
D
ra

ft

Efficient Multi-Task Learning of Semantic Segmentation and Disparity
Estimation∗

Robert Harb1 and Patrick Knöbelreiter1

Abstract— We propose a jointly trainable model for semantic
segmentation and disparity map estimation. In this work we
utilize the fact that the two tasks have complementary strength
and weaknesses. Traditional depth prediction algorithms rely on
low-level features and often have problems at large textureless
regions, while for semantic segmentation these regions are
easier to capture. We propose a CNN-based architecture, where
both tasks are tightly interconnected to each other. The model
consists of an encoding stage which computes features for both
tasks, semantic segmentation and disparity estimation. In the
decoding stage we explicitly add the semantic predictions to
the disparity decoding branch and we additionally allow to ex-
change information in the intermediate feature representations.
Furthermore, we set the focus on efficiency, which we achieve
by the usage of previously introduced ESP building blocks. We
evaluate the model on the commonly used KITTI dataset.

I. INTRODUCTION

Semantic segmentation and disparity estimation are active
fields of research in computer vision. Most state-of-the-art
work focuses on single-task models which perform either
disparity estimation or semantic segmentation exclusively. In
our work we create a multi-task model which performs both
tasks simultaneously. This is mainly motivated by the follow-
ing points: First, a single model performing multiple tasks
jointly can be more efficient than using a separate model
for each task. Therefore, multi-task learning is especially
attractive for applications with limited resources and for real-
time processing. Furthermore, it has been shown that the
synergy among the individual tasks can boost their individual
performances [22]. Except from these performance benefits
information about both, the objects in the scene as well as
their distance, respectively is important for many real world
tasks. Such tasks could be for example autonomous driving
or robot navigation.

In this work, we tackle both tasks, semantic segmentation
and depth estimation, in a joint setting. We therefore start
from two individually trained models and step by step fuse
them to a joint model. The joint model allows to share com-
puted features and therefore reduces the number of necessary
operations yielding an efficient model. Furthermore, this set-
ting allows to exchange information between the two tasks,
which helps to increase the individual performances. We train
the joint model end-to-end and evaluate the performance on
the KITTI dataset.

*This work was supported by the research initiative Intelligent Vision
Austria with funding from the AIT and the Austrian Federal Ministry
of Science, Research and Economy HRSM programme (BGBl. II Nr.
292/2012)

1Institute of Computer Graphics and Vision, Graz University of
Technology, Austria {robert.harb@student.tugraz.at,
knoebelreiter@icg.tugraz.at}

Right Image: Ir

Left Image: Il

Feat. Extractor

Feat. Extractor

Cost Vol.

(H, W, 3)

(H, W, 3)

(H/4, W/4, 64)

(H/4, W/4, 64)

(D/4, H/4, W/4, 128)

4D cost volume

Right Features: fr

Left Features: fl

Decoder

Semantic Segmentation Disparity Map

3D CNN

Low-Res. Initial Disp.

Fig. 1: Overview of our proposed architecture. Blue boxes denote
learnable building-blocks of our model. The two feature extractor
blocks have shared weights and are used for the semantic segmen-
tation and for the disparity computation.

II. RELATED WORK

Semantic Segmentation: Given an input image, a se-
mantic image segmentation algorithm assigns a semantically
meaningful label for every pixel in the image. Labels can
for example be car, person or vegetation. Applications
of semantic segmentation exist in various areas including
e.g., autonomous driving [6], [5], brain tumor segmentation
[8], or segmentation of satellite images [21]. Recent work
utilizes mainly Convolutional Neural Network (CNN) based
approaches for semantic segmentation. In the following we
divide them into two groups: The first group contains large
and resource demanding models which try to improve top
benchmark scores on common datasets like KITTI [6] or
Cityscapes [5]. Top performing methods of this group are for
example Deeplabv3+ [3] or the PSPNet [29]. Those models
are able to produce high quality results at the cost of requir-
ing a lot of parameters, memory and computational time. The
prior mentioned method Deeplabv3+ uses ≈ 44M parameters
and the PSPNet has ≈ 66M parameters. This makes them
unsuitable for usage in memory restricted environments or
for applications where real-time processing is needed.

The second group contains lightweight and therefore ef-
ficient models. They try to find optimal trade-offs between
computational complexity and performance in terms of seg-
mentation accuracy. Representatives of this group are e.g.
MobileNet [10], ShuffleNetV2 [18], ENet [20] or ESPNet
[19]. ESPNet is for example ≈ 22 times faster while being ≈
180 times smaller than PSPNet. The semantic segmentation
performance is still very good. ESPNet achieves a mean-
Intersection-over Union (mIoU) score which is only ≈ 8%
lower than the PSPNet score on Cityscapes benchmark. This

Proceedings of the ARW & OAGM Workshop 2019 DOI: 10.3217/978-3-85125-663-5-30

147

D
ra

ft

increase in computational efficiency is mainly achieved by
incorporating the convolution factorization principle. Due to
these benefits, we use parts of the ESPNet as basic building
blocks in our model.

Disparity Estimation: Estimation of depth from im-
age data has a wide variety of applications such as e.g.
3D reconstruction and augmented reality. In this work we
focus on depth estimation from a rectified pair of stereo
images. Similar as for semantic segmentation currently best
performing models use CNNs. The first who showed how
CNNs can be used for stereo matching have been Zbontar
and LeCun [28]. Since then many CNN based stereo methods
have been proposed such as PSMNet [2], Edge-Stereo [25]
or CNN-CRF [14]. Even though CNN based architectures
work well for stereo matching in many cases they still have
problems in homogeneous regions, occlusions or reflections.
One approach to mitigate this problems is to enlarge the
receptive field by using e.g., multiscale features in a 3D CNN
regression module [12] or dilated convolutions [17]. Another
method is to incorporate semantic scene understanding, this
has been done in non CNN based approaches by Ladicky
et al. who construct separate random fields for disparity
and semantic labeling and optimize them jointly [16]. And
more recently by Displets which resolve ambiguities by
incorporating object knowledge by modeling 3D vehicles
[7], and SegStereo where semantic features are embedded
in a cost volume for disparity prediction [27]. SegStereo is
the most similar approach to our work; however, there are
several fundamental differences. SegStereo uses a Resnet-50
for feature extraction, our architecture is based on ESPNet
which is computationally more efficient. They perform a 1D-
correlation on the cost volume, whereby we use a 3D-CNN
for regularization. Additionally, they add an unsupervised
photometric and smoothness component to their loss.

Multi-task learning: The general objective of multi-
task learning is to improve generalization by leveraging the
domain-specific information contained in the training signals
of related tasks [1]. In neural network based architectures
this can be done by sharing parts or the whole internal
representation among different tasks. When considering effi-
ciency, multi-task learning is attractive. Both memory and
computational time can be reduced if we do not need a
separate network for each task. This has been shown for
example in UberNet [15] where as many as 7 tasks have been
trained jointly including among others semantic segmenta-
tion and surface normals. Another representant is HyperFace
[22] which performs face detection, landmark localization,
pose estimation and gender recognition simultaneously while
fusing intermediate layers of a deep CNN.

A common challenge in a multi-task setting is that every
task has usually a separate domain specific loss function.
One way to deal with multiple losses during training is to
calculate a weighted linear combination of all losses. This
total loss can then be optimized like in a single-task setting.
However, due to e.g. different scalings in the task-specific
losses weights are usually introduced. One possibility to
determine optimal weights is to perform a grid search over

ESP

RGB image

(W, H, 3)

(W, H, 16)

(W, H, 19)

(W/2, H/2, 64)

(W/2, H/2, 64)

(W/2, H/2, 131)

(W/4, H/4, 128)

(W/4, H/4, 128)

(W/4, H/4, 259)

(W/4, H/4, 19)

ESP Block + downsampling

p

conv-Y 2D conv. YxY Kernel

ESP

ESP x x successive ESP Blocks

nin, j, nout

2D dilated conv. 3x3 Kernel,
nin channels to nout channels,
dilation rate j

R
ed

uc
e

Sp
lit

Tr
an

sf
or

m
M

er
ge

j = M/K

conv-3

concat.

ESP

concat.

ESP q

ESP

concat.

conv-1

Softmax

seg. pred

f1

f2

f3

f4

C, 1x1, j

j, 2, jj, 1, j j, 2k-1, j

Σ Σ

concat.

Σ

(W, H, C)

(W, H, M)

ESP Block

Fig. 2: ESP feature extraction module. Left: calculation of the
feature maps f1 to f4 from an RGB input image. Top-right: Internal
structure of one ESP block which maps from C input channels to
M output channels. Seg. pred. and f4 have the same content, but
are drawn separately for clarity.

the weights. However the search space grows exponentially
with the number of tasks and therefore one quickly runs into
resource limitations. More sophisticated procedures for the
weight calculation are proposed by [4], [11]. The former pro-
poses GradNorm, where an adaptive weight is recalculated
at each training step based on each tasks gradient magnitude.
The latter introduced uncertainty weighting which considers
the homoscedastic uncertainty of each task for its weighting.
Another way to train CNN based multi-task architectures
was introduced by Ozan et al. [24] who showed how to
use gradient-based multiobjective optimization algorithms in
such a setting.

III. JOINT SEGMENTATION AND DISPARITY NETWORK

Figure 1 gives a brief overview of our proposed architec-
ture. At first the left and right input image Il and Ir are
passed through the feature extractor which calculates for
both images the feature maps f1 to f4 and a low-resolution
semantic segmentation prediction. Weights of both feature
extraction modules are shared. Secondly by using pointwise
convolutions and concatenation operations new features fl
and fr are created from the last features f1 to f4. Those are
aggregated to a 4D cost volume which is then regularized
by a 3D CNN to obtain the disparity prediction. Finally the
beforehand created low-resolution segmentation prediction
and the disparity prediction are passed through a common
decoder which refines the segmentation and disparity pre-
dictions.

148

D
ra

ft

Left Image

(H, W, 3)

(Dmax/4, H/4, W/4, 128)

Cost Volume

conv-1

f2

conv-1

f3

conv-1 conv-1

Right Image

Feat. Encoder
(H, W, 3)

(H/4, W/4, 64)

conv-1

fr

conv-1 conv-1 conv-1

Feat. Encoder

f1 f4 f1 f2 f3 f4

Cost Volume aggregation
(H/4, W/4, 64)fl

concatenate concatenate

Fig. 3: Construction of the 4D cost volume using the left and right
input image. conv-1 defines a 2D convolution with a 1x1 Kernel
and 16 channels.

A. Semantic feature extraction

Figure 2 shows the structure of our semantic feature
extraction module. The module simultaneously calculates a
low resolution segmentation prediction, and the features f1
to f4 for disparity prediction. The features are extracted
at different levels such that they include both high-level
and low-level information. E.g. f4 contains semantic in-
formation and f1 contains edge information. We also use
skip connections from the input image to several points in
the network. This is also done in ESPNet [19] where it
is referred to as input reinforcement. The main building
blocks of our feature extraction module are ESP blocks
[19]. The internal structure of an ESP block is shown at
the top-right of Figure 2. ESP blocks are based upon the
convolutional factorization principle which decomposes a
standard convolution into a pointwise convolution and a
spatial pyramid of dilated convolutions. This enables them
to cover a wide effective receptive field while keeping the
computational complexity low. A single ESP block performs
the following four steps successively. At first a pointwise
convolution is used to reduce the number of input channels
from C to j = M

K , whereby K is a hyperparameter called
width divider and M is the number of output channels. The
resulting j channels are then split into K parallel branches.
In the transform step each of the K branches applies a
dilated convolution on its input, whereby for each branch
the same kernel-size of n× n, and a different dilation rate
taken from 2k−1 with k ∈ [1,K) is used. Finally, the outputs
of all K branches are merged together. In the ESPNet paper
[19] it has been shown that direct summation can introduce
unwanted checkerboard or gridding artifacts. To overcome
this problem hierarchical feature fusion (HFF) is used. The
outputs of the different branches are first hierarchically added
before they are concatenated (also shown in Figure 2).

B. Disparity Estimation

For disparity estimation we reuse the features f1 to f4
from the left and right input image. At first, all features are
rescaled to a common resolution which is (H/4,W/4) in our
case. The features f1 and f2 have a higher resolution and thus
they are downsampled. Then on each feature output f{1,2,3,4}
a 1× 1 convolution is applied to reduce the number of
channels to 16. The resulting features are then concatenated
into the feature fl for the left image and fr for the right

image. These features contain information from multiple
scales and are therefore well suited for matching. This is
done by concatenating fl together with the corresponding
right feature map fr over all disparity levels. This results in a
4D cost volume of dimensionality (Dmax/4, H/4,W/4, 128).
See Figure 3 for a visualization. Note that the first dimension
of the cost volume equals Dmax/4 and not Dmax since we
downsample over all 3 spatial dimensions. To regularize
the cost volume we fed it into a 3D CNN with a similar
architecture as in GC-Net [12] and PSMNet [2]. The network
consists of five consecutive residual blocks containing two
3D convolutional layers with kernels of size 3× 3× 3 and
32 channels, followed by a single 3×3×3 3D convolutional
layer with one output channel. We upsample the output of
the 3D CNN from (Dmax/4, H/4,W/4) to (Dmax, H,W).
This volume contains an estimated cost for each disparity
value in the first dimension. A dense disparity prediction
could be acquired by e.g. the argmin operation over the
first dimension. However a regular argmin operation is non-
differentiable and therefore does not allow training with sub-
pixel accuracy. Following previous work like GC-Net [12] we
use a differentiable SoftArgmin function instead. To calculate
the SoftArgmin function we first take the negative values of
the cost volume C to convert the cost volume to a probability
volume. Then we normalize the probability volume with a
softmax across the disparity dimension. Finally, we calculate
the sum over all disparity values weighted by their normal-
ized probability. This leads to the following calculation of
the SoftArgmin d̂i for every pixel i:

d̂i =
Dmax

∑
d

d · exp(−Ci(d))
∑d′ exp(−Ci (d′)

, (1)

whereby Dmax is the maximum disparity respectively the size
of the first dimension of the cost volume C. The SoftArgmin
is differentiable and thus we can learn sub-pixel accurate
disparity maps.

C. Decoder

In order to allow the two tasks to benefit from each other,
we propose a decoder which jointly creates the final pre-
diction for both the semantic segmentation and the disparity
map. The structure of the decoder is shown in Figure 4. In
the decoder the low-resolution disparity and segmentation
predictions are upsampled in two separate paths, whereby
the two paths are connected at several positions to allow
information to flow between the disparity and segmentation
path. The inputs of the decoder are a disparity map and a
segmentation prediction of size

(H
4 × W

4

)
. Those are then up-

sampled by the decoder in three consecutive stages, whereby
each stage is processing data at the increasing resolutions, i.e.(H

4 × W
4

)
→

(H
2 × W

2

)
→ (H×W). The input of each stage is

either a disparity or segmentation prediction at the respective
resolution of the stage, and the output is a refined version of
the input. This is done with a residual connection [9] which
allows to add finer grained information at the next stage
without the need of completely reconstructing the result.

149

D
ra

ft

seg. pred.

f3

cat. decoder bl. +

conv-1

decoder bl. + decoder bl. +

f2

conv-1

f1 seg. pred.

conv-1 2x

conv-1 conv-1

decoder bl. + decoder bl. + decoder bl. +

2x

disp. pred.

final
seg. pred.

final
disp. pred.cat. cat.

cat. cat.

cat.

seg. pred. seg. pred.

2x

2x

Fig. 4: The decoder upsamples the low-resolution segmentation prediction and refines the disparity prediction. Stages of the decoder are
separated by vertical dashed lines.

Let us now look into one stage (=one processing reso-
lution) in more detail. To provide fine details which have
been lost during the former downsampling and processing
we concatenate the encoded feature maps at the respective
resolutions. This is similar to the skip connections between
the contracting and expanding path in U-Net [23]. We
squeeze the concatenated features with a 1×1 convolution to
match the number of semantic classes. In the disparity path
we additionally concatenate the segmentation prediction.

The result is then processed by a decoder block. The input
of a decoder block is first passed through two consecutive
ESP blocks with 48 output channels and then through another
1× 1 convolution to reduce the output to the 19 channels
for the segmentation path and to 1 channel for the disparity
path, respectively. Finally, an elementwise addition between
the output of the decoder block and the respective prediction
of each path is calculated to get the output of the stage.

D. Multi-task loss

To train our model we use a cross-entropy loss for the
segmentation task, and a smooth L1 loss for the disparity
task. We calculate our disparity loss as follows:

Ld(d, d̂) =
1

Nd

Nd

∑
i=1

smoothL1

(
di− d̂i

)
, (2)

whereby we mask out pixels with invalid disparity label and
the smooth L1 loss is given as:

smoothL1(x) =
{

0.5x2, if |x|< 1
|x|−0.5, otherwise . (3)

In the KITTI training set the amount of pixel occurrences of
each class varies substantially. To account for this imbalance
we weight each class by a different weight wclass in the
segmentation loss. The weights are calculated as follows:

wclass =
1

ln(c+ pclass)
, (4)

whereby pclass denotes the probability of class occurrence at
one pixel in the training set and c is a hyperparameter. We
calculate the total loss L as a weighted sum of Ls and Ld :

L(θ j,θs,θd) = wsLs(θ j,θs)+wdLd(θ j,θd), (5)

where Θ ∈RN contains all N parameters of our model, θs ⊂
Θ contains the parameters only used for the segmentation

task, θd ⊂Θ the parameters only used for the disparity task
and θ j = θs∪θd are the jointly used parameters. The weights
for the segmentation and disparity loss are denoted by ws
and wd . We evaluate how the performance of our model
changes if we set the weights wdisp and wseg to several fixed
values, and if the weights are calculated using adaptive loss
balancing with GradNorm [4].

IV. EXPERIMENTS

A. Data

We use the KITTI dataset [6] for training and evaluation
of our model. It contains ground truth data for both semantic
segmentation and disparity. The dataset consists of 200
training and 200 test images of driving scenes, whereby the
labels of the 200 test images are not available to the public
but hold back. This provides a reliable performance bench-
mark of different models on a public online leaderboard. To
evaluate our model we use a 80/20 random split of the 200
training images. Following most recent work which evaluates
segmentation on KITTI [27] we use the most common 19
classes for training and evaluation. To account for the class
imbalance in the KITTI we set the hyperparameter c in the
calculation of wclass to 1.02, as in ENet [20]. This restricts
the class weights to be in the interval of [1,50].

B. Training

All convolutions are followed by a batch normalization
layer except the last layer of the 3D regularization module,
leaky ReLU units (α = 0.01) are used as activation functions,
except the 3D regularization module where ReLU units are
used for activation. In the ESP feature extraction module the
number of successive blocks is set to p = 5 and q = 3. The
width divider K of all ESP blocks is set to 5. We use the
Adam [13] optimizer (β1 = 0.9, β2 = 0.999) with an initial
learning rate of 0.0005 and decay it by a factor of 0.5 at
epoch 400 and 500. The complete training is performed end-
to-end and no pre-training is done. Following PSMNet [2],
we set the maximum disparity to 192. For all experiments a
batch size of 2 was used. All input images are normalized,
using the mean and variance of the training set.

As input we use the full resolution KITTI images. How-
ever to avoid memory problems during training, we perform
a 114×128 random crop on the cost volume. The memory

150

D
ra

ft

(a) Input (b) Baseline (c) Model A (d) Model B

(e) Input/GT (f) Baseline (g) Model A (h) Model B

Fig. 5: Qualitative comparison. (a) shows the input image and the semantic ground-truth. (b-d) show the predictions of our models. Top
row: Color-coded disparity maps with green=near and blue=far. Middle row: Close ups of the selected regions. Bottom row: Semantic
segmentation. Parameters for Model A and Model B have been obtained from the same training session but at different epochs.

requirements of our 3D CNN are relatively high, and all
recent networks with similar architectures like PSMNet [2]
use cropped input images for training. With our approach
the feature extraction module can exploit information from
the complete input image, while we still save a significant
amount of memory in the 3D CNN. It has also been shown
by [26] that information from the complete input image
is benefical for stereo matching. Note during inference no
cropping in the 3D CNN is necessary.

C. Baseline systems

We compare our final results also to simple baseline
systems. For disparity estimation we implemented a network
similar to the CNN-7 model used in CNN-CRF [14] without
the CRF. The network consists of a 7-layer unary CNN
with 100 filters in each layer, whereby the filter size in
the first layer is (3× 3) and in all following layers (2× 2),
as activation function the tanh is used. The unary CNN is
then used to extract features from the left and right input
image which are passed through a cross-correlation function
which outputs the softmax normalized scalar products of
corresponding feature vectors. For baseline segmentation we
use an 8 layer CNN network, whereby the first 7 layer
have 64 filters and a kernel size of (3× 3) followed by
BatchNormalization and a ReLU activation function. We use
a dilation rate of 2 for the layers 3 and 4, and a dilation rate
of 4 for the layers 5, 6, 7, and 8. After the second and fourth
layer we apply a pooling operation with a factor of 2. The
last layer has a kernel size of (1×1) and 19 output filters.

D. Results

During training we monitor the mean Intersection-over-
Union (mIoU) and the bad3 pixel error, i.e. the percentage of
pixels with disparity error > 3.0 pixels. When only disparity
or segmentation is trained, we report the respective score
at the best performing epoch. In the multi-task setting, the
epoch where one task reaches its best performance is not
necessarily the same epoch where the other task performs
best. Therefore we need to choose an epoch which gives a
good trade-off between performance of both tasks. To give a
better insight in our model, we will examine two models both
obtained from the same training session (wdisp = 5 and wseg =
1), but parameters are taken at different epochs. One model

was chosen with slightly better performance in segmentation
and the other in disparity estimation. We will simply refer to
them as Model A and Model B. Figure 5 shows a qualitative
comparison of our results. In the top-region Model B gives a
relative noisy disparity prediction. The segmentation close-
ups show that Model B is able to predict the car contours
better than Model A.

Model NOC All Seg. Params Time

bad3 bad3 mIoU # sec.

ours - ESP

Model A 3.16 3.75 47.04 0.64M 0.28
Model B 3.84 4.37 49.43 0.64M 0.28
GradNorm α = 0.5 4.07 4.54 46.6 0.64M 0.28
GradNorm α = 1.5 3.95 4.68 48.9 0.64M 0.28
Only disp 3.69 4.24 – 0.57M 0.28
Only seg – – 50.48 0.21M 0.08

ours - baseline

Only disp 14.10 15.6 – 0.28M –
Only seg – – 44.13 0.23M –

other

PSMNet [2] 2.14 2.32 – 5.23M 0.44
SegStereo [27] – 2.25 59.10 25.60M1 0.60
CNN-CRF [14] 4.84 5.50 – 0.28M 0.76

TABLE I: Results. Note that we report performance on our val-
idation set, and the published results report performance on the
retained test set of KITTI.

Table I shows the results of our experiments. Disparity
estimation is evaluated on non-occluded (NOC) pixels, i.e.
pixels visible in both images, and on all pixels. We have
been able to significantly improve upon our baseline systems
by incorporating ESP blocks, which shows that they are an
efficient building-block for light-weight segmentation and
stereo matching networks. When doing multi-task training,
performance in segmentation gets slightly worse, but for dis-
parity estimation performance increases upon the single-task
setting. Looking at the number of parameters of each model
we note that i) all of our models are light-weight compared
to most other recent work and ii) only a relative increase in

1SegStereo does not report an exact number of parameters for their
model, therefore we report the parameters of ResNet-50 which they use
as a backbone.

151

D
ra

ft

0 200 400 600 800
0

50

100

b
a
d
3

[%
]

Disparity

0 200 400 600 800
0

20

40

m
Io

U
[%

]

Segmentation

700 720 740 760 780 800

Epochs

3.4

3.6

3.8

b
a
d
3

[%
]

700 720 740 760 780 800

Epochs

45.0

47.5

50.0

m
Io

U
[%

]

Fig. 6: Training curves, Shaded regions show standard deviation.
Left: lower is better. Right: higher is better. Blue: (wdisp =
10,wseg = 1), green: (wdisp = 10,wseg = 1), orange: (wdisp =
5,wseg = 1).

parameters of 12% is needed from our model which only
performs disparity estimation to the model which calculates
both disparity and segmentation. Overall SegStereo and
PSMNet still perform better, we mainly attribute this to the
fact that they use significantly more complex models without
a strong focus on efficiency. Compared to CNN-CRF we are
able to achieve slightly better performance, however it should
be noted that their model uses even less parameters than ours.

We also investigated how different weightings of the
disparity and segmentation loss influence training. Figure
6 shows training curves for other weightings, one can see
that especially the performance in segmentation degrades if
its relative weighting is too small. The usage of GradNorm
did not help to increase performance. The best results we
achieved were obtained by using a fixed weighting of wdisp =
5 and wseg = 1.

V. CONCLUSION

We have proposed a model which jointly performs se-
mantic segmentation and stereo matching. Compared to
performing both tasks separately, our shared architecture
reduces runtime and model complexity, while achieving the
same performance. Furthermore we carefully designed our
model with a focus on efficiency and are able to reduce
runtime compared to similar state-of-the art methods.

REFERENCES

[1] R. Caruana, “Multitask learning,” Mach. Learn., vol. 28, no. 1, 1997.
[2] J.-R. Chang and Y.-S. Chen, “Pyramid stereo matching network,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018.

[3] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic
image segmentation,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018.

[4] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, “Grad-
Norm: Gradient normalization for adaptive loss balancing in deep
multitask networks,” in Proceedings of the 35th International Con-
ference on Machine Learning, ser. Proceedings of Machine Learning
Research, J. Dy and A. Krause, Eds., vol. 80. PMLR, 2018.

[5] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016.

[6] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, 2013.

[7] F. Guney and A. Geiger, “Displets: Resolving stereo ambiguities using
object knowledge,” in CVPR, 2015.

[8] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville,
Y. Bengio, C. Pal, P.-M. Jodoin, and H. Larochelle, “Brain tumor
segmentation with deep neural networks,” Medical image analysis,
vol. 35, 2017.

[9] K. He, X. Zhang, and S. Ren, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016.

[10] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[11] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018.

[12] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy,
A. Bachrach, and A. Bry, “End-to-end learning of geometry and
context for deep stereo regression,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017.

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” CoRR, vol. abs/1412.6980, 2014.

[14] P. Knöbelreiter, C. Reinbacher, A. Shekhovtsov, and T. Pock, “End-
to-end training of hybrid cnn-crf models for stereo,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[15] I. Kokkinos, “Ubernet: Training a universal convolutional neural
network for low-, mid-, and high-level vision using diverse datasets
and limited memory,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[16] L. Ladickỳ, P. Sturgess, C. Russell, S. Sengupta, Y. Bastanlar,
W. Clocksin, and P. H. Torr, “Joint optimization for object class
segmentation and dense stereo reconstruction,” International Journal
of Computer Vision, vol. 100, no. 2, 2012.

[17] Z. Li and L. Yu, “Compare stereo patches using atrous convolutional
neural networks,” in Proceedings of the 2018 ACM on International
Conference on Multimedia Retrieval, ser. ICMR ’18. ACM, 2018.

[18] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018.

[19] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Hajishirzi,
“Espnet: Efficient spatial pyramid of dilated convolutions for semantic
segmentation,” in Proceedings of the European Conference on Com-
puter Vision (ECCV), 2018.

[20] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A
deep neural network architecture for real-time semantic segmentation,”
arXiv preprint arXiv:1606.02147, 2016.

[21] M. Pesaresi and J. A. Benediktsson, “A new approach for the mor-
phological segmentation of high-resolution satellite imagery,” IEEE
transactions on Geoscience and Remote Sensing, vol. 39, no. 2, 2001.

[22] R. Ranjan, V. M. Patel, and R. Chellappa, “Hyperface: A deep multi-
task learning framework for face detection, landmark localization, pose
estimation, and gender recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 41, no. 1, 2019.

[23] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International Confer-
ence on Medical image computing and computer-assisted intervention.
Springer, 2015.

[24] O. Sener and V. Koltun, “Multi-task learning as multi-objective
optimization,” in NIPS, 2018.

[25] X. Song, X. Zhao, H. Hu, and L. Fang, “Edgestereo: A context inte-
grated residual pyramid network for stereo matching,” arXiv preprint
arXiv:1803.05196, 2018.

[26] S. Tulyakov, A. Ivanov, and F. Fleuret, “Practical deep stereo (pds):
Toward applications-friendly deep stereo matching,” in Advances in
Neural Information Processing Systems, 2018.

[27] G. Yang, H. Zhao, J. Shi, Z. Deng, and J. Jia, “Segstereo: Exploiting
semantic information for disparity estimation,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018.

[28] J. Zbontar, Y. LeCun, et al., “Stereo matching by training a convolu-
tional neural network to compare image patches.” Journal of Machine
Learning Research, vol. 17, no. 1-32, 2016.

[29] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” CVPR 2017, vol. 2017-January, 2017.

152

