
Attacking AUTOSAR using Software and Hardware Attacks

Pascal Nasahl
Graz University of Technology

Graz, Austria
pascal.nasahl@iaik.tugraz.at

Niek Timmers
Riscure - Security Lab
Delft, The Netherlands
timmers@riscure.com

Abstract— The AUTomotive Open System ARchitecture (AU-
TOSAR) development partnership is a world-wide initiative
aiming to jointly develop and establish an open industry standard
for automotive E/E software architectures. This standard is
rapidly being adopted by the automotive industry and therefore
it is important to understand the attack surface of AUTOSAR-
based electronic control units (ECU). In this paper we describe
several scenarios how software and hardware attacks can com-
promise the security of AUTOSAR-based ECUs. We consider
an attacker with physical access to the ECU who is capable
of exploiting both software and hardware vulnerabilities. We
discuss how an attacker can use different attack techniques
to exploit these vulnerabilities. Moreover, we describe a case
study in full detail where we execute arbitrary code on an
AUTOSAR-based demonstration ECU by performing a voltage
fault injection attack on the AUTOSAR communication stack.
Several automotive threats may materialize if an attacker is able
to execute arbitrary code on an ECU. For example, it will be
possible to persistently modify the ECU’s functionality if its code
is not authenticated using secure boot.

I. INTRODUCTION

In the past 30 years, the electrification of cars made a
huge leap. Whereas in the beginning only simple control logic
had been deployed in a car, demanding tasks like powertrain
control and signal processing for autonomous driving are
nowadays handled by computers. A modern car nowadays
depends on tens of different computers, typically referred to as
Electronic Control Units (ECU), ranging from sensors to high-
performance computing platforms. The automotive industry
quickly realized that some form of standardization is needed
as multiple suppliers and manufactures are working together
to produce a single modern car. Starting with OSEK/VDX
[14] in the 90s, the AUTOSAR standard evolved slowly. The
goal of this standard, which is developed by the AUTOSAR
consortium, is to provide a common software architecture
specification for all manufactures and suppliers who are part
of the automotive industry [1].

The threat model for AUTOSAR-based ECUs should in-
clude local and remote attackers, attackers with significantly
different budgets, different skills and completely different
motives. The AUTOSAR standard and the standards on which
it builds (e.g. MISRA C), focus mostly on robust software
which is fundamental for security and safety. Nonetheless, it
is not unlikely ECUs will be attacked using hardware attacks.

In this paper we provide an introduction to AUTOSAR
which serves as context for the remaining sections. An attacker
may identify software vulnerabilities by reviewing code (if
source code is available) or by reverse engineering (if only

binary software is available). During our research we did
not have a real AUTOSAR-based ECU software available.
We used a freely available AUTOSAR software stack [22] in
order to create a demonstration platform. We describe several
scenarios how software vulnerabilities may be introduced into
an AUTOSAR-based ECU.

An attacker may resort to other types of attacks when
software vulnerabilities are unknown. We describe several of
these attacks, which range from simple PCB-level attacks (e.g.
debug interfaces) to more advanced hardware attacks like fault
injection. The results of these hardware attacks may end up in
control of the ECU and/or extraction of (secured) information.
Additionally, if no proper code signing mechanism (i.e. secure
boot) is implemented, it may also lead to modification of the
ECU’s firmware. This is not an unlikely scenario as it is often
believed secure boot is not required for devices that store and
execute code only from internal memories.

The introduction to AUTOSAR is described in Section II.
In Section III we describe the Software Attacks on AUTOSAR
and in Section IV we describe the Hardware Attacks on
AUTOSAR. The case study where we perform a fault injection
attack is described in Section V. Finally, in Section VII we
provide an overall conclusion.

II. AUTOSAR

In an automotive environment, the tasks and responsibilities
of an operating system differ from classic computer systems.
In such environments, the focus is on real-time processing of
sensor information and heavily using bus protocols for com-
munication with other ECUs. The AUTOSAR specification
uses a three layer abstraction approach to simplify software
development. Microcontroller specific drivers, the kernel, as
well as the communication stack are implemented in the basic
software layer (BSW). User applications can be developed
independent of the underlying hardware by using the runtime
environment (RTE) which provides access to features of the
BSW. This layered approach is depicted in Figure 1.

The AUTOSAR standard is available in two significant
different flavors: the AUTOSAR Classic platform and the
AUTOSAR Adaptive platform. The AUTOSAR Classic plat-
form is statically linked and not very flexible. It is often
used for core ECUs deep within the car. The AUTOSAR
Adaptive platform, in contrast, is dynamically linked, utilizes
C++14 features and is therefore very flexible. It is often
used for high performance and heavily connected ECUs. It
is unknown at the moment of writing what the global market

Complex

Drivers

Microcontroller

Runtime Environment

Microcontroller

Drivers

Memory

Drivers

I/O Drivers

I/O Hardware

Abstraction

Memory

Hardware

Abstraction

Memory

Services

System Services

Onboard

Device

Abstraction

Wireless

Communication

Drivers

Communication

Hardware

Abstraction

Off-board

Communication

Services

Application Layer

Crypto Drivers

Crypto

Hardware

Abstraction

Crypto

Services

Communication

Drivers

Communication

Services

Wireless

Communication

HW Abstraction

Fig. 1. AUTOSAR layered software architecture [2].

share of these platforms within modern cars is. Nonetheless,
the AUTOSAR consortium includes all major vendors in the
automotive market. Therefore, we expect AUTOSAR to have
a significant presence in modern cars. Still, in this paper we
focus primarily on the AUTOSAR Classic platform.

III. SOFTWARE ATTACKS

The AUTOSAR standard aims at producing safe and secure
software for ECUs. It builds on top of well-accepted safe
and secure coding standards like MISRA C and CERT C. An
AUTOSAR-based software stack that fully adheres to these
two coding standards should be safe and secure. In this section,
we provide several scenarios where software vulnerabilities
may be introduced into different AUTOSAR components.
Note, that the examples provided in this section are by no
means an exhaustive list.

A. MCAL vulnerabilities

The Microcontroller Abstraction Layer (MCAL) is often
bundled together with the MCU. This means that often the
MCAL is developed by the MCU manufacturer. Therefore,
the MCU’s MCAL needs to conform with the AUTOSAR
specification if an ECU manufacturer wants to integrate it. All
major MCU manufacturers provide such AUTOSAR compli-
ant MCAL packages for their MCUs. If the MCAL does not
adhere to the AUTOSAR standard properly, it may introduce
software vulnerabilities when the MCAL is integrated by the
ECU manufacturer. For this reason, it is essential that the
developer of the MCAL provides assurances that the MCAL
is implemented securely. Additionally, the integrator of the
MCAL may conduct a (security) code review to check if the
MCAL is implemented securely according to AUTOSAR’s
requirements.

It often depends on how the MCAL’s functionality is used
by the upper layers of the AUTOSAR software stack. For ex-
ample, if there is an exploitable integer overflow vulnerability
present in the EEPROM driver, it may not be exploitable if
there are restrictions on the arguments that can be passed to
this vulnerable EEPROM driver. Nonetheless, we believe it
is important to make sure that vulnerabilities are mitigated at
all layers of the AUTOSAR software architecture. Especially
considering the usage of the vulnerable driver may change

in future products rendering the software vulnerability ex-
ploitable. In other words, the MCAL should not trust the data
passed on by the upper layers blindly.

B. Communication services vulnerabilities

The introduction of new and complex communication stacks
(e.g. Ethernet) impacts the automotive industry. They require
parsing of complex data structures whereas traditional commu-
nication stacks (i.e. CAN) do not. Especially the protocols that
will be build on top (i.e. TCP/IP, UDS, etc.) are prone to soft-
ware vulnerabilities. Proven communication stacks originating
from general purpose computing (e.g. Linux) can often not be
used by RTOS-based ECUs. They simply do not adhere to the
requirements of a RTOS. The communication stacks that do
qualify, however, are often not properly tested. Recent research
conducted by Ori Karliner identified that the TCP/IP stack of
FreeRTOS was riddled with exploitable vulnerabilities [15].
This vulnerable TCP/IP stack was also used by SAFERTOS,
which is pre-certified to ISO 26262 ASIL-D. Communication
stacks should be reviewed properly and the integrators of these
communication stacks need to start requiring assurances that
such a review is properly conducted.

IV. HARDWARE ATTACKS

Hardware attacks require the attacker to be physically
present to the target. Most hardware attacks, except when
interfaces are used that are exposed externally, require the
attacker to open the device. Several of the attacks described
in this section require specialized tooling, some of which is
nowadays easily available. Other high-end tooling may still be
in reach for well funded actors like organized crime and state
actors.

A. PCB-level

Printed Circuit Board (PCB) level attacks include basic
hardware attacks where an attacker opens an ECU in order
to probe and/or modify its PCB. Attackers often do this in
order to extract the contents of non-volatile memory, access
debug interfaces or sniff the communication between chips.
Dependent on the ECU’s design, other attacks may apply too.
An ECU may be fully compromised if no sufficient measures
are taken in order to prevent these attacks. If the ECU cannot
be fully compromised, the information obtained from PCB-
level attacks is often used to perform more advanced attacks
like fault injection and side-channel analysis.

1) Modification of external memory contents: Attackers
may use a standard flash programmer in order to modify the
contents of external memories (e.g. eMMC). An attacker who
is able to modify code stored in external memories will be
able to execute arbitrary code on the ECU. Indirectly, this
may also be achieved by modifying data which results in an
exploitable software vulnerability. Code and data that originate
from external memories should not be trusted. Therefore, any
code and data that is stored in external memories should
be authenticated before usage (i.e. secure boot should be
implemented).

2) Extraction of external memory contents: Attackers may
use a standard flash programmer in order to extract the
contents of external memories (e.g. EEPROM). If any security
sensitive data is stored unprotected (i.e. unencrypted) in ex-
ternal memory, this may be compromised by an attacker with
physical access to the device. Therefore, it is important that
the security sensitive data which is stored on external memory
chips is encrypted.

3) Debug interfaces: All MCUs have a hardware debug
interface that can be used to access the MCU’s internals.
Therefore, these debug interfaces should be properly protected.
The tooling [17] and knowledge [18] is affordably available
to communicate with hardware debug interfaces. An attacker
who is able to communicate with a hardware debug interface
is also able to compromise the security of an ECU entirely.
Most OEMs demand these debug interfaces to be protected.
Due to this reason, this threat is often properly mitigated.

4) Signal modification: Security critical data should not be
stored in external memory, especially if the integrity of this
data needs to be guaranteed. An example where this can go
wrong is the try counter of the SecurityAccess service part
of the Unified Diagnostic Services (UDS), which should have
been implemented as-is according to the AUTOSAR standard.
A ten minute try delay is triggered after three incorrect
authentication tries are performed. If the try counter is stored
in external flash, an attacker can prevent the try counter from
being written correctly by modifying the external flash signals
on the PCB. This attack is described in more detail by the
authors of [16].

B. Fault injection

Fault injection attacks alter the intended behavior of a chip
by affecting its environmental conditions. Glitches are injected
into the target in order to affect the intended behavior of
hardware and software [4]. Basic fault injection techniques
affect the chip’s clock and/or voltage [6] supply whereas more
advanced fault injection techniques inject electromagnetic
pulses and/or laser pulses [6] into the chip’s surface [5][6].
The tooling required for these types of attacks are nowadays
available to the masses for an affordable price [27].

The type of faults introduced into a target by these glitches
(i.e. the fault model [8]) is often studied by academia. The
common denominator between the academic research is that
it is possible to modify instructions while they are being
executed which is a strong attack primitive. Listing 1 shows an
example of an instruction corruption for the ADD instruction
on an ARM AArch32 system. Only by flipping a single bit in
the instruction code, the result of the addition can be changed.
This impacts the intended behavior of software completely.
Therefore, fault injection attackers completely undermine the
software security model most ECUs rely on.

add r0 , r1 ,r2 : 1110 1011 0000 0001 0000 0000 0000 0010
add r0 , r1 ,r3 : 1110 1011 0000 0001 0000 0000 0000 0011

Listing 1. Corruption of ADD instruction.

Traditional fault injection attacks aim to alter the intended
behavior of a chip when a security critical decision is made
[19], whereas more advanced attacks aim to take control of the
chip by executing arbitrary code [20]. The case study described
in Section V demonstrates such an advanced attack.

C. Side-channel analysis

Side-channel analysis (SCA) attacks are passive attacks
where a side-channel is used in order to obtain information
from a device. Common side-channels are timing, power
consumption and electromagnetic emissions. These attacks are
often used to extract secret keys from the device or bypass
an authentication mechanism. Typical targets used by the
automotive industry are the UDS SecurityAccess check and
cryptographic operations (e.g. HSM). These attacks work both
on software and hardware implementations. More information
about timing side-channels can be found in [23], whereas more
information about power consumption based side-channels is
available in [21].

V. CASE STUDY: FI ON AUTOSAR

In this section we describe an advanced fault injection attack
where we take control of an AUTOSAR-based ECU. The
ECU is implemented using a STM32F4 based development
board, which is running the Arctic Core for AUTOSAR v3.1.
Although we are aware of the fact that more recent versions
of AUTOSAR are available, the communication stack that
we target is implemented almost identical in newer versions
of AUTOSAR. In addition, we assume an attacker who has
physical access to the ECU and access to the ECU’s firmware.
The authors of [12] describe how firmware can be extracted
from ECUs efficiently.

A. Fault model: instruction corruption

In our attack we rely on the fact that we can modify
instructions by injecting glitches into the voltage supply of
the MCU. This attack is not unique to the target MCU or
the fault injection technique we use. Similar to the example
shown in Listing 1, Listing 2 depicts the impact of changing
a bit in an instruction due to a glitch. Instead of modifying an
ADD instruction, we are modifying a LDR instruction to load
a register value into PC. This allows us to hijack the control-
flow of the process at the moment of the glitch. Load and
store instructions are used to copy memory. For ARM chips,
this is done using the LDR instruction or the more efficient
LDM instruction where multiple 4-byte words are copied
using a single instruction. From an attacker’s perspective, the
LDM instruction is more interesting as destination registers
are configured using a single bit, meaning that only a single
bit needs to be set from 0 to 1 in order to load a value from a
register into PC. This attack, which was proposed by Timmers
et al., only works as-is for the ARM AArch32 architecture
[11]. In their work, they provided a detailed comparison of
corrupting LDR and LDM instructions and showed that getting
control of the program counter register is feasible [11]. Most
other architectures do not allow loading a value into the

program counter register directly. Nonetheless, variants of this
attack are applicable to other architectures as well.

ldr r1 ,[r2 ,#4]: 1111 1000 1101 0010 0001 0000 0000 0100
ldr pc ,[r2 ,#4]: 1111 1000 1101 0010 1111 0000 0000 0100

Listing 2. Corruption of LDR instruction.

When developing a fault model, one has to consider the
characteristics of the target. Microcontrollers used in an auto-
motive context are usually certified with an ASIL protection
level in order to meet functional safety requirements [9].
However, glitches still allow an adversary to perform attacks
on MCUs certified with the highest protection level ASIL-D
[10].

B. Fault target: communication stack

In a car, sensor information, user input as well as commands
from different ECUs are usually exchanged using a multitude
of system buses (e.g. CAN, FlexRay, LIN, etc.). Therefore, the
communication stack is a crucial element of each RTOS run-
ning on an ECU. To satisfy the requirements for most common
on-board system buses, the AUTOSAR communication stack
supports various bus protocols like CAN, Ethernet, FlexRay
and LIN [3].

Fig. 2. The AUTOSAR communication stack [3].

Figure 2 depicts the current AUTOSAR communication
stack. First, a bus interrupt is detected by the MCAL and the
PDU is then forwarded to the corresponding communication
driver. For CAN, either a CAN ISO-TP or a raw CAN frame
can be received and handled. To bypass the length limitation
of 8 data bytes for CAN, the ISO-TP protocol [13] is used.
The protocol still makes use of 8-byte frames. When data up-
to 4095 bytes is sent, the 8-byte frames are assembled on the
ECU by the ISO-TP driver. The PDU router is responsible for
routing the PDU to e.g. a user application or the diagnostic
communication manager.

Our attack aims to load controlled data into the PC register
of the processor. Therefore, we need to attack an interface
that allows us to provide our own data. We assume this data
is handled using LDR instructions. Timing the glitch in order
to hit a single load instruction is difficult. Luckily, during
a memcpy operation, multiple load and store instructions are
executed consecutively in a loop. This makes the attack less
dependent on timing. It does not matter which load instruction
we modify successfully, as long as we modify one.

<memcpy>:

 mov ip, r0

 orr.w r3, r1, r0

 ands.w r3, r3, #3

 bne.n 8008300 <memcpy+0xe8>

 subs r2, #64 ; 0x40

 bcc.n 80082ac <memcpy+0x94>

 ldr.w r3, [r1], #4

 str.w r3, [r0], #4

 subs r2, #64 ; 0x40

 bcs.n 8008228 <memcpy+0x10>

 adds r2, #48 ; 0x30

 bcc.n 80082d4 <memcpy+0xbc>

<memcpy>:

 mov ip, r0

 orr.w r3, r1, r0

 ands.w r3, r3, #3

 bne.n 8008300 <memcpy+0xe8>

 subs r2, #64 ; 0x40

 bcc.n 80082ac <memcpy+0x94>

 ldr.w pc, [r1], #4

 str.w r3, [r0], #4

 subs r2, #64 ; 0x40

 bcs.n 8008228 <memcpy+0x10>

 adds r2, #48 ; 0x30

 bcc.n 80082d4 <memcpy+0xbc>

Fig. 3. Glitch injection moment during the memcpy function.

In Figure 3, we show a disassembled representation of
the memcpy function used by the AUTOSAR communication
stack. The data is copied from one buffer to the other using
LDR and STR instructions in a loop. This function is used
whenever data is sent to the ECU via the CAN bus (or any
other bus). This data originating from the ECU is attacker
controlled. It is actually copied multiple times by different
AUTOSAR layers using the same memcpy function. This
process provides an attacker with multiple opportunities to
inject a successful glitch in order to load an arbitrary value
into the PC register. We verified our hypothetical attack by
modifying the communication stack’s code. We modified one
load instruction in order to load value originating from the
CAN bus into the PC register. Our hypothesis was found to
be correct: If we can modify a LDR instruction, we can also
load an arbitrary value into PC. This finding provides us with
enough confidence to move on to demonstrating a real attack
whose results are described in Section V-C.

C. Attacking AUTOSAR

In this hardware attack on AUTOSAR, we are using voltage
fault injection to gain arbitrary code execution on the control
unit. To be independent of the user software implemented in
the application layer, we are targeting AUTOSAR’s commu-
nication stack. Using this attack, we are able to inject our
own code as an independent task in the application layer. The
advantage of controlling a task on the ECU is that we are able
to add functionality that can be used maliciously. For example,
we can add functionality to extract secrets from the ECU or
perform subsequent attack relying on some form of control.
An example would be a side-channel analysis attack to extract
keys from the Hardware Security Module (HSM).

As stated in Section V-B, AUTOSAR supports sending up
to 4095 bytes through CAN by using the ISO-TP protocol.
Since the CAN bus does not support authentication by default,
any participant with physical access to the bus is able to send

and receive data. For our attack we assume the attacker is
able to remove the ECU from a donor car. By analyzing
the source code of the AUTOSAR communication stack, we
discovered that the PDUs are transmitted from the PDU router
to the AUTOSAR COM or DCM module by using the memcpy
function. An attacker will likely reverse engineer the firmware
in order to form the same conclusion. By sending an address
over the bus and then glitching memcpy, we can redirect the
control-flow to an arbitrary position. We assume this attack
may be applicable to most ECUs as copying data is such a
fundamental operation.

AUTOSAR is a static real-time operating system, meaning
that it is not possible to simply create a new task during
runtime. The operating system manages tasks by using a
task control block (TCB). In this entry, task name, priority,
stack pointer and further important properties of the task are
stored. The OSEK/VDX specification, which is the base of
the AUTOSAR kernel, requires an OS IDLE task [14]. This
task gets scheduled when no other task requests CPU time.
For most ECUs this OS IDLE task will be implemented as an
infinite loop. In other words, the AUTOSAR-based ECUs do
not depend on the functionality provided by the OS IDLE task.
This allows us to abuse the OS IDLE task in order to inject
our own code. We can achieve this by simply overwriting the
OS IDLE task pointer, which is stored in memory. This pointer
is used whenever the OS IDLE task is scheduled. Note that
targeting any other task is also feasible, but using the IDLE
task has the advantage that the overall functionality of the
system is not affected.

TCB manipulation

Memcpy malicious IDLE task

Malicious IDLE task

Bu�er address

...

Bu�er address

Bu�er address

execute

Fig. 4. Payload sent to the ECU via the CAN bus.

Figure 4 shows the payload sent to the input buffer of the
ECU using the ISO-TP protocol. The payload consists of three
main parts:

1) TCB manipulation: This code overwrites the stored
task pointer on the stack of the IDLE task. The value of
the new address is pointing to a region in SRAM, where
the malicious IDLE task is placed.

2) Copy malicious IDLE task: The code of the new task
is copied to the address selected before using memcpy.

3) Buffer address: The starting address of the input buffer
is repeated several times in order to make the glitch less
time dependent.

To place the malicious IDLE task to memory and to modify
the task pointer of the IDLE task, the control-flow of the
program is tampered by using fault-injection. As the input
buffer is marked executable, the goal is to load the program

counter register with the address of the input buffer. To reduce
the complexity of the fault injection attack, the address of the
input buffer is repeated several times. The attacker now only
has to hit one of these addresses with the induced glitch. When
the attack was successful, the next time the IDLE task will be
scheduled, the code of the malicious IDLE task is executed.

0V

0V

0V
VCC

Trigger

CAN

glitch voltage

glitch delay

glitch length

V

t

t

t

Fig. 5. Moment in time when the glitch is injected.

Figure 5 depicts the timing of our attack. First, the payload
is transmitted using the CAN bus. Then, after the last frame
has been sent, a trigger activates our glitch generator. As
finding the required glitch strength for a successful glitch is
complex [24], we are randomly modifying the glitch param-
eters: glitch length, voltage and delay. If the glitch injection
was successful, the malicious IDLE task sends a message to
the computer using UART. With our setup, we were able to
gain arbitrary code execution on the ECU for around 2 times
an hour. As Timmers et al. stated in their work, the success
rate highly depends on the used setup and the device under
attack and requires dozens of glitch attempts to be successful
[11].

VI. HARDENING ECUS

An insecure design of an AUTOSAR-based ECU may
allow an attacker to compromise its security using a logical
vulnerability. The design is insecure when a vulnerability can
be exploited by using the ECU’s functionality according to
the design. An example is a small key size for the ECU’s
authentication mechanism. If the design is strong, an attacker
relies on a software and/or hardware vulnerability in order to
compromise the ECU’s security. These vulnerabilities are often
introduced by developers when the design is translated into
an implementation. Using software and/or hardware attacks,
these vulnerabilities may be exploited in order to compromise
the ECU’s security. It is often agreed that translating a design
into an implementation cannot be done without introducing

vulnerabilities. Therefore, it is important to make it as hard as
possible for an attacker to exploit these vulnerabilities.

A. Making software attacks hard

Secure embedded devices, like smartphones, in order to
be secure, rely on software exploitation mitigation techniques
which originated from the general purpose world. For example,
on modern smartphones, it is standard to implement stack
buffer overflow protection (e.g. stack cookies), stack/heap
memory protection (e.g. W⊕X) and address space layout
randomization (e.g. ASLR). Implementing these software ex-
ploitation mitigation techniques will increase the complexity
of exploiting a memory corruption based software vulnera-
bility significantly. Unfortunately, the support for these basic
exploitation mitigation techniques is non-existent or limited
[25] in modern ECUs.

B. Making hardware attacks hard

Hardware attacks that rely on exploiting a hardware vulner-
ability, such as fault injection, are difficult to mitigate. These
attacks are able to break the ECU’s software security model
on which it relies on. Most MCUs that are available for ECU
designers are not hardened against hardware attacks like fault
injection. Therefore, a designer of an ECU can only try to
harden the ECU against hardware attacks using the MCU’s
standard functionality and the software that is executed. Even
though hardware attacks are hard to protect against, they are
often only a stepping stone towards more relevant attacks [26].
For example, hardware attacks are used to extract firmware
in order to find software vulnerabilities that can be exploited
remotely. Any secrets (i.e. keys) present in this firmware will
be exposed as well. Therefore, the impact of hardware attacks
can often be minimized by not storing any secrets in the
firmware and making sure exploiting software vulnerabilities
is difficult. In more detail, do not rely on security by obscurity.
Most code protection features implemented by MCUs are
vulnerable to fault injection attacks.

VII. CONCLUSION

The security of AUTOSAR can be compromised using
software and hardware attacks. Although remote attacks are
most critical, attacks that are performed locally still impact
the security of modern cars. Local attacks are often a step-
ping stone for performing remote attacks (e.g. extraction of
firmware) or simply sufficient for the attacker’s use case (e.g.
compromising assets). The impact of attacks where a physical
presence is required by the attacker should be minimized.
Security sensitive data should not be stored in the firmware.

In our case study, we showed that it is possible to take
control (i.e. execute arbitrary code) of an AUTOSAR-based
ECU using a fault injection attack. We injected the glitch in
the memcpy function used by the AUTOSAR communication
stack in order to cause a fault that loads an attacker controlled
value into the PC register of the MCU. This allows us to hijack
the MCU’s control-flow in order to take full control of the
ECU. Several automotive threats may materialize if an attacker

is able to execute arbitrary code on an ECU. For example, it
will be possible to persistently modify the ECU’s functionality
if its code is not authenticated using secure boot.

ACKNOWLEDGMENT
This work would not have been possible without the help of

our great colleagues at Riscure, thank you! We also would like
to thank Graz University of Technology, especially the Institute
of Applied Information Processing and Communications, for
their support.

REFERENCES

[1] Fürst, Simon, et al. ”AUTOSAR–A Worldwide Standard is on the
Road.” 14th International VDI Congress Electronic Systems for Vehi-
cles, Baden-Baden. Vol. 62. 2009.

[2] AUTOSAR Consortium. AUTOSAR-Layered Software
Architecture. AUTOSAR Consortium, Tech. Rep., 2017,
https://www.autosar.org/fileadmin/user upload/standards/classic/4-
3/AUTOSAR EXP LayeredSoftwareArchitecture.pdf

[3] AUTOSAR Consortium. Specification of CAN Transport
Layer. AUTOSAR Consortium, Tech. Rep., 2017, Available:
https://www.autosar.org/fileadmin/user upload/standards/classic/4-
2/AUTOSAR SWS CANTransportLayer.pdf, 2017

[4] Timmers, Niek, and Cristofaro Mune. ”Escalating privileges in Linux
using voltage fault injection.” Fault Diagnosis and Tolerance in Cryp-
tography (FDTC), 2017 Workshop on. IEEE, 2017.

[5] Baumann, Robert C. ”Radiation-induced soft errors in advanced semi-
conductor technologies.” IEEE Transactions on Device and materials
reliability 5.3 (2005): 305-316.

[6] Bar-El, Hagai, et al. ”The sorcerer’s apprentice guide to fault attacks.”
Proceedings of the IEEE 94.2 (2006): 370-382.

[7] Alimi, Nejmeddine, et al. ”An RTOS-based Fault Injection Simulator
for Embedded Processors.” International Journal of Advanced Computer
Science and Applications 8.5 (2017): 300-306.

[8] Piper, Thorsten, et al. ”On the effective use of fault injection for the
assessment of AUTOSAR safety mechanisms.” Dependable Computing
Conference (EDCC), 2015 Eleventh European. IEEE, 2015.

[9] Bellotti, M., and R. Mariani. ”How future automotive functional safety
requirements will impact microprocessors design.” Microelectronics
Reliability 50.9-11 (2010): 1320-1326.

[10] Wiersma, Nils, and Ramiro Pareja. ”Safety!= Security: On the Resilience
of ASIL-D Certified Microcontrollers against Fault Injection Attacks.”
Fault Diagnosis and Tolerance in Cryptography (FDTC), 2017 Workshop
on. IEEE, 2017.

[11] Timmers, Niek, Albert Spruyt, and Marc Witteman. ”Controlling PC
on ARM using fault injection.” Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2016 Workshop on. IEEE, 2016.

[12] Milburn, Alyssa, et al. ”There Will Be Glitches: Extracting and Analyz-
ing Automotive Firmware Efficiently.”

[13] Zimmermann, Werner, and Ralf Schmidgall. Bussysteme in der
Fahrzeugtechnik. Springer Fachmedien, 2006.

[14] OSEK, OSEK/VDX Operating System Specification 2.2.3, 2005, http:
//www.irisa.fr/alf/downloads/puaut/TPNXT/images/os223.pdf

[15] FreeRTOS TCP/IP Stack Vulnerabilities Put A Wide Range of
Devices at Risk of Compromise: From Smart Homes to Critical
Infrastructure Systems, 2018, https://blog.zimperium.com/freertos-
tcpip-stack-vulnerabilities-put-wide-range-devices-risk-compromise-
smart-homes-critical-infrastructure-systems/

[16] Ramiro Pareja and Santiago Cordoba, ”Fault injection on automotive
diagnostic protocols”, escar USA 2018

[17] Grand Idea Studio, http://www.grandideastudio.com/jtagulator/
[18] SENRIO, https://blog.senr.io/blog/jtag-explained
[19] Bypassing Secure Boot using Fault Injection, https://www.blackhat.

com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-
Using-Fault-Injection.pdf

[20] Viva la Vita Vida, https://media.ccc.de/v/35c3-9364-viva la vita vida
[21] Introduction to Side-Channel Attacks, https://link.springer.com/chapter/

10.1007/978-0-387-71829-3 2
[22] Arctic Core for Autosar v3.1, https://www.arccore.com/products/arctic-

core/arctic-core-for-autosar-v31
[23] Timing attack, https://en.wikipedia.org/wiki/Timing attack

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_SWS_CANTransportLayer.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_SWS_CANTransportLayer.pdf
http://www.irisa.fr/alf/downloads/puaut/TPNXT/images/os223.pdf
http://www.irisa.fr/alf/downloads/puaut/TPNXT/images/os223.pdf
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-put-wide-range-devices-risk-compromise-smart-homes-critical-infrastructure-systems/
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-put-wide-range-devices-risk-compromise-smart-homes-critical-infrastructure-systems/
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-put-wide-range-devices-risk-compromise-smart-homes-critical-infrastructure-systems/
http://www.grandideastudio.com/jtagulator/
https://blog.senr.io/blog/jtag-explained
https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf
https://media.ccc.de/v/35c3-9364-viva_la_vita_vida
https://link.springer.com/chapter/10.1007/978-0-387-71829-3_2
https://link.springer.com/chapter/10.1007/978-0-387-71829-3_2
https://www.arccore.com/products/arctic-core/arctic-core-for-autosar-v31
https://www.arccore.com/products/arctic-core/arctic-core-for-autosar-v31
https://en.wikipedia.org/wiki/Timing_attack

[24] Carpi, Rafael Boix, et al. ”Glitch it if you can: parameter search
strategies for successful fault injection.” International Conference on
Smart Card Research and Advanced Applications. Springer, Cham,
2013.

[25] Dissecting QNX, Jos Wetzels, Ali Abbasi https://www.blackhat.com/
docs/asia-18/asia-18-Wetzels Abassi dissecting qnx WP.pdf

[26] There Will Be Glitches:Extracting and Analyzing Automotive Firmware
Efficiently, Alyssa Milburn et. al., https://www.riscure.com/uploads/
2018/11/Riscure Whitepaper Analyzing Automotive Firmware.pdf

[27] NewAE Technology Inc., ChipWhisperer, https://newae.com/tools/
chipwhisperer/

https://www.blackhat.com/docs/asia-18/asia-18-Wetzels_Abassi_dissecting_qnx__WP.pdf
https://www.blackhat.com/docs/asia-18/asia-18-Wetzels_Abassi_dissecting_qnx__WP.pdf
https://www.riscure.com/uploads/2018/11/Riscure_Whitepaper_Analyzing_Automotive_Firmware.pdf
https://www.riscure.com/uploads/2018/11/Riscure_Whitepaper_Analyzing_Automotive_Firmware.pdf
https://newae.com/tools/chipwhisperer/
https://newae.com/tools/chipwhisperer/

	INTRODUCTION
	AUTOSAR
	Software attacks
	MCAL vulnerabilities
	Communication services vulnerabilities

	Hardware attacks
	PCB-level
	Modification of external memory contents
	Extraction of external memory contents
	Debug interfaces
	Signal modification

	Fault injection
	Side-channel analysis

	CASE STUDY: FI ON AUTOSAR
	Fault model: instruction corruption
	Fault target: communication stack
	Attacking AUTOSAR

	HARDENING ECUS
	Making software attacks hard
	Making hardware attacks hard

	CONCLUSION
	References

