct, a system should be
robust, that is, it should behave reasonably even after receiving
unexpected inputs. In this paper, we summarize two formal
notions of robustness that we have introduced previously for
reactive systems. One of the notions is based on assigning costs
for failures on a user-provided notion of incorrect transitions
in a specification. Here, we define a system to be robust if a
finite number of incorrect inputs does not lead to an infinite
number of incorrect outputs. We also give a more refined notion
of robustness that aims to minimize the ratio of output failures to
input failures. The second notion is aimed at liveness. In contrast
to the previous notion, it has no concept of recovery from an
error. Instead, it compares the ratio of the number of liveness
constraints that the system violates to the number of liveness
constraints that the environment violates.

I. INTRODUCTION

Classical software engineering distinguishes (cf. [21]) be-
tween correctness and robustness, the latter being the de-
gree to which a system continues to function properly when
confronted with invalid inputs, defects in connected software
or hardware components, or unexpected operating conditions.
The distinction recognizes that it is unrealistic to specify the
proper reaction to each environment fault — this would be
time consuming, error prone, and would clutter the specifi-
cation. Note that robustness never precludes the specification
of a proper reaction to an anticipated failure in the input, but
only requires that behavior be “reasonable” in cases that are
not completely specified.

Robustness is a very important property. For instance,
hardware failure in one node of a large cloud should not bring
down the entire network; a network daemon specified for up to
1000 requests per seconds could drop request 1001, but should
not shut down when it comes; or the failure of one dining
philosopher to put down a fork should not lead to starvation
of all philosophers at the table.

The Wikipedia article for the related notion of fault toler-
ance states that a system exhibits graceful degradation under
the following condition.

If its operating quality decreases at all, the de-
crease is proportional to the severity of the failure,
as compared to a naively-designed system in which
even a small failure can cause total breakdown.

Note that this definition assumes a measurable and comparable
severity of failure. Of course, the generality of the definition
precludes a formalization of this notion.

In this paper, we describe two possible existing formaliza-
tions of the notion of robustness. We focus on failures in the
input and output sequences of reactive systems, disregarding
the possibility of a hardware failure within the system under
consideration. We define a measure of degradation of quality
and following the Wikipedia article in taking the proportion of
the output degradation to the input degradation as the defining
measure of robustness. In fact, we propose a simple way for
the user to specify the degradation of quality in a property-
based manner.

We assume that our specifications are of the form A→ G,
where A is a set of assumptions and G is a set of guarantees.
Both assumptions and guarantees are given as deterministic
Büchi automata. This allows us to easily distinguish the
(input) degradation due to the environment and the (output)
degradation due to the system, and to assign a cost to each.
We do this by adding extra, marked, edges to the automata, so
that their language becomes universal. Every transition along
a marked edge corresponds to a mistake and occurs a cost
(cf. [7]). The quality of a given input/output trace is then the
ratio of the system cost to the environment cost. This ratio is
to be kept as low as possible. In particular, it should not be
infinite, which happens if a system becomes fully irresponsive
after a finite number of unexpected inputs.

This approach works fine for safety violations, but not
for liveness violations. After all, a liveness violation cannot
be detected within any finite amount of time. We therefore
suggest a different approach for liveness violations by counting
the number of individual requirements that are violated by the
system and by the environment and again minimizing the ratio
between these numbers.

Our definitions are easily extended to systems, most natu-
rally by defining the robustness measure as the infimum of the
measure across all possible traces. Other definitions are also
possible, e.g., taking the average over all possible traces [34].
So, our notions naturally extend to verification and synthesis.
Verification asks the question whether the robustness measure
of a system is below a given threshold, and synthesis asks for
the most robust system. We recapitulate the earlier solutions
to these questions [9], [6] in this paper.

Note that robustness is particularly useful for synthesis.
After all, synthesis tools differ from human designers in that
they do not have a built in sense of a natural behavior of a
system. Indeed, in our experience, we have seen synthesis tools



produce several undesirable systems that have a specialized
“sulk state” which is entered when the environment makes its
first mistake, and is never left afterwards. We would like to
note that the synthesis algorithm proposed in this paper will
always yield the most robust system, which is something hard
to specify in traditional formalisms. Furthermore, classical
approaches to synthesizing robust, also called fault-tolerant,
systems assume a given fault and a given recovery model,
where the former describes the faults the environment can
introduce and the later defined the possible counter actions
the system can perform. We refer the reader to [22] for an
interesting approach to making a system fault tolerant using
discrete controller synthesis as well as an extensive study of
related work. In our work we try to minimize the effort of
specifying the fault and recovery model using quantitative
constraints. Intuitively, we allow the environment and the
system to behave arbitrarily but ask the system to satisfy a
number of properties proportional to the number of properties
the environment satisfies.

Outline. In Section II, we present the necessary background
for our work. Section III gives an example and the main ideas
to deal with safety specifications [9]. Section IV provides the
same for liveness specifications [6]. In Section V we discuss
related work, and we conclude with giving future prospects in
Section VI.

II. PRELIMINARIES

Alphabet, words, and languages. An alphabet A is a finite
set of letters. A word w is finite or infinite sequence of letters
and we use |w| ∈ N ∪ {∞} to denote the length of w. The
set of all finite (infinite) words over the alphabet A is denoted
by A∗ (Aω).

We consider systems with a set of input signals I and a
set of output signals O. We define AP = I ∪ O. We use
the signals as atomic propositions in the specifications defined
below. Our input alphabet is thus ΣI = 2I , the output alphabet
is ΣO = 2O, and we define Σ = 2AP .

Example 1. Consider a system with one input signal a
and an output signal b, then AP = {a, b} and Σ =
{{}, {a}, {b}, {a, b}}, where {} denotes that a and b are false,
{a} means that a is true and b is false, {b} encodes the
opposite evaluation (a false and b true), and {a, b} means
that both signal are true.

Moore machines. We use Moore machines to represent
systems. A Moore machine with input alphabet ΣI and output
alphabet ΣO is a tuple M = (Q, q0, δ, λ), where Q is the set
of states, q0 ∈ Q is the initial state, δ : Q × ΣI → Q is the
transition function, and λ : Q → ΣO is the output function.
In each state, the Moore machine outputs a letter in ΣO, then
reads a letters in ΣI , and moves to the next state. The run
of M on a sequence x = x0x1 . . . ∈ ΣI

ω is a sequence
ρ = ρ0ρ1 . . . ∈ Qω , where ρ0 = q0 and ρi+1 = δ(ρi, xi).
The corresponding word is λ(ρ) = w0w1 . . . ∈ Σω , where
wi = λ(ρi) ∪ xi. The language of M , L(M) ⊆ Σω , consists
of the words corresponding to the runs of M .

Objective functions and acceptance conditions. The spec-
ifications we use are automata and we synthesize a system that
realizes a given specification using games. Both automata and
games can be equipped with an objective function. Let Q be
a set of states, an objective function is a function Acc : Qω →
R∪{−∞,∞} mapping infinite sequences of states1 to the set
of extended reals. An objective function that ranges only over
1 and 0 (representing accepting and not accepting, or winning
and losing, respectively) is called acceptance condition.

The Büchi acceptance condition is Acc(ρ) = 1 iff inf(ρ)∩
F 6= ∅, where F ⊆ Q is a set of accepting states and
inf(ρ) is the set of elements that occur infinitely often in
ρ. We abbreviate the Büchi condition with B(F ). A Gen-
eralized Reactivity (GR) acceptance condition is a predicate∧k

l=1(
∧ml

i=1 B(Al,i)→
∧nl

i=1 B(Gl,i)), where Al,i ⊆ Q are as-
sumptions and Gl,i ⊆ Q are guarantees. To simplify notation,
we will assume that the ml are all equal to some constant
m, and similarly for nl and n. The acceptance condition is
a GR(1) acceptance condition if k = 1, it is a generalized
Büchi acceptance condition if k = 1 and m = 0, it is a Streett
acceptance condition with k pairs if m = n = 1.

Automata. A (complete deterministic) automaton A over
the alphabet Σ is a tuple A = (Q, q0, δ,Acc), where Q is a
finite set of states, q0 ∈ Q is the initial state, δ : Q×Σ→ Q is
the transition function, and Acc is the acceptance condition. A
run of an automaton A on a word w = w0w1 . . . ∈ Σ∗∪Σω is
the sequence ρ = ρ0ρ1 . . . ∈ Q∗ ∪Qω such that ρ0 = q0 and
ρi+1 = δ(ρi, wi) forall i with 0 ≤ i ≤ |w| if w is finite, and
i ≥ 0 otherwise. An automaton accepts a word w if its run ρ
is accepting (Acc(ρ) = 1); its language L(A) consists of the
set of words it accepts. A Büchi automaton A = (Q, q0, δ, F )
is an automaton with a Büchi condition with accepting state
set F . If there are no edges from non-accepting to accepting
states, i.e., ∀q ∈ Q \ F,∀σ ∈ Σ : δ(q, a) ∈ Q \ F , then A is
called a safety automaton.

Example 2. Figure 1(a) (on page 4) shows a safety automaton
reading words over the alphabet Σ = 2{r1,r2}. The automaton
has two states s0 and s1 depicted as circles. A state depicted
with two cycle (e.g., state s0) is an accepting state. Transitions
are summarized using edges labeled with Boolean expressions
over r1 and r2; a horizontal alignment of two variables
represents a conjunction and two vertically aligned variables
are disjoint. We use an overline to denote negation and > to

denote true. E.g., the label
r1

r2
of the self-loop on state s0

represents the Boolean expression ¬r1 ∨ ¬r2 satisfied by the
three letters {}, {r1}, and {r2}. So, there are three transitions
from s0 to s0, one for each letter satisfying the Boolean
expression, i.e., δ(s0, {}) = δ(s0, {r1}) = δ(s0, {r2}) = s0.
The automaton accepts all words for which the corresponding
run does not visit s1, which are all words that do not use the
letter {r1, r2}.

The (synchronous) product automaton A = A1 × A2 of

1Equivalently, an objective function can also map infinite sequences of pairs
of states and letters to a value.



two automata A1 and A2 is defined as usual. The product of
two safety automaton is again a safety automaton. Taking the
product of two Büchi automata leads to an automaton with a
generalized Büchi acceptance condition.

Specifications. We consider specifications consisting of two
parts: assumptions and guarantees. They specify the interac-
tion between an environment (controlling the input variables
ΣI ) and a system (controlling the output variables ΣO). We
use automata to specify an assumption (or a guarantee). In
our examples, we also show LTL formulas describing the
discussed properties. Readers familiar with LTL [30] will find
them useful, while they can be safely ignore by readers not
familiar with LTL.

Given m automata Aa
1 , . . . , A

a
m for the environment as-

sumptions and n automata Ag
1, . . . , A

g
n for the system guar-

antees. The specification states that the system must fulfill all
guarantees if the environment fulfills all assumptions, i.e.,

ϕ = L(Aa
1 × · · · ×Aa

m)→ L(Ag
1 × · · · ×Ag

n),

where → is defined for two languages L,L′ over alphabet Σ
in the usual sense, i.e., L→ L′ = (Σω \L)∪L′. We say that a
Moore machine M satisfies the specification ϕ, if L(M) ⊆ ϕ.
If all automata (Aa/g

i ) are safety automata, then ϕ is a safety
specification. In the case of automata with Büchi conditions,
ϕ is called a GR(1) specification [29].

Single and Double Cost Automata. A single (double) cost
automaton over the alphabet Σ is a tuple C = (Q, q0, δ, c)
consisting of a complete deterministic automaton (Q, q0, δ)
and a cost function c : Q × Σ → N (c : Q × Σ → N ×
N, respectively) that associates to each transition a value in
N (N × N, resp.) called cost. In a double cost automaton,
we use cs and ce to refer to the cost function of the first
and the second component, respectively. The maximal cost is
the smallest W ∈ N s.t. ∀q ∈ Q, ∀σ ∈ Σ : c(q, σ) ≤ W
(ce(q, σ), cs(q, σ) ≤ W ). The cost of a word w = w0 · · · ∈
Σ∗∪Σω , denoted by C(w), is the sum

∑|w|−1
i=0 c(ρi, wi), where

ρ = ρ0 . . . is the run of C on w. For double cost automata,
we use Ce(w) and Cs(w) to refer to the first and second
component, respectively, of the cost of the word w. Note that
C(w), Ce(w), and Cs(w) are objective functions assigning to
each word over Σ a value.

Given a double cost automaton C = (Q, q0, δ, c) over Σ, the
ratio objective [9] maps every word w = w0w1 · · · ∈ Σω to
the ratio of the costs accumulated along the run ρ = ρ0ρ1 . . .
of C on w, i.e.,

R(w) = lim
n→∞

lim sup
m→∞

∑m
i=n cs(ρi, wi)

1 +
∑m

i=n ce(ρi, wi)
. (1)

The limits in Eq. 1 reflect that fact that w has infinite
length. The meaning of the formula is as follow: the two sums
are the accumulated rewards of cs and ce encountered up to
position m of the word w. The +1 in the denominator avoids
division by 0 if the accumulated costs are 0. It has no effect
in all other cases. The inner limit (m → ∞) tells us to sum
the rewards along the entire infinite word. The outer limit
(n → ∞) allows us to ignore a finite prefix of the word. In

particular, if the sum in the numerator is finite, then this limit
ensures that R(w) = 0.

The sum of two cost automata A1 = (Q1, q01, δ1, c1) and
A2 = (Q2, q02, δ2, c2) is the cost automaton A = A1 +
A2 = (Q, q0, δ, c), where A is the product of the automata
A1 and A2 with costs c = c1 + c2, i.e., c((q1, q2), σ) =
c1(q1, σ)+c2(q2, σ). The product of two single cost automata
A1 = (Q1, q01, δ1, c1) and A2 = (Q2, q02, δ2, c2) is a double
cost automaton A = A1 × A2 = (Q, q0, δ, c), where A is the
product of the automata A1 and A2 with costs c = (c1, c2),
i.e., c((q1, q2), σ) = (c1(q1, σ), c2(q2, σ)).

Games. Two-player games are a generalization of automata,
in which the set of states is partitioned into two sets: the set of
Player-1 states and the set of Player-2 states. A game is played
by moving a pebble over the state graph in rounds: initially,
the pebble is put on some starting state. Then, in every round
the owner (Player 1 or 2) of the state holding the pebble moves
it along one of the outgoing edges to a successor state, and the
next round starts. The sequence of states visited in this way is
called a play. A function telling Player 1 (or Player 2) how to
move the pebble possibly depending on the history of the play
(i.e., the states visited previously in this play) is called strategy.
A strategy that depends only on the current state of the game,
i.e., it is independent of the history, is called positional. We
use objective functions to assign values to plays. We consider
complementary objectives for the two players: Player 1 tries
to minimize the value of a play and Player 2 tries to maximize
it (or vice versa). The Player-1 (optimal) value of a state is
the minimal (maximal) value Player-1 can achieve for any
play starting in this state, i.e., for any strategy Player-2 might
follow. The Player-2 optimal value is defined analogously. A
strategy achieving the optimal value is called optimal strategy.

For more details and a formal definition of games, we refer
the reader to [33]. In this paper, we focus on the definition
and application of robustness and abstract from the underlying
techniques, so familiarity with game theory is not required.

III. ROBUSTNESS WRT SAFETY SPECIFICATIONS

In this section, we consider specifications A → G, where
A and G are safety specifications (or conjunctions thereof).
We first present our notion of robustness with respect to these
safety specifications. Then, we give an example. Finally, we
summarize how to check if a given system is robust and how
to construct a robust systems.

A. Defining Robustness

Our notion of robustness is based on error functions,
which are used to define a distance between a specification
and a given behavior w. Intuitively, an error function maps
every possible behavior to a value indicating how “close” the
behavior is to a correct behavior. In particular, if w satisfies
the specification the value is 0 (distance 0). A higher value
indicates a higher distance and so a more serious violation of
the specification.

Example 3. Consider the specification ϕ = always(a) that
requires that the atomic proposition a is always true and



an error function that assigns to each word over the alpha-
bet {{}, {a}} the number of times a is false. Then, e.g., the
word w = {a}{a}{a} is assigned to 0 (w satisfies ϕ), the
word v = {a}{}{}{a} has value 2 (v has two faults), and the
word u = {a}{}{}{a}{} has value 3.

Formally, we require the following from an error function.

Definition 4. An error function is a function d : Σ∗ ∪ Σω →
N ∪ {∞} that monotonically increases in the sense that if w′

is a prefix of w then d(w′) ≤ d(w). An error specification is
a pair of error functions (de, ds).

Error specifications are the specifications we use in the
sequel. They provide a measure of “badness” for both the
environment behavior (using de) and the system behavior (us-
ing ds). The severeness of a fault depends on the applications,
so does the error specification. We assume that error specifi-
cations are provided by the user. In the following we discuss
how error specifications relate to classical specifications.

Definition 5. A Moore machine M realizes an error specifi-
cation (de, ds) if ∀w ∈ L(M) : de(w) = 0 implies ds(w) = 0.

Thus, an error specification induces a classical specifi-
cation A → G, where A = {w ∈ Σω | de(w) = 0} and
G = {w ∈ Σω | ds(w) = 0} are sets of infinite words. In [9],
we also introduced an alternative notion to realizability,
called strictly realizable, that forbids the system to make
mistakes before the environment does. We do not discuss it
here, since the problem of strict realizability can be reduced
to realizability by adding a simple preprocessing step.

Definition 6. A Moore machine M is robust with respect to
an error specification (de, ds) if ∀w ∈ L(M) : de(w) 6= ∞
implies ds(w) 6=∞.

This means that a robust system can recover from a finite
environment error. Note that a system can be robust with
respect to a specification that it does not realize if it contains a
word with a finite system error but no environment error. Error
specifications can forbid words by assigning infinite system
costs. (In particular, this is possible when such specifications
are given by double cost automata, as below.)

In order to calculate the quality of a robust system we want
to calculate the largest system error for every environment
error.

Definition 7. A Moore machine M is k-robust with respect
to an error specification (de, ds) if ∃d ∈ N : ∀w ∈ L∗(M) :
ds(w) ≤ k · de(w) + d.

Obviously, every k-robust system is robust, regardless of k.
Also, every robust system is k-robust for some finite k,
see Theorem 11, i.e., for every finite Moore machine, the
growth of the system error is either linear with respect to the
environment error or unbounded. This motivates our choice of
the robustness measure as a linear function. The definition of
k-robustness allows us to rank Moore machines with respect
to error specifications: A smaller k is better, it means that

s0 s1

r1
r2

r1r2

>

(a) A

p0 p1 p1

ri

ri

rigi

rigi

gi

>

(b) Gi

Fig. 1. Automata A for always(¬(r1∧r2)) and Gi for always(ri→next gi).

the system error increases slowly with the environment error.
The constant d allows the system finitely many system failures
independent of the environment error. In this paper, we focus
on the infinite behavior of a machine, and note that d can
be bounded by the product of the size of the Moore machine
and the maximal weight. We leave minimization of d to future
work.

Definition 8. A Moore machine (k-)robustly realizes an error
specification if it realizes the specification and it is (k-)robust
with respect to the specification.

In the remainder, we use double cost automata to define
error specifications. The environment (system) error function
associated with C maps each w ∈ Σ∗ ∪Σω to its cost Ce(w)
(Cs(w), respectively). Note that a double cost automaton
can be seen as the product of two single cost automata.
We can construct an error specification from a set of cost
automata CAi

for the system and CGi
for the environment. The

error specification (a double cost automaton) is the product of
the sum of all CAi

and the sum of all CGi
.

Example 9. Consider the resource controller for two clients.
It has two request signals r1 and r2 as inputs and two grant
signals g1 and g2 as outputs. We want the system to respond
to each request with a grant in the next step. Formally, we
require that the system satisfies Gi = always(ri → next gi)
for i ∈ {1, 2}. The system should also guarantee that grants
are mutually exclusive, i.e., G3 = always¬(g1 ∧ g2). To avoid
a contradicting specification, we assume that requests are also
mutually exclusive, i.e., A = always¬(r1∧r2). Figure 1 shows
two safety automata, one for A and one for Gi. The automaton
for G3 is obtained from A by renaming r1 and r2 to g1 and
g2, respectively.

Starting from the specification A → (G1 ∧ G2 ∧ G3), we
can define what it means for the system and the environment
to fail. In particular, the environment violates assumption A
if it raises r1 and r2 at the same time. This corresponds to
taking the edge from s0 to s1. In Figure 2(a), we show a cost
automaton that counts every violation of the environment. Note
that once the environment “pays” for taking the edge r1r2,
we go back to the initial state, resetting the specification.
Similarly, if the system violates Guarantee Gi by choosing to
go from p1 to p2, it also incurs cost 1 as shown in Figure 2(b).

Note that it is up to the user to define the cost of a violation
and the state in which to continue after the specification is
violated. A reset or a skip are two natural alternatives. A
reset corresponds to an edge to the initial state. For a skip, we
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ri(0)

ri(0)

rigi(0)
rigi(1)

ri gi(0)
ri gi(1)

(c) C′
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Fig. 2. Cost automata counting violations of A and Gi, respectively.
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g1g2

g1g2

r1r2

r1
r2

r1
r2

r1r2

(c) 1-robust

Fig. 3. A non-robust, 2-robust, and a 1-robust system.

simply add a self-loop. In Figure 2(c) we show an alternative
cost automaton for Gi with i ∈ {1, 2}, which uses a mixture
of reset and skip. For the cost automaton CGi , the word
{r1}{r1}{}ω has cost 1 whereas it has cost 2 for the cost
automaton C ′Gi

. (Recall that {} denotes the letter in which
both signals, r1 and g1, have value false.) For the second
automaton, the cost corresponds to the number of unanswered
requests.

The costs on the edges are given by the user. For instance,
the user might consider a violation of the mutual-exclusion
properties G3 more severe and associate with it a higher cost
than a violation of the response properties G1 or G2.

Given cost automata CG1
, CG2

, and CG3
that describe

the cost and the behavior associated with a violation of the
corresponding property (cf. Fig. 2), we can construct a cost
automaton CG = CG1 +CG2 +CG3 for G = G1 ∧G2 ∧G3.
The automaton CG defines the error function of the system.
The cost automaton for the environment CA (cf. Fig. 2(a))
specifies the error function of the environment. The product
C = CA × CG is the error specification.

Figure 3(a) shows a system M (synthesized with Lily [24])
for the specification A→ G. It is easy to see that M satisfies
A→ G. As long as the environment satisfies A, which means
that it does not provide r1 and r2 simultaneously, the system
responds to each ri with the corresponding gi in the next
step. However, M is not robust with respect to C: The input
sequence i = ({r1, r2}{r2})ω has cost one, but the output of
the system has cost ∞.

Figure 3(b) and 3(c) show two systems that are robust

with respect to the error specification, for any word with
finitely many environment errors the systems produce finitely
many system errors. The system in Figure 3(b) is 2-robust
with respect to the error specification whereas the system in
Figure 3(c) is 1-robust. For the input ({r1, r2})ω the output
of the first Moore machine is ({g2}{})ω and for the second it
is ({g1})ω .

Note that out of the three systems in Figure 3 (which all
satisfy A → G) the system in Figure 3(c) is the most robust
one. In our opinion, it is also the one most likely to please the
designer.

B. Verification and Synthesis of Robust Systems
In this section we shortly summarize the key results for veri-

fying and synthesing robust systems. We start with presenting
some facts about automata and games with ratio objective,
which we use to solve the robust verification and synthesis
problem.

Theorem 10 (Ratio games [9]). Given a game G with ratio
objective, where |S| denotes the size of the state space, |E|
the number of edges (transitions), and W the maximal weight,
then the following assertions hold:

1) Both players have optimal positional strategies in G.
(If G is an automata, then there are ultimately periodic
words achieving the optimal value.)

2) The values of all states in G with respect to the ratio
objective can be computed in O(|S|3 ·W 2 · |E| · log(|S| ·
W )) time. If G is an automaton, then the values can be
computed in O(|S|2 · |E|) time.

3) Positional optimal strategies for both players can be
found in O(|S|4 · log( |E||S| ) · |E| · log(|S| ·W ) ·W 2) time
in G.

The problem of checking if a system is robust can be
reduced to checking if an automaton with a Streett objective
has an empty language. We can verify k-robustness by com-
puting the maximal value over all words in a cost automaton
with respect to a ratio objective. These reductions together
with Theorem 10 lead to the following complexity bounds.
Furthermore, note that any robust system is also k-robust for
a sufficiently large k.

Theorem 11 (Verification [9]). Given a Moore machine M
with nM states, and an error specification C over the alphabet
Σ, with nC states and maximal cost W , we can decide if M
is robust in O(nC · nM ·Σ) time. Given a k, we can check if
M is k-robust in O(n3

C · n3
M · Σ) time.

If M is robust with respect to C, then M is also (nC ·nM ·
W )-robust.

We can automatically construct a robust (or k-robust) sys-
tem that realizes an error specification by solving a game with
Streett objective (or Ratio objective, respectively).

Theorem 12 (Synthesis [9]). Given an error specification C
with n states and alphabet Σ, we can decide if a robust and
realizing system exists in O(n2 · Σ) time. The system can be
synthesized in O(n2 · Σ) time.



Given an error specification C with n states, input alphabet
ΣI , output alphabet ΣO, and maximal cost W , if a robust and
realizing system exists, a k-robust system with minimal k that
realizes the specification can be synthesized in O(n5 · (|ΣI |+
|ΣO|)4 · log( (|ΣO|+n·|ΣI |)

|ΣI |+|ΣO| ) · (|ΣO|+ n · |ΣI |) · log(n · (|ΣI |+
|ΣO|) ·W ) ·W 2).

IV. ROBUSTNESS WRT LIVENESS SPECIFICATIONS

In the previous section we discussed the verification and
synthesis of robust systems for safety specifications. In the
case of safety, environment failures are immediately apparent
and the difficulty is how the system can best recover from
them. A violation of a liveness property, however, cannot be
detected at any point in time [1]. Thus, a system that is robust
to liveness failures must attempt to fulfill its guarantees under
all circumstances, without knowing whether the environment
satisfies the assumptions.

We will define several possible notions of robustness in
the presence of liveness, all aiming at maximizing the set of
guarantees that is fulfilled for any set of fulfilled assumptions.
Suppose a specification has two assumptions and two guar-
antees. In order for the specification to hold, both guarantees
must be met when both assumptions are. A system that meets
both guarantees when only one assumption is met is more
robust than one that meets one (or zero) guarantees when one
assumption is met. We start with an example to illustrate.

Example 13. We consider a variant of the dining philosophers
problem [12]. There are n philosophers sitting at a round
table. There is one chopstick between each pair of adjacent
philosophers. Because each philosopher needs two chopsticks
to eat, adjacent philosophers cannot eat simultaneously. We
are interested in schedulers that use input variables hi sig-
nifying that philosopher i is hungry and output variables ei
signifying that philosopher i is eating.

We have the following requirements. First, an eating
philosopher prevents her neighbors from eating. Formally,
G1i = always(ei → ¬e(i−1)mod n ∧ ¬e(i+1)mod n). Second,
an eating philosopher eats until she is no longer hungry:
G2i = always(ei∧hi → next ei). Third, every hungry philoso-
pher eats eventually G3i = always(hi → eventually ei). We
add the assumption that an eating philosopher eventually loses
her appetite: A1i = always(ei → eventually¬hi). Our final
specification consists of n assumptions and 3n guarantees:∧n

i=1A1i →
∧n

i=1(G1i ∧G2i ∧G3i).
We have synthesized a system realizing this specification for

5 philosophers using our synthesis tool RATSY2. The system
constructed by RATSY is not very robust: When philosopher
1 violates the assumption by always being hungry, then
philosophers 1 and 3 eat forever, while the other philosophers
starve. Thus the three guarantees always(h2 → eventually e2),
always(h4 → eventually e4), and always(h5 → eventually e5)
are violated. A more robust system would let philosopher 3
and 4 take turns, thus violating only two guarantees.

2http://rat.fbk.eu/ratsy/index.php/Main/HomePage

We will consider Generalized Reactivity specifications of
rank 1 (GR(1) specifications). GR(1) is an expressive spec-
ification formalism with a natural distinction between as-
sumptions and guarantees [29]. Efficient tools exist for GR(1)
specifications, which have been used to synthesize relatively
large specifications [25], [8]. GR(1) specifications are of the
form ϕ → ψ. Here, ϕ represents the environment assump-
tions and ψ represents the system guarantees and both ϕ
and ψ are given as a set of deterministic Büchi automata.
These automata are combined into a product automaton with
state space Q, transition relation δ, and acceptance condition∧m

i=1 always eventually ai →
∧n

i=1 always eventually gi.
GR(1) specifications do not require any guarantees to be

fulfilled when some assumption is violated. An intuitive notion
of robustness that prescribes, for any number of environment
assumptions that is violated, a minimal number of system guar-
antees that must still be fulfilled. We have shown in [6] that
this and related measures of robustness can be transformed to a
specification of the form

∧k
j=1(

∧m
i=1 always eventually aji →∧n

i=1 always eventually gji), which is a Generalized Reactiv-
ity (generalized Streett) formula of rank k. We address the
problem of verification and especially of synthesis of such
formulas, which allows us to construct robust systems. In the
following subsections we present the measures of robustness
and then discuss the solution for verification and synthesis.

A. Defining Measures of Robustness

In this subsection we discuss how to compare systems
with respect to robustness. Usually, multiple systems satisfy
a specification, but which one is most robust? The measure
of robustness for a safety specification ϕ → ψ is the ratio
between how often the environment violates ϕ and how
often the system violates ψ. For specifications with liveness
properties, this approach does not work because we cannot
count the number of violations of a liveness property. Instead,
we propose to count the number of properties violated. In
the following we show two different robustness measures, the
single and the multiple counting requirements measure. Then
we formally state the requirements a robustness measure has
to satisfy.

Single Counting Requirements. Recall the dining philoso-
phers example with n = 5 philosophers (given in Example 13).
Suppose system D1 always lets one philosopher eat until she
is not hungry anymore and then moves to the next hungry
philosopher in a round robin manner. If one philosopher is
hungry forever, then no other philosopher gets to eat again.
Thus, the violation of one assumption leads to the violation
of four guarantees.

Suppose system D2 lets two non-adjacent philosophers eat
at the same time until neither is hungry anymore. They take
turns in the following order: first philosopher 1 and 3 eat,
then philosopher 2 and 4, and last philosopher 3 and 5 eat.
If one of the currently eating philosopher is hungry forever,
then the two currently eating philosophers eat forever and no
other philosopher gets to eat again. Thus, the violation of one



assumption leads to the violation of three guarantees. System
D2 is thus more robust than system D1.

An even more robust system (D3) is the one described in
Example 13. Two philosophers eat at the same time, as soon
as one of them is not hungry anymore another philosopher
with free chopsticks is allowed to eat. If one philosopher is
hungry forever, she eats forever and the other philosophers
that are not her neighbors take turns eating. The violation of
one assumption leads to the violation of two guarantees.

We specify robust systems by adding restrictions to the
original specification. All three systems above satisfy the
original specification ϕ =

∧n
i=1A1i →

∧n
i=1(G1i∧G2i∧G3i),

but only D2 and D3 guarantee that they violate at most
three system guarantees if the environment violates one of
its assumptions. Formally, D2 and D3 additionally satisfy

ψ1 =
( n∨
i=1

∧
j∈{1,...,n}\{i}

A1j

)
→
(
ϕS ∧

n∨
i=1

n∨
j=i+1

n∨
k=j+1

∧
l∈{1,...,n}\{i,j,k}

G3l

)
,

where ϕS =
∧n

i=1(G1i ∧G2i). The antecedent of the formula
states that the environment satisfies n − 1 out of the n
assumptions. The consequent says that the system satisfies all
the safety guarantees (G1i and G2i) but might violate three of
its liveness guarantees.

Note that in general, a robust system cannot violate a safety
guarantee in response to a violation of a fairness assumption,
since a violation of a fairness assumption can not be detected
in finite time.

Since D3 violates at most two system guarantees if one en-
vironment assumption is violated, it also satisfies the following
formula.

ψ2 =
( n∨
i=1

∧
j∈{1,...,n}\{i}

A1j

)
→
(
ϕS∧

n∨
i=1

n∨
j=i+1

∧
k∈{1,...,n}\{i,j}

G3k

)
These two formulas allow us to distinguish between systems

D1, D2, and D3, which satisfy the same base specification
but differ in how resilient they are with respect to violated
environment assumptions. We propose to use formulas of this
type, which relate the number of satisfied assumptions to a
number of satisfied guarantees to measure how robust a system
is.

Suppose A is a set of assumptions and G is a set of
guarantees. Let Ak = {A ⊆ A | |A| = k} be the set of
all subsets of A of size k and let Gk be defined similarly.
We can augment the specification with a restriction of the
form (

∨
A∈Ak

∧
Ai∈AAi) → (

∨
G∈Gl

∧
Gi∈GGi) to check

if a system satisfies l guarantees when k assumptions are
satisfied. Naturally, a system that satisfies more guarantees
with the same number of satisfied assumptions is more robust.

Multiple Counting Requirements. In some cases we might
want to have a more fine-grained measure of robustness,
which cannot be expressed by a single restriction of the form
given above. Recall again the dining philosophers example

but this time assume there are n = 7 philosophers. Suppose
system D4 allows two hungry philosophers to eat at the same
time. Then, even if one philosopher does not stop eating, the
other non-adjacent philosophers can still take turns eating.
However, if two philosophers misbehave and they both get
to eat (i.e., they do not sit next to each other), they will leave
the other five philosophers to starve. Suppose another system
D5 allows three philosophers to eat at the same time. Now,
if two philosophers misbehave and they both get to eat, the
system D5 still allows another philosopher to eat and only
four philosophers are left to starve. Both D4 and D5 realize
the specification ϕ. If we consider the restrictions from above,
we see that both systems satisfy the formula ψ1 and ψ2. Our
previous measure of robustness cannot distinguish between D4

and D5. Let us add another restriction ψ3 to our specification:

ψ3 =
( n∨
i=1

n∨
j=i+1

∧
k∈{1,...,n}\{i,j}

A1k

)
→
(
ϕS ∧

n∨
i=1

n∨
j=i+1

n∨
k=j+1

∧
l∈{1,...,n}\{i,j,k}

G3l

)
.

System D5 realizes ϕ ∧ ψ2 ∧ ψ3 but system D4 does
not. We can measure the number of satisfied guaran-
tees for several numbers of satisfied assumptions. The re-
strictions we add to the specifications are of the form∧

(k,l)∈L((
∨
A∈Ak

∧
Ai∈AAi) → (

∨
G∈Gl

∧
Gi∈G Gi)), where

L is a list of pairs (k, l), requiring l guarantees to be satisfied
if k assumptions are satisfied.

Definitions. Both single and multiple counting require-
ments, as defined above, can be put in the following form.

Definition 14. Given a GR(1) specification AGR(1) with
assumptions Ja

1 , . . . , J
a
m and guarantees Jg

1 , . . . , J
g
n, a robust-

ness specification for AGR(1) has the form

k∧
l=1

(
ml∧
i=1

B(Ja
l,i)→

nl∧
i=1

B(Jg
l,i)

)
,

where Ja
l,i ∈ {Ja

1 , . . . , J
a
m} and Jg

l,i ∈ {J
g
1 , . . . , J

g
n}.

There is a natural partial order on robustness specifications:
If, for each set of satisfied assumptions, a specification S
requires a superset of the guarantees required by specification
S′, then S is more robust than S′. Let us denote this order by
≺.

Definition 15. A robustness measure for a GR(1) specification
is a set of robustness specifications together with a total order
that respects ≺.

For example, consider again the ‘simple counting require-
ments’ robustness specifications from above. A possible total
order is (k = 0, l = |G|) > (k = 0, l = |G| − 1) > . . . > (k =
0, l = 1) > (k = 1, l = |G|) > . . . > (k = |A|, l = 0),
where k is the number of satisfied assumptions and l the
number of satisfied guarantees. Another possible total order is
(k = 0, l = |G|) > (k = 1, l = |G|) > . . . > (k = |A| − 1, l =



|G|) > (k = 0, l = |G| − 1) > . . . > (k = |A|, l = 0). A total
order is necessary to synthesize the most robust specification.

To synthesize a robust system, we solve games with the
above robustness specifications as objectives. In the following
subsection we summarize the results for games and synthesis.

B. Verification and Synthesis of Robust Systems

It was shown in [6] that the synthesis problem for robust-
ness wrt liveness specifications as presented in the previous
subsection can be reduced to solving games with generalized
reactivity conditions. We first summarize the results of [6],
[26] for game solving with generalized reactivity conditions
and then present the result obtained for synthesis as a conse-
quence.

Theorem 16 ([26], [6]). The following assertions hold:
1) Games with GR(1) conditions can be solved in O(|S| ·
|E| ·m · n) time; and

2) games with Generalized Reactivity GR(k) conditions can
be solved in O(|S|k · |E| · (m · n)k·(k+1) · k!) time;

where |S| is the size of the state space of the game; |E| is the
number of edges (transitions); and m and n are the number
of assumptions and guarantees, respectively.

The translation of robustness for liveness specifications to
games with generalized reactivity conditions and the results for
games (Theorem 16) yield the following results for verification
and synthesis of systems that are robust wrt to liveness
specifications (details in [6]).

Theorem 17 (Verification [6]). Given a GR(1) specifica-
tion AGR(1) = (Q, δ, q0,Acc), a robustness specification∧k

l=1(
∧m

i=1 B(Al,i) →
∧n

i=1 B(Gl,i)), and a system M ,
verifying that M satisfies the robustness specification takes
O(k ·m · n · |Q|2 · |δ|) time.

Theorem 18 (Synthesis [6]). Given a GR(1) specification
AGR(1) = (Q, δ, q0,Acc), and a robustness measure with
h robustness specifications rp =

∧k
l=1(

∧m
i=1 B(Al,i) →∧n

i=1 B(Gl,i)), with 1 ≤ p ≤ h, and a total order, synthesis
of the most robust system can be performed in O(h · |Q|k ·
|δ| · (m · n)k·(k+1) · k!) time. The size of the resulting system
is ((m+ 1) · (n+ 1))k · k! · |Q|.

V. RELATED WORK

Our notion of robustness for safety specifications defines
a system to be robust if a small environment error leads to
a small system error. Other approaches are possible. In the
continuous domain, it is natural to require systems to be
continuous, which guarantees robustness in the sense that a
small output error can be guaranteed by an appropriately small
input error [23]. This notion is not directly applicable in the
discrete setting, because discrete functions are in general not
continuous. Consider, for example, a specification that requires
that the value of the output g is always true (false) if the initial
input r is true (false, respectively): (r → always g) ∧ (¬r →
always¬g). Here, a minimal difference in the input, namely
a change of the initial input, causes a maximal difference in

the output. Another challenge in defining robustness as a form
of continuity is to choose an appropriate notion of distance.
Doyen et al. [14] proposed in interesting notion of distance,
which they called common suffix distance for studying the
robustness of sequential circuits. The common suffix distance
gives the last position in which two sequences mismatch. Their
approach to robustness furthermore splits the input signals to a
circuit into control and disturbance signals. Intuitively, a circuit
is then classified as robust if a finite number of changes in the
disturbance values results in a bounded number of changes in
the computed outputs. Unlike our notions, this notion does not
take the specification into account.

The importance of robustness is widely recognized. Rinard,
for instance, advocates acceptability-oriented computing, stat-
ing that “complex computer systems should have a natural
resilience to errors” [32]. In the context of distributed systems,
the notion of fault-tolerance has been studied (cf. [20], [5])
and approaches [27], [16] to retrofit fault tolerance to existing
programs have been developed. Closely related to these works
is the recent work by Girault and Rutten [22] and the work by
Cheng et al. [11]. Both provide a complete framework and tool
to add fault-tolerant behavior to a given system based on fault
and recovery models using controller synthesis [31]. Our work
differs from previous work on fault-tolerance in the sense that
our fault and recovery model is very general. Intuitively, we
allow the environment as well as the system to make arbitrary
faults but we require the faults to be related, meaning that the
numbers of violations the system makes is proportional to the
number of faults the environment makes.

Attie et. al [4] argue that fault-intolerant programs are
often unrealistic. They introduce a framework to specify fault-
tolerant concurrent programs with CTL formulas and different
levels of tolerance, and show how to synthesize such programs.
Contrary to our work, this work considers closed systems
and requires the developer to specify possible faults explicitly.
Cury and Krogh consider synthesis of robust controllers for
discrete event systems, where a controller is optimal if it
produces the correct behavior for a maximal set of plants
including the original. This approach can beneficially be
combined with ours to yield systems that fulfill the guarantees
in a maximal set of cases and gracefully degrade otherwise.

Faella [18] considers the question of the appropriate be-
havior when a game is lost. He considers two notions, one
based on dominating strategies and one based on a probability
distribution over the input. In the former setting, he maximizes
the set of inputs for which the game is won, and in the latter
setting, the probability that the game is won. A similar problem
is considered in [10], where an unrealizable specification G,
which corresponds to a lost synthesis game, is generalized to
a specification A → G for a maximally weak environment
assumption A. None of these papers considers appropriate
behavior in the cases where a system failure is inevitable,
which is central to our notion of graceful degradation.

D’Souza and Gopinathan [15] consider a specification that
is built from a ranked set of requirements, which may be con-
tradictory. The requirements are “conflict tolerant”, i.e., when



overruled, they continue giving “advice.” This is achieved
through means closely related to our weighted edges. D’Souza
and Gopinath describe how to synthesize controllers in which
advice from a requirement is alternately followed and ignored.
The question they answer is how to synthesize a system that
always follows the highest-ranked advice. The approach differs
from ours in the focus on contradictory specifications rather
than environment failures, and in the fact that the proper action
is chosen greedily, whereas we solve a global optimization
problem to find the appropriate behavior.

Alur, Kanade, and Weiss [2], consider prioritized require-
ments and present an efficient way to synthesize the highest-
priority requirement. This is related in the sense that the ideal
specification may be left unfulfilled if necessary. What is
missing, from our perspective, is a way to “return” to a higher-
priority requirement.

Eisner considers properties in CTL of the form ψ = AGϕ
(ϕ always holds) and calls a system robust if ψ holds in
all states, not just in the reachable states. This implies that
the system behaves well in the presence of environment
failures (assuming that any invariants used as antecedents are
weak), but Eisner states that control-intensive applications are
typically not robust [17].

Furthermore, measures of robustness for different fault mod-
els, for example internal malfunctions of circuits [19], have
been studied. Classical notions of fault tolerance such as self-
stabilization [13] and the notions of closure and convergence
suggested in [3] focus on safety properties. Convergence
requires that a system restores its invariant after an error
has occurred, and closure requires that the system satisfies a
second, larger invariant even when errors recur. Our approach
for liveness can be viewed as an extension of closure to
liveness, where we require that some weaker set of guarantees
is fulfilled when the environment behaves unexpectedly.

VI. CONCLUSION

We have introduced two notions of robustness based on
graceful degradation for functional specifications. Both notions
assume that specifications are split into a set of assumptions
on the environment and a set of guarantees the system should
satisfy if the environment adheres to all its assumption.

The first notion addresses the case in which every assump-
tion and every guarantee is given by a safety automaton. In this
setting we transform every automaton into an error function
that maps every possible behavior to a value indicating how
many times this behavior violates specification. So, a higher
distance means that the behavior is further away from a correct
behavior. Then, a system is said to be robust if for all input
traces, the number of errors of the system on this input trace
is linearly bounded with some k by the number of errors the
environment made on this input trace.

Our second notion of robustness is targeted at liveness
specifications. More precisely, we consider specifications in
which assumptions and guarantees are given by deterministic
Büchi automata. The aim of this notion is to maximize the
number of guarantees that are fulfilled for any number of

assumptions that may be violated. We have several different
interpretations of this notion, which all can be reduced to
Generalized Reactivity formulas.

For both notions, we summarized our results on (i) verifying
robustness with respect to a specification and (ii) deriving a
robust system from a specification.

Our notions of robustness should be seen as only one
way of extracting more information from a specification than
just correctness. In the future, we expect to see a range of
different proposals that aim to augment specifications in order
to better capture the user’s intentions. In this context, we
believe that quantitative techniques will be the key ingredients
because they allow the user to state, for instance, robustness
independent of a concrete fault or recovery model. This way,
the burden on providing complete specification is reduced,
while still retaining guarantees on the behavior of the system.
Moving to a quantitative setting also gives raise to many
interesting theoretical problems in graph games (as we have
already seen with ratio games and lexicographic mean-payoff
games [7]). For example, our robustness measure for safety
leads to a ratio game. A natural extension would be to broaden
this measure to systems including liveness, which would yield
a ratio-parity game in which the parity condition must be
fulfilled while minimizing the ratio.

From a practical point of view, we are currently looking into
ways to implement robustness within a GR(1) synthesis set-
ting. For instance, implementing robustness (not k-robustness)
leads to a GR(2) game, which can reduced to a 2-pair Streett
game, which can be implemented efficiently using [28].

We believe that robustness is an important property of
reactive systems. It remains to be seen in which ways real-
life systems are robust, and if and how robustness checks will
be eventually included into industrial verification systems.
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