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Computational Performance of the Forward and
Inverse Kinematics of an Anthropomorphic Robot Arm

Christian HARTL-NESIC1, Martin MEIRINGER1

I. INTRODUCTION AND MOTIVATION

In robotics, two fundamental coordinate spaces are uti-
lized, i. e. the so called configuration space and the joint
space. Most of the robot tasks are naturally defined in the
configuration space (also known as task space) whilst actors
and sensors of a robot operate in the joint space (e. g.
encoders, electric motors, torque sensors . . . ). Therefore a
bidirectional transformation is desired for describing a vector
of one space in the other one.

Modern applications require increasing accuracy during
task execution, which demands an increasing bandwidth of
the control algorithms. To meet these increasing require-
ments, fast and efficient algorithms are necessitated for
calculating the robot kinematics, i. e. the forward and inverse
kinematics. While the forward kinematics describes the end
effector pose (position and orientation) in the configuration
space as a function of the joint space coordinates and
the inverse kinematics describes the joint space coordinates
as a function of the end effector pose. Two concepts are
investigated in the course of this work: i) homogeneous
coordinates, see, e. g., [3] and ii) dual quaternions, see,
e. g., [1]. The calculations are performed for the 7-degree-
of-freedom (DOF) anthropomorphic arm KUKA LWR IV+.

II. COMPUTATIONAL EFFORT FOR KINEMATICS

This work aims to compare the calculation costs of the
robots kinematics between two well known methods of de-
scribing the kinematics. First, elemental kinematic operations
are separately investigated, followed by the forward and
inverse kinematics for the 7-DOF robot.

A. Method of Performance Calculation

The computational performance is quantified by the calcu-
lation costs, i. e. the number of additions, multiplications and
function calls required to execute an algorithm and the mean
time to numerically perform a calculation. All presented
results, including the costs, where evaluated using the algebra
system MAPLE 2018. The numerical results where calculated
using MATLAB 2017b, using an office PC equipped with an
Intel Core i7-6700K 4 GHz CPU and 16 GB RAM.
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B. Fundamental Transformations

The discrete transformation (translation and rotation) be-
tween two coordinate frames using homogeneous coordinates
is given by the 4×4 matrix T given by

T =

[
1 0T

d R

]
, (1)

where d represents the translation between the two frames
and R denotes the rotation matrix representing the change
in orientation. The same transformation, formulated in dual
quaternions is given by

u = qR +
1
2

εqR ⊗qd , (2)

where qR denotes the unit quaternion representing the change
in orientation, qd denotes the quaternion representing the
translation between the two frames, ε is the dual unit
and ⊗ denotes the quaternion multiplication (see [1]). The
transformation matrix T in (1) and the transformation dual
quaternion u in (2) are used to perform discrete transforma-
tions, e. g. for changing the reference frame of a point in
task space. By utilizing the well known Denavit-Hartenberg
convention, see, e. g., [3], the relative transformations be-
tween two coordinate frames, attached to two consecutive
links, can be directly parameterized. Comparing the compu-
tational costs of (1) and (2) gives a first idea concerning the
computational performance of the two used methods. The
costs are summarized in Table II. For each calculation, the
costs without code optimization and the costs using the code
optimization provided by MAPLE 2018 are given, where the
non-optimized results are denoted with the ˜ symbol. Note,
the transformations for this comparison where constructed
using general, nonzero Denavit-Hartenberg parameters.

C. Forward Kinematics

The forward kinematics is given by the composition of
N transformations, where N is the number of degrees-of-
freedom. The forward kinematics for the end effector pose
is then calculated by

fH(θ) = TN
0 (θ) = T1

0(θ1)T2
1(θ2) · · ·TN

N−1(θN) , (3)

fdQ(θ) = uN
0 (θ) = u1

0(θ1)⊗u2
1(θ2) · · ·⊗uN

N−1(θN) , (4)

where ⊗ denotes the dual quaternion multiplication (see
[1]). The vector θ in (3) and (4) summarizes the relative
joint angles of the robot1. The relative transformations Ti

i−1
and ui

i−1 are parameterized using the Denavit-Hartenberg

1The dependencies T(θ) and u(θ) are omitted in the following for brevity.
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i ai αi di θi

1 0 π/2 0 q1
2 0 π/2 0 q2
3 0 π/2 l1 q3
4 0 π/2 0 q4
5 0 π/2 l2 q5
6 0 π/2 0 q6
7 0 0 0 q7

TABLE I
DENAVIT-HARTENBERG PARAMETERS FOR THE KUKA LWR IV+.

calculation add mult fcn. calls mean CPU time

T̃ in (1) 2 6 14 -
T in (1) 2 6 4 -
ũ in (2) 4 52 24 -
u in (2) 4 20 4 -

f̃H(θ) 88 238 327 4.109 µs
fH(θ) 40 87 14 3.642 µs
f̃dQ(θ) 312 1576 880 19.510 µs
fdQ(θ) 38 88 14 4.398 µs

f−1
H (T?) 1461 2570 52 86.138 µs

f−1
dQ(T

?) 1070 2258 184 173.104 µs

TABLE II
COST COMPARISON FOR FUNDAMENTAL TRANSFORMATIONS, FORWARD

AND INVERSE KINEMATICS.

parameters given in Table I. The resulting calculation costs
for the forward kinematics are summarized in Table II.

D. Inverse Kinematics

The inverse kinematics is a more challenging task and
often not solvable analytically. Also the number of possible
solutions can vary from zero to infinite solutions. For the
inverse kinematics, the nonlinear equations (3) and (4) have
to be solved for θ . This problem is formulated as

θ = f−1
H (T?) , (5)

θ = f−1
dQ(u

?) , (6)

where the superscript ? denotes a given end-effector pose.
The KUKA LWR IV+ comprises a spherical sholder joint, an
elbow joint and a spherical wrist, see, e. g., [3], this allows an
analytical solution of the problems (5) and (6). Thanks to this
construction, the kinematics can be separated in a position
and orientation task, since the last three joints, the spherical
wrist, only change the end effector orientation while leaving
its position unchanged. Due to the redundancy of the con-
sidered robot, one joint angle remains an independent DOF.
In this work, θ3 is chosen as DOF. For the considered robot,
the inverse kinematics problem results in eight sets of one-
parametric solutions.

The inverse kinematics implementation, formulated using
homogeneous coordinates, follows the work of Pfurner [2].
The method for calculating the inverse kinematics, formu-
lated in dual quaternions is based on the arguments given
by Pfurner. The different formulation of the kinematics
changes the analytic structure of the obtained equations,
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Fig. 1. Mean computation times for the forward and inverse kinematics.

but the dependencies of the equations remain unchanged.
The resulting system of equations is solved using MAPLE
2018 following the procedure presented in [2]. The resulting
calculation costs for the inverse kinematics are summarized
in Table II. For practical applications, in addition to the
calculation costs also the mean calculation time to execute
an algorithm is of interest. These are also summarized in
Table II and visualized in Figure 1. Solving the position
part of the inverse kinematics problem, the dual quaternion
formulation utilizes twice the analytical solution of a 4th
degree polynomial. However, this yields multiple invalid
solutions, which have to be eliminated using an additional
equation. Thus, the homogeneous coordinate formulation is
significantly faster.

III. CONCLUSION

In this work, the forward and inverse kinematics of a
7-DOF anthropomorphic arm, the KUKA LWR IV+ were
formulated using i) homogeneous coordinates and ii) dual
quaternions and evaluated with respect to the computational
costs and mean computation time.

By utilizing the code optimization functions provided by
modern computer algebra systems, e. g. MAPLE 2018, the
forward kinematics implementations perform almost equally,
while the homogeneous coordinate formulation is slightly
faster. The inverse kinematics implementations show a more
significant difference in computation time, whereas the dual
quaternion implementation is about 70% slower. Hence, if
the robot task does not prescribe the coordinate space, the
presented results suggest to use homogeneous coordinates
for calculating the robot kinematics.
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