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A Lyapunov Function for an Extended
Super-Twisting Algorithm
Richard Seeber, Markus Reichhartinger and Martin Horn

Abstract—Recently, an extension of the super-twisting algo-
rithm for relative degrees m ≥ 1 has been proposed. However,
as of yet no Lyapunov functions for this algorithm exist. This
paper discusses the construction of Lyapunov functions by means
of the sum-of-squares technique for m = 1. Sign definiteness
of both Lyapunov function and its time derivative is shown in
spite of numerically obtained—and hence possibly inexact—sum-
of-squares decompositions. By choosing the Lyapunov function
to be positive semidefinite, the finite time attractivity of the
system’s multiple equilibria is shown. A simple modification
of this semidefinite function yields a positive definite Lyapunov
function as well. Based on this approach, a set of the algorithm’s
tuning parameters ensuring finite-time convergence and stability
in the presence of bounded uncertainties is proposed. Finally, a
generalization of the approach for m > 1 is outlined.

Index Terms—sliding-mode control, positive semidefinite Lya-
punov function, multiple equilibria, polynomial methods, convex
programming.

I. INTRODUCTION

Sliding-mode control is a well-known control technique
enabling the robust handling of large classes of unknown
disturbances acting on a plant. A common task in sliding
mode control is to steer a function of the system state x –
the (scalar) sliding variable σ(x) – to zero in finite time and
keep it there. Writing u for the control input, σ(l) for the l-th
time derivative of σ and m for the relative degree of σ with
respect to u, the problem is that of finding a control law of
the form u = u(σ, . . . , σ(m−1)) to steer the trajectories of the
system governed by the differential equation σ(m) = u to zero.

Several solutions to this problem have been proposed:
among them are, most notably, the twisting and the sub-
optimal algorithm, which handle the case m = 2 with a
discontinuous control signal [13], [5], [1], and the super-
twisting algorithm, which gives a continuous control signal
for m = 1 [13]. More recently, algorithms for higher relative
degrees have been studied [7], [14], [15], with current research
focusing on control laws yielding a continuous control signal
[8], [10], [19], [26], [12]. In [2] one such continuous sliding
mode algorithm is proposed in the form of an extension of the
super-twisting algorithm for m ≥ 1. Like the super-twisting
algorithm (and variants thereof), it is designed to result in a
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homogeneous closed-loop system with negative homogeneity
degree, yielding finite time convergence.

Unlike other algorithms, this system has multiple equilibria.
This fact makes the stability proof more involved, because
finite-time attractivity and stability of the equilibria has to be
shown rather than finite-time stability of the origin. Usually,
stability of an equilibrium is proven using a positive definite,
radially unbounded Lyapunov function whose time-derivative
along the solutions of the system is negative definite. Here,
however, the time derivative of any possible Lyapunov function
is zero on the set of equilibria. It can thus at best be negative
semidefinite, which usually requires applying some kind of
invariance principle, see e.g. [21].

In the present paper this problem is solved by constructing
a positive semidefinite rather than a positive definite Lyapunov
function. Unlike similar approaches in [9], the presented
approach does not require any prior knowledge or assumptions
regarding the stability of the equilibria.

Regarding the construction of Lyapunov functions in gen-
eral, several techniques have been proposed in literature for
the super-twisting algorithm or variants thereof [20], [18],
as well as for other classes of homogeneous sliding mode
algorithms [24]. For polynomial systems, the sum-of-squares
technique offers a systematic way to construct polynomial
Lyapunov functions [23]. In [22] a way is shown to apply this
technique to non-polynomial systems that can be transformed
to polynomial systems (possibly by introducing polynomial
state constraints in the process). Here, this sum-of-squares
approach is used to construct the Lyapunov function.

The extended super-twisting algorithm, when applied to a
first order sliding variable σ whose dynamics are given by

dσ

dt
= u+ ∆, |∆̇| ≤ L, (1)

with a Lipschitz continuous, time-varying perturbation ∆(t),
consists of applying the control law

u = −λ1
⌊∫ t

0

σ(τ) dτ

⌉ 1
3

− λ2 bσe
1
2 − α

∫ t

0

bσ(τ)e0 dτ .

(2)

Therein λ1, λ2 and α are constant controller parameters, and
byeq is an abbreviation for

byeq := |y|q sign (y) . (3)

Introducing state variables x1 :=
∫ t
0
σ(τ) dτ , x2 := σ(t),

and x3 := −α
∫ t
0
bσ(τ)e0 dτ + ∆ the closed-loop system



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2018.2794411, IEEE
Transactions on Automatic Control

2 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

consisting of (1) and (2) can be written as the homogeneous
differential inclusion

dx1
dt

= x2, (4a)

dx2
dt

= −λ1 bx1e
1
3 − λ2 bx2e

1
2 + x3, (4b)

dx3
dt
∈ −α bx2e0 + [−L,L] (4c)

with

bx2e0 =


{1} for x2 > 0,

[−1, 1] for x2 = 0,

{−1} for x2 < 0.

(5)

Solutions of this differential inclusion (4) are understood as
locally absolutely continuous functions of time t satisfying
the inclusion for almost all t. The right-hand side of (4)
is non-empty, convex, compact and upper semi-continuous.
Therefore, solutions exist and are extendable in time [6].

An equilibrium is a point in state space at which a constant
solution exists.1 One can see that the system has multiple
equilibria, in any of which σ = x2 = 0 holds; they are given
by all x :=

[
x1 x2 x3

]T
in the set

S :=
{
x
∣∣∣ x2 = x3 − λ1 bx1e

1
3 = 0

}
. (6)

As of yet, no Lyapunov functions for this system (nor for
applications of the algorithm for m > 1) are known to the au-
thors.2 In this paper a positive semidefinite Lyapunov function
constructed by means of the sum-of-squares technique is used
to prove for a given parameter setting that

1) all trajectories of (4) are bounded and converge in finite
time to the set of equilibria S,

2) all trajectories of (4) starting in S are constant, and
3) every x ∈ S is a Lyapunov stable equilibrium of (4).

Furthermore, the constructed Lyapunov function will allow to
estimate the finite convergence time.

The present paper is organized as follows: Section II dis-
cusses the proof technique and the choice of the Lyapunov
function candidate. In Section III the unperturbed system
is considered. Computational issues arising in the process
of numerically solving the sum-of-squares problem are first
discussed; then a formal proof of the claimed properties is
given in Subsection III-B. Section IV extends the results to the
perturbed case. In Section V numerical results valid for a set
of parameters of the perturbed system are given. In Section VI
one possible way to extend this approach to the case m > 1 is
presented in the form of an outlook. Section VII summarizes
and concludes the paper.

II. LYAPUNOV CANDIDATE AND PROOF TECHNIQUE

Due to the presence of multiple equilibria, a positive def-
inite Lyapunov function V could at best have a negative
semidefinite time derivative V̇ . Using such a function, a

1Note that by this definition at least one, but not necessarily all trajectories
starting in an equilibrium are constant.

2Although a stability proof is outlined in [2], no Lyapunov function can be
constructed using it.

statement on the attractivity of S, the type of convergence
and the convergence time could thus not easily be made.
Therefore, a positive semidefinite Lyapunov function V with
negative semidefinite V̇ is constructed, both being zero if
and only if x ∈ S . This function permits to prove finite-
time attractivity of S and estimate the convergence time. To
show boundedness of trajectories, the semidefinite Lyapunov
function is then modified slightly to yield a positive definite,
radially unbounded Lyapunov function; and to show stability
of equilibria other than the origin, the semidefinite Lyapunov
function along with a convergence time estimate turns out to
be useful.

A. Lyapunov Candidate
Consider a candidate Lyapunov function V (z(x)) that is a

multivariate polynomial with respect to the variables

z =

z1z2
z3

 :=

 bx1e
1
3

bx2e
1
2

x3 − λ1 bx1e
1
3

 . (7)

With this choice of variables the set of equilibria S is described
by z2 = z3 = 0. To ensure that V is zero in this set, it is thus
sufficient to use only monomials in its construction that are
divisible by either z2 or z3.

In order to apply the sum-of-squares technique also the
derivative

V̇ =
∂V

∂z

∂z

∂x

dx

dt
(8)

needs to be expressed in terms of a polynomial in z. To see
that this is possible, apply the chain-rule to obtain that at each
time instant with x2 6= 0

∂z

∂x

dx

dt
=

dz

dt
=

 1
3 |z1|

−2 bz2e2
1
2 |z2|

−1
(−λ1z1 − λ2z2 + z3)

−α bz2e0 − 1
3λ1 |z1|

−2 bz2e2 + δ

 (9)

holds with some3 δ ∈ [−L,L]. For any y ∈ R and integer k

yk =

{
|y|k for k even
byek for k odd

(10)

holds. Hence, with the abbreviation ϕ := δ bx2e0, (9) can be
rewritten as

dz

dt
= |z2|−1 z−21

 1
3z

3
2

− 1
2λ2z

2
1z2 + 1

2z
2
1z3

−αz21z2 − 1
3λ1z

3
2 + ϕz21z2


=: |z2|−1 z−21 fϕ(z), (11)

which is polynomial in z up to the positive scaling factor
|z2|−1 z−21 , with ϕ ∈ [−L,L] occuring as a parameter4.

Note that the functions z and hence in general V
are non-differentiable with respect to x on the manifold
M := {x | x1x2 = 0}. This is problematic, because V̇ ≤ 0
in this case does not imply that V is non-increasing. The
following lemmas, which form the basis for the stability proof
in Section III-B, solve this problem.

3Note that δ may have a different value for each time instant; in the context
of the original closed loop (1), (2) one can see that δ = ∆̇.

4In the following discussions it will only be necessary to consider fϕ for
a few specific constant values of the parameter ϕ.
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B. Proof Technique
Lemma 1: Consider system (4) and let S be the set of its

equilibria as given in (6). Let I be a compact interval and
let x(t) be a trajectory of the system with x(t) /∈ S for all
t ∈ I . Then the function z(x(t)) given in (7) is absolutely
continuous on I .

Proof: given in the appendix.
As a consequence, the Lyapunov function V , being a

polynomial in z, is guaranteed to be absolutely continuous
on intervals satisfying the lemma’s condition as well. Hence
it is—loosely speaking—sufficient to consider V̇ only where
it is defined. The following lemma and its corollary formalize
this. Note that in contrast to similar results given in [3], the
lemma does not require V to be positive definite.

Lemma 2: Consider system (4) and let S be the set of
its equilibria as given in (6). Suppose there exists a function
V (x), polynomial in z(x), with V (x) ≥ 0 for all x, V (x) = 0
if and only if x ∈ S, and its time-derivative V̇ along the
trajectories of system (4) satisfying, where V̇ is defined,

V̇ ≤ −γV ρ (12)

with γ > 0 and ρ ∈ [0, 1). Then V is non-increasing with
respect to time, and for every trajectory x(t) there exists a
unique time instant T bounded by

T ≤ V 1−ρ(x(0))

γ(1− ρ)
=: T (13)

such that x(t) /∈ S for t < T and x(t) = x(T ) ∈ S for t ≥ T .
Proof: given in the appendix.

Corollary 1: Suppose that the conditions of Lemma 2 are
satisfied. Then any function U(x), polynomial in z(x), whose
time-derivative U̇ along the trajectories of system (4) satisfies
U̇ ≤ 0 where U̇ is defined, is non-increasing with respect to
time.

Proof: given in the appendix.

III. UNPERTURBED CASE

As a first step, the unperturbed system, i.e. (4) for L = 0, is
considered. Due to the aforementioned reasoning it is—loosely
speaking—sufficient to search for Lyapunov functions for the
vector field f0, i.e. fϕ from (11) with the parameter ϕ = 0.
To this end, consider as a Lyapunov candidate a polynomial
V (z) of even degree l = 2r; due to the homogeneity of f0, it
suffices to consider a homogeneous polynomial.

To ensure the required positive semidefiniteness of V , the
sum-of-squares technique is applied. This is done by ensuring
that V satisfies the equality constraint

V (z) = m1(z)TPm1(z) (14)

with a suitable vector of homogeneous degree r monomials
m1, and a matrix P constrained to the cone of positive
semidefinite matrices, i.e.,

P � 0. (15)

Writing V̇ for the time derivative of V along the trajectories
of system (4), one can formally introduce the polynomial

W (z) :=
∂V

∂z
f0(z) = |z2| z21 V̇ (z), (16)

which is nothing else but the Lie derivative of V with respect
to the vector field f0. If this polynomial fulfills

W (z) = −m2(z)TQm2(z) (17)

with another suitable monomial vector m2 and

Q � 0, (18)

then V̇ is negative semidefinite in the sense that V̇ ≤ 0 holds
wherever it is defined.

Semidefiniteness constraints (15) and (18) along with equal-
ity constraints (14) and (17) represent a semidefinite program,
whose solution can, in theory, be obtained using state-of-the-
art software packages.

A. Computational Issues

In practice, the solution of the semidefinite program has to
be computed numerically. Due to finite precision arithmetics,
solutions obtained this way in general do not satisfy the
equality constraints exactly, but only up to nonzero residuals.
In the problem at hand, instead of (14) and (17)

V (z) = m1(z)TPm1(z) + µ(z), (19a)

W (z) = −m2(z)TQm2(z)− ν(z). (19b)

will hold with residual polynomials µ and ν. Consequently,
the non-negativity of V and the non-positivity of its time
derivative cannot be ascertained, making the approach in this
form unsuitable for a rigorous proof.

This is an issue of the sum-of-squares technique in general.
It is also investigated in [17], where the following is proven.

Theorem 1 ([17]): A polynomial g with inexact sum-of-
squares decomposition

g(z) = m(z)TRm(z) + κ(z), (20)

with monomial vector m and R ∈ Rq×q also admits an
exact decomposition g(z) = m(z)TR̃m(z) with R̃ � 0 and
is hence non-negative, if the error polynomial κ can be written
as a quadratic form

κ(z) = m(z)TKm(z) (21)

for some matrix K and the smallest eigenvalue of R is greater
than q · ‖κ‖∞, i.e.,

R � I · q ‖κ‖∞ . (22)

Therein ‖κ‖∞ denotes the maximum absolute coefficient of
the polynomial κ (i.e., the infinity norm of a vector containing
its coefficients), and I is the identity matrix.

This means that the sum-of-squares technique can be used to
prove sign definiteness of V and W , if the smallest eigenvalues
of the matrices P and Q in (19) are sufficiently large compared
to the coefficients of residual polynomials µ and ν. To apply
the theorem, two preconditions need to be fulfilled:

First, the monomial vectors m1 and m2 as well as the
monomials used in V need to be chosen diligently, to permit
the matrices P and Q to take positive definite values. As stated
previously, all monomials in V are required to be divisible by
either z2 or z3. Therefore, V (z) = W (z) = 0 for z ∈ S
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and the matrices P and Q have to be singular, unless the
monomials in the vectors m1 and m2 also have this property5.

And second, the residual polynomial ν must be repre-
sentable as a quadratic form of the monomial vector m2. Writ-
ing this out and taking into account the divisibility property
of the monomials in m2, one obtains

ν(z) = m2(z)TKm2(z) =

q∑
j=1

[
z2γj(z) + z3ηj(z)

]2
=

q∑
j=1

[
z22γ

2
j (z) + z2z3γj(z)ηj(z) + z23η

2
j (z)

]
(23)

with polynomials γj and ηj . One can see that this requires all
monomials in ν to be divisible by either z22 , z23 or z2z3. As W
is given by (19b), this means that also W must only contain
such monomials.

These conditions yield equality constraints on coefficients
of V that, despite the application of Theorem 1, still need to be
satisfied exactly. Compared to the original equality constraints
this can be done rather easily, however. Writing W as

W (z) =
∂V

∂z1
f0,1(z) +

∂V

∂z2
f0,2(z) +

∂V

∂z3
f0,3(z) (24)

with f0,i denoting the components of f0 one can see by looking
at (11) that this is the case if ∂V

∂z2
and ∂V

∂z3
each are divisible

by either z2 or z3. For the homogeneous polynomial V of
degree 2r this is fulfilled if it does not contain the monomials
z2r−11 z2 and z2r−11 z3.

A specific polynomial V with degree 2r = 6 is now chosen

V = c1z1z2z
4
3 + c2z1z

2
2z

3
3 + c3z1z

5
2 + c4z1z

5
3 + c5z

2
1z2z

3
3

+ c6z
2
1z

2
2z

2
3 + c7z

2
1z

4
2 + c8z

2
1z

4
3 + c9z

3
1z2z

2
3 + c10z

3
1z

3
3

+ c11z
4
1z2z3 + c12z

4
1z

2
2 + c13z

4
1z

2
3 + c14z2z

5
3 + c15z

2
2z

4
3

+ c16z
6
2 + c17z

6
3 , (25)

with ci being free coefficients. In accordance with the previous
considerations, all monomials are divisible by z2 or z3 and the
monomials z51z2 and z51z3 are not present in V (along with
some other monomials that proved unnecessary for solving
the problem). The monomial vectors are chosen as

m1 =
[
z21z2 z1z

2
2 z32 z21z3 z1z2z3 z1z

2
3 z2z

2
3 z33

]T
(26a)

m2 =
[
z31z2 z21z

2
2 z1z

3
2 z31z3 z21z2z3 z21z

2
3

z1z2z
2
3 z1z

3
3 z22z

2
3 z32z3 z42

]T
.

(26b)

One may check that each monomial in V is representable as
a product of two monomials from m1. For W , however, this
is not yet the case: one finds that despite the above efforts a
single monomial, z32z

5
3 , is not a product of any two monomials

in m2. By means of a symbolic computation the coefficient
of this monomial in W is found to be 1

3c4 − 2λ1c17. Hence,
by making the substitution

c4 = 6λ1c17 (27)

5For m2 this would need to be the case even if V were chosen to be
positive definite. This is due to fϕ(z) and hence W (z) always being zero for
z ∈ S.

all numerical issues can be dealt with by applying Theorem 1.

B. Formal Proof

The system properties claimed in Section I are now formally
proven:

Theorem 2: Consider system (4) with L = 0 and given
system parameters λ1, λ2 and α. Suppose that there exist
coefficients ci of the polynomial (25) such that the (inexact)
sum-of-squares decomposition (19), with the polynomial W
defined in (16) and monomial vectors m1 and m2 being given
by (26), fulfills

P � 8 ‖µ‖∞ · I, Q � 11 ‖ν‖∞ · I. (28)

Then all trajectories of the system are bounded and reach the
set of equilibria S given by (6) in finite time. Furthermore,
each equilibrium is Lyapunov stable.

Remark 1: The conditions of this theorem constitute a
semidefinite program; for given system parameters, a computer
program such as SEDUMI may thus be used to check if they
are satisfied.

Proof: By assumption and by the choice of monomials,
the conditions of Theorem 1 are fulfilled for both V and W .
Hence, positive definite matrices P̃ and Q̃ exist such that the
exact sum-of-squares decompositions

V (z) = m1(z)TP̃m1(z), (29a)

W (z) = −m2(z)TQ̃m2(z) (29b)

hold. Consequently, V ≥ 0 and, where it is defined,
|z2|−1 z1−2W = V̇ ≤ 0.

To prove finite time attractivity of S it will be shown
that an inequality of the form (12) holds with γ > 0 and
q = 5

6 . To that end, consider the expressions W (z)+η1z
2
1V (z)

and V (z) − η62z
6
2 with constant parameters η1, η2 > 0. By

observing that the vector z1m1 is given by the first eight
monomials in m2, i.e.

z1m1(z) =
[
I 0

]
m2(z), (30)

and by writing ei for the i-th standard basis vector of suitable
dimensions one obtains

W + η1z
2
1V = −mT

2

(
Q̃− η1

[
I
0

]
P̃
[
I 0

])
︸ ︷︷ ︸

=:R1

m2, (31a)

V − η62z62 = mT
1

(
P̃− η62e3eT3

)
︸ ︷︷ ︸

=:R2

m1. (31b)

By choosing η1 and η2 small enough, both matrices R1 and
R2 may be assured to be positive definite, yielding with (16)
the inequalities

|z2| z21 V̇ + η1z
2
1V ≤ 0, (32a)

V − η62z62 ≥ 0. (32b)

The latter yields η2 |z2| ≤ V
1
6 , and by substituting into the

former one obtains

V̇ ≤ − η1
|z2|

V ≤ −η1η2V
5
6 . (33)
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From Lemma 2 one thus obtains that for any trajectory there
exists a time T bounded by

T ≤ 6

η1η2
V

1
6 (x(0)) (34)

such that for t ≥ T the relation x(t) ∈ S holds.
To show boundedness of the trajectories, the positive

semidefinite Lyapunov function V is modified slightly to
obtain the positive definite and radially unbounded candidate
Lyapunov function U = V + εz61 with a constant, positive
parameter ε. Its time-derivative, where it is defined, is given
by

U̇ = |z2|−1 z−21

(
W + 2εz51z

3
2

)
= − |z2|−1 z−21 mT

2

[
Q̃− ε(e1eT2 + e2e

T
1 )
]

︸ ︷︷ ︸
=:R

m2. (35)

For sufficiently small ε the matrix R is positive definite and
U̇ ≤ 0. Corollary 1 then guarantees that U is non-increasing,
which proves that the radially unbounded function U and
hence also all trajectories are bounded with respect to time.

Finally, fix any equilibrium v ∈ S; Lyapunov stability of
v is now shown directly. Let any neighbourhood N of v be
given; it will be shown that another neighbourhood G ⊆ N
exists such that all trajectories starting in G stay in N . To
construct G, parametrize a family of neighborhoods of v by

G(ε) =
{
x
∣∣ V (x) < ε6, |x3 − v3| < ε

}
(36)

with ε > 0. Due to the obvious bound |ẋ3| ≤ α for the time-
derivative of x3 and the finite reaching time T from (34), any
trajectory x(t) starting in this set satisfies

|x3(t)− v3| < ε+ αT ≤ ε+
6αε

η1η2
(37)

for all t. Since V is non-increasing, trajectories starting in
G(ε) are for all t contained in the set G([1 + 6αη−11 η−12 ]ε).
By choosing ε small enough, this set is contained in the given
neighborhood N , concluding the proof.

IV. PERTURBED CASE

Now consider the perturbed case, i.e. system (4) with a
perturbation bound L > 0. The sum-of-squares approach
allows to ensure that finite-time attractivity of S and Lyapunov
stability of each equilibrium also hold in this case. To this end,
the constraint (17) of the semidefinite program is replaced by

∂V

∂z
f−M (z) =: W1(z) = −m2(z)TQ1m2(z) (38a)

∂V

∂z
fM (z) =: W2(z) = −m2(z)TQ2m2(z) (38b)

with M ≥ L, which ensures the non-positivity of V̇ for both
ϕ = −M and ϕ = M . From a standard convexity argument
it follows that V̇ is non-positive also for all other permitted
values of ϕ:

∂V

∂z
fϕ(z) = (1− ψ)W1(z) + ψW2(z) ≤ 0 (39)

with ψ = M+ϕ
2M satisfying 0 ≤ ψ ≤ 1 for |ϕ| ≤ L ≤M . One

thus obtains

Theorem 3: Consider system (4) with given parameters λ1,
λ2, α and perturbation bound L ≥ 0. Suppose that for some
M ≥ L there exist coefficients ci of the polynomial (25) such
that the inexact decomposition (19a) and (possibly inexact
versions of) decompositions (38) hold, each satisfying the
conditions of Theorem 1. Then all trajectories of the system
are bounded and reach the set of equilibria S in finite time.
Furthermore, each equilibrium is Lyapunov stable.

Remark 2: Checking this theorem’s conditions amounts to
the solution of a semidefinite program, as does finding a
supremum for M such that the conditions are satsified. In
Section V-B this is demonstrated in the course of an example.

Proof: The proof is the same as that of Theorem 2, with
small changes: Relation (29b) is replaced by (38); by using
the previously mentionend convexity argument one thus shows
that the positive semidefinite Lyapunov function V and the
positive definite Lyapunov function U satsify the differential
inequalities V̇ ≤ −γV 5

6 with γ > 0 and U̇ ≤ 0, respectively.
Finite-time convergence, with a convergence time estimate of
the same structure as (34), and boundedness of the trajectories
readily follow. To show Lyapunov stability, α is replaced by
α+ L in the last part of the proof of Theorem 2.

V. NUMERICAL RESULTS

This section shows some numerical results that are obtained
with the presented technique.

A. Unperturbed Case

The sum-of-squares problem for the unperturbed case is
given by constraints (14), (15), (17) and (18), with V given
in (25). Using the MATLAB toolboxes YALMIP [16], which
also was helpful in choosing the monomial vectors m1 and
m2, and SEDUMI [25] this problem is solved numerically6.
To ensure positivity of V for z /∈ S, which is necessary for
the positive definiteness of P and Q, the constraints c16 ≥ 1
and c17 ≥ 1 are added.

As an example, the parameter values

λ1 = 2 λ2 = 2 α = 1 (40)

are considered, for which one solution of the sum-of-squares
problem is obtained as follows: the coefficients of V are

c1 = −81 c2 = 261 c3 = −545 c4 = 24

c5 = −400 c6 = 786 c7 = 1271 c8 = 120

c9 = −607 c10 = 268 c11 = −1064 c12 = 1025

c13 = 914 c14 = −6 c15 = 29 c16 = 810

c17 = 2; (41)

the minimum eigenvalues of matrices P and Q exceed 0.4
and 0.09, respectively; and the coefficient bounds of the
corresponding residual polynomials are

‖µ‖∞ ≤ 4.4× 10−10, ‖ν‖∞ ≤ 1.5× 10−9. (42)

The conditions of Theorem 2 can easily be checked to be
satisfied, which certifies that the unperturbed system with

6The following results are obtained using MATLAB version R2013b,
YALMIP version 20150919, and SEDUMI version 1.3.
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Fig. 1. Time evolution of state variables x from simulation of system (4)
without perturbation (L = 0).

the considered parameters has the properties claimed in that
theorem.

For demonstration purposes, results from a numerical
simulation of system (4) are shown. Fig. 1 depicts the
time evolution of state variables with initial condition
x(0) =

[
0 3 0

]T
and without perturbation, i.e. L = 0. In

Fig. 2 the corresponding value of the semidefinite Lyapunov
function V from (25) with coefficients (41) is shown. One can
see that it is non-negative and strictly decreases to zero; also,
it can be seen to be non-differentiable when either x1 or x2
are zero.

To obtain the corresponding convergence time estimate, one
may numerically verify that R1,R2 � 0 holds in the proof of
Theorem 2 for η1 = 0.2 and η2 = 3. Relation (34) thus yields
T ≤ 52.9.

B. Perturbation Bound
The maximum perturbation bound, i.e. the robustness of the

system guaranteed by the obtained Lyapunov function may be
computed by solving the semidefinite program

M∗ = maxM subject to (38). (43)

A numerical computation with the previously considered coef-
ficients (40) and (41) yields L∗ ≈ 0.2699, and one may verify
that for, e.g.

L ≤M = 0.26, (44)

the sum-of-squares decompositions fulfill the conditions of
Theorem 1 and thus the stability and attractivity guarantees
of Theorem 3 hold.

C. Scaling of Gains
As is common practice with similar sliding-mode algorithms

[14], it is possible to scale the controller parameters if the
disturbance bound is larger than M obtained previously in
(44), i.e. if L > M . By means of the state transform
v = LM−1x it can be seen, that all statements stay valid for
an arbitrary positive disturbance bound L, provided that the
controller parameters are modified according to

λ̃1 = λ1

(
L

M

) 2
3

, λ̃2 = λ2

(
L

M

) 1
2

, α̃ = α

(
L

M

)
.

(45)

0 1 2 3 4
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·104

t

V

V

2.95 3 3.05
0

0.1

Fig. 2. Time evolution of positive semidefinite Lyapunov function V given
in (25), (41) for the simulation of system (4) shown in Fig. 1.

VI. GENERALIZATIONS TO HIGHER RELATIVE DEGREES

As stated initially, the extended super-twisting algorithm in
[2] is presented for arbitrary relative degree m. The approach
presented in the paper may be generalized to higher orders
of the algorithm, albeit with some modifications. The present
section outlines this generalization for the unperturbed case.

The control law applied to an unperturbed chain of integra-
tors with relative degree m, i.e. dmσ

dtm = u, is given by

u = −λ1
⌊∫ t

0

σ(τ) dτ

⌉ 1
m+2

−
m−1∑
i=0

λi+2

⌊
diσ

dti

⌉ 1
m+1−i

− α
∫ t

0

⌊
dm−1σ

dtm−1

⌉0
dτ . (46)

Choosing the state variables x1 :=
∫ t
0

⌊
dm−1σ
dtm−1

⌉0
dτ ,

xi := dm+1−iσ
dtm+1−i for i = 2, . . . ,m+1, and xm+2 :=

∫ t
0
σ(τ) dτ

(note that the order of state variables is reversed compared to
the previous sections7), the closed-loop system can be written
as

dx1
dt

= bx2e0 ,
dx2
dt

= −
m+2∑
i=1

βi bxie
1
i , (47a)

dx3
dt

= x2, . . .
dxm+2

dt
= xm+1, (47b)

where

βi :=

{
α i = 1

λm+3−i i ≥ 2.
(48)

In the following, m > 1 and α > 0 is assumed. To apply the
sum-of-squares technique, a function V that is a polynomial
in8

v :=
[
z1 . . . zm+2 w1 . . . wbm

2 c
]T

(49)

is considered, where

zi =

{
x1 + βm+2

β1
bxm+2e

1
m+2 i = 1

bxie
1
i i ≥ 2,

(50a)

wi = |x2|
1
4 |x2i+2|

1
4i+4 . (50b)

7This allows to write the following results in a more compact form.
8Note that byc is written for the floor function, i.e., the largest integer

k ≤ y.
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m n p

1 3 3
2 5 11
3 6 15
4 8 23
5 9 29

TABLE I
ORDER n AND POLYNOMIAL DEGREE p OF f IN (52) OR (11) FOR SOME

VALUES OF RELATIVE DEGREE m.

Application of the chain-rule yields

|z2|
∂zi
∂x

dx

dt
=


z2 + βm+2

β1
|z2| dzm+2

dt i = 1

− 1
2

∑m+1
i=1 βizi i = 2

1
iw i−3

2

2z−i+1
i zi−2i−1 i ≥ 3, i odd

1
iw i−2

2

2z−ii zi−1i−1 i ≥ 4, i even,
(51a)

|z2|
∂wi
∂x

dx

dt
= −1

4
wiz
−1
2

m+1∑
j=1

βjzj

+
1

4

1

i+ 1
w3
i z
−2i−3
2i+2 z2i+1

2i+1 , (51b)

taking into account that w0—though it is not a state variable—
satisfies w2

0 = z22 . These equations can be written in the form

dv

dt
= |z2|−1

m+2∏
i=3

z
−2b i

2c
i

bm
2 c∏
j=0

z−22j+2 · f(v) (52)

with a polynomial vector field f .
Note that (in contrast to the case m = 1) state variables wi

occur, which increase – compared to (47) – the order of f to

n = m+ 2 +
⌊m

2

⌋
. (53)

The polynomial degree of f is given by

p := deg f = 3 + 2

(⌊m
2

⌋
+
m+2∑
i=3

⌊
i

2

⌋)

=

{
m+ 1 + (m+2)2

2 m ≥ 2,m even
m+ (m+1)(m+3)

2 m ≥ 3,m odd
(54)

Table I shows both polynomial degree p and system order n
of the vector field f for some values of the relative degree m.

The sum-of-squares technique may be applied to search
for Lyapunov functions for the polynomial vector field f . In
doing so, it can be taken into account that the definition of
state variables wi in (50b) is equivalent to the polynomial
constraints wi ≥ 0, w4

i = z22z
2
2i+2 for i = 1, . . . ,

⌊
m
2

⌋
. This

way, a Lyapunov function for the original system (47) may
(conceivably) be obtained.

For m = 2, for example, the closed-loop system is
dx1
dt

= bx2e0 (55a)

dx2
dt

= −β1x1 − β2 bx2e
1
2 − β3 bx3e

1
3 − β4 bx4e

1
4 (55b)

dx3
dt

= x2,

dx4
dt

= x3, (55c)

and the coordinates v are given by

v =
[
z1 z2 z3 z4 w1

]
(56)

=
[
x1 − β4

β1
bx4e

1
4 bx2e

1
2 bx3e

1
3 bx4e

1
4 |x2|

1
4 |x4|

1
8

]
.

(57)

One thus obtains the polynomial vector field

f(v) =


z32z

2
3z

6
4 − 1

4
β4

β1
z22z

5
3z

2
4w

2
1

− 1
2z

2
2z

2
3z

6
4 (β1z1 + β2z2 + β3z3)

1
3z

5
2z

6
4

1
4z

2
2z

5
3z

2
4w

2
1

1
8z

2
2z

5
3z4w

3
1 − 1

4z2z
2
3z

6
4w1 (β1z1 + β2z2 + β3z3)

 .
(58)

When applying the sum-of-squares technique, the polynomial
constraints w1 ≥ 0, w4

1 = z21z
2
3 may be taken into account.

VII. SUMMARY

This paper considered an extended super-twisting algorithm
for sliding variables with relative degrees greater than one. The
sum-of-squares technique was used to obtain for the first time a
Lyapunov function for one instance of this algorithm. In doing
so, the problem that a numerically obtained sum-of-squares
decomposition of a polynomial does not necessarily prove its
non-negativity had to be considered. By carefully choosing
variables and monomials involved in the decomposition this
problem was solved. A positive semidefinite function proving
finite time attractivity of the set of equilibria as well as a pos-
itive definite Lyapunov function proving boundedness of the
trajectories was thus obtained. The validity of of the approach
subject to perturbations with sufficiently small upper bound
was shown. A particular set of parameters was considered and
the scaling of parameters to deal with larger perturbations was
discussed. Finally, the basic steps in applying the technique to
higher order systems were outlined.

APPENDIX

Proof of Lemma 1: The functions x1(t), x2(t) and x3(t)
are absolutely continuous by virtue of being a solution of the
differential inclusion; it is hence sufficient to show absolute
continuity of bx1e

1
3 and bx2e

1
2 . This can be done by reasoning

similar to [20]: On closed time intervals where x1 or x2 are
non-zero, they are differentiable and hence Lipschitz, which
implies their absolute continuity. Thus only zero-crossings are
considered, starting with x2. If x2(T ) = 0 in some interval
[T − ε, T + ε] with ε > 0, then (4b) evaluated at t = T reads

dx2
dt

= −λ1 bx1e
1
3 + x3. (59)

The right-hand side of this equation is non-zero because
x(T ) /∈ S by assumption. By choosing ε small enough,
x2(t) can be guaranteed to be monotonous on the considered
interval. Absolute continuity then follows from the fact that the
composition of the absolutely continuous function b.e 1

2 with
the absolutely continuous and monotonous function x2(t) is
guaranteed to be absolutely continuous [20], [4].

For x1 the proof is similar though slightly more involved.
Again, consider a zero x1(T ) = 0 on some closed interval
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[T − ε, T + ε]. If x2(T ) 6= 0, then x1 is locally monotonous
and the reasoning is as above. Otherwise one has, again at time
instant T , dx1

dt = 0 and d2x1

dt2 = x3. As x3(T ) = 0 contradicts
the assumption x(T ) /∈ S, the function x1(t) is either locally
convex or concave and is clearly never monotonous on the
entire interval. It can however be guaranteed to be monotonous
on each of the closed intervals [T − ε, T ] and [T, T + ε] by
appropriate choice of ε, which implies absolute continuity on
both intervals. The proof is concluded by noting that I can
be written as a finite union of the considered types of closed
intervals, as infinitely many zeros of x1 or x2 on the compact
interval I would cluster at some time τ ∈ I with x(τ) ∈ S.

To see that this is indeed the case, assume that zeros of x2
cluster at τ but x(τ) /∈ S. (For zeros of x1 the argument is
similar.) Since x(t) is continuous, it follows that x2(τ) = 0,
and since x(τ) /∈ S the right-hand side of (4b) is not equal to
zero; without loss of generality it is assumed to be negative.
Continuity of x(t) then implies existence of R, ε > 0 such
that dx2

dt ≤ −R holds for almost all t ∈ (τ − ε, τ) =: J .
As x(t) is also absolutely continuous, one may integrate this
differential inequality to obtain x2(t) ≥ (τ − t)R > 0 for
t ∈ J , contradicting the assumption that τ is a cluster of
zeros of x2.

Proof of Lemma 2: First prove by contradiction that V is
non-increasing with respect to time: Assume that a trajectory
exists such that V (t3) > V (t1) ≥ 0 for some t3 > t1. Conti-
nuity of V then guarantees the existence of t2 ∈ [t1, t3] such
that V (t3) > V (t2) > 0 and V (t) 6= 0 for t ∈ [t2, t3] =: I
hold. One thus has x(t) /∈ S on I , and Lemma 1 together
with the structure of V guarantees absolute continuity of V
on I . One may thus integrate V̇ ≤ 0 to obtain the contradiction

V (t3) = V (t2) +

∫ t3

t2

V̇ dτ ≤ V (t2) (60)

proving that V is non-increasing. An immediate consequence
is that the existence of T such that x(T ) ∈ S, i.e. V (T ) = 0,
implies x(t) ∈ S , i.e. V (t) = 0, for all t > T . In that case
one may write x(t) =

[
θ3(t) 0 λ1θ(t)

]
for t ≥ T with an

absolutely continuous θ(t); by substitution into (4a) one finds
that θ(t) and hence x(t) is constant.

The bound on T is now also proven by contradiction.
Assume that for some trajectory x(t) /∈ S holds for all
t ∈ [0, t0] =: J with t0 ≥ T from (13). Then V is absolutely
continuous on J by virtue of Lemma 1. The comparison
lemma, see e.g. [11], may thus be applied to the differential
inequality (12) to obtain V (T ) = 0 < V (t0) with T ≤ T ; as
T ≤ t0, this contradicts the fact that V is non-increasing.

Proof of Corollary 1: Consider any trajectory x(t) and
let T be given as in Lemma 2. Absolute continuity of U(t) is
guaranteed by Lemma 1 on any compact subinterval of [0, T ).
That U is non-increasing is thus obtained from integrating its
time-derivative for t < T and from the fact that x(t) and hence
U(t) are constant for t ≥ T .
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