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Abstract— The accurate quantification of cancer (blast) and
non-cancer cells in childhood leukaemia (blood cancer) is a
key component in assessing the treatment response and to
guide patient specific therapy. For this classification task, cell
specific biomarker expression levels are estimated by using
flowcytometry measurements of multiple features of single
blood cells. For the automated distinction between blasts and
non-blasts a main challenge are data shifts and variations in the
high-dimensional dataspace caused by instrumental drifts, inter
patient variability, treatment response and different machine
characteristics. In this work we present a novel alignment
scheme for stable (non-cancer) cell populations in flowcytometry
using Gaussian Mixture Models (GMM) as data representation
format for the cell clusters’ probability density function and
a Wasserstein interpolation scheme on the manifold of GMM.
The evaluation is performed using a dataset of 116 patients
with acute lymphoblastic leukaemia at treatment day 15. Clas-
sification results show an improved normalization performance
using Wasserstein metric compared to two other metrics with
a mean sensitivity of 0.97 and mean f-score of 0.95.

I. INTRODUCTION
For the assessment of leukaemia (blood cancer) treatment

response in the clinical routine, cell specific immunopheno-
types of blood or bone marrow samples are measured using
the FlowCytoMetry (FCM) technique [1], [4]. Therefor,
in a staining step a combination of specific fluorescence-
labeled antibodies is used to mark antigens on the surface
of a cell. The expression of antigens on a surface varies
among different blood cell types, which is used to identify
blasts and non-blasts. In a subsequent step, every single
cell is put in a fluid stream and FCM lasers of different
wavelengths are used to measure physical properties (cell
size and granularity) and the fluorescence pattern of the
antibodies attached to the cell [12]. In Figure 1 a sample
obtained by an FCM is illustrated. Every dot represents a
cell (red cells refer to blast cells), where its position is
determined by the features measured (in this case) for the
expression of the antibodies CD 10 and CD 45. Up to 30
features can be measured and observed at once. Blasts are
manually identified using a gating hierarchy, which consists
of a defined procedure observing specific combinations of
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features in a two-dimensional representation and by drawing
polygons (gates) to extract and mark cell clusters of interest
in every step. The identified events of interest of a gating
step serve as input of the subsequent gate in the hierarchy.
This manual procedure strongly depends on the experience
and skills of the operator, is highly time-consuming and
subjective. [7]

Fig. 1. Illustration of a flowcytometer sample. The labeling is obtained by
manual gating (drawing polygons (gates) around populations of interest) in
the two dimensional feature space (CD10, CD45). [Best viewed in color]

A. Challenges

The main challenge in gating FCM data is the detection of
small cell populations, e.g. cancer cells in late therapy stages
composing around 0.1% of all cells observed (3∗105 - 106).
This is further aggravated by the influence of treatment or
age on the regeneration status of bone marrow precursors
[5]. A further challenge forms shifts and deformations of
the clusters observed in the high-dimensional feature space
caused by different machine types, corresponding instrumen-
tal drifts and lab varying standard operating procedures [10].
Thus, it is particularly important to obtain a normalized
representation of samples to be able to compare and identify
clusters of interest and to perform patient or population based
longitudinal analysis automatically over therapy time and
multiple centers.

B. Related Work

A key issue for multi-center studies as well as in studies
where data is acquired with different flowcytometers, is the
normalization and alignment of cell population clusters to
improve the automated blast identification process. In recent
approaches ([8], [11], [7]) Gaussian Mixture Models are
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used to model the probability density function of blood
cell clusters to assign a biologically meaningful label to
every observed cell automatically. Various approaches for
the registration and interpolation of GMM distributions have
been proposed in the computer vision and pattern recognition
community: Jian et al. [2] present a robust registration
scheme of GMM for point sets using a L2 distance metric,
since it provides a closed-form expression for GMM and
needs no specification of tuning parameters. However, no
intermediate evolution step guarantees that the interpolation
between two GMMs lies in the manifold of K-component
GMM as well as minimizing the L2 distance for regis-
tration is prone to instability due to many local optima.
Kim et al. [6] address this problem by introducing cross-
entropy instead of the L2 distance and provide a closed
form solution with no numerical difficulties. In [9] Orlova
et al. propose an alignment approach, based on quadratic
formcluster matching QF Match for flow and mass cytometry
data. They provide a multivariate extension of the quadratic
form distance for cell cluster alignment. In [10] Orlova
et al. used the Earth Mover’s Distance (also known as
Wasserstein Distance (WD)) as a metric for comparing the
expression levels of biomarker in cell populations measured
by FCM. Using WD as a metric allows to distinguish small
shifts caused by e.g. instrument drifts from biologically
significant differences. A key benefit of WD over other
metrics (quadratic form, bipartite matching) is that the WD
score between two samples involves the magnitude of change
and the proportion of cells whose antigen expression has
changed.

C. Contribution

The contribution of this work is three fold: Firstly, we
provide an optimal transport technique for FCM data on the
manifold of Gaussian Mixture Models using a Wasserstein
metric. Kim et al. [6] propose an interpolation scheme on
the manifold on k-component GMM using the Kullback
Leibler Divergence (KLD) as a metric. We extended the
GMM interpolation approach by introducing the Wasserstein
metric as a distance measure between two GMMs. We
were inspired in doing this by the approach of Chen et
al. [3], who provided an interpolation scheme based on
the Wasserstein metric for GMM on the space of Gaussian
distributions, so it can be seen as a discrete measure and
retains the Gaussian mixture structure. This formulation
showed efficiency for high dimensional GMMs with a small
number of components, but (to our knowledge) has not
been used for the alignment of cell distributions acquired by
FCM. Secondly, we provide an extensive evaluation scheme
against two different metrics. Thirdly, we used the proposed
alignment strategy on FCM data to improve the non-blast
alignment in childhood Acute Lymphoblastic Leukaemia
(ALL).

This paper gives an overview of the methodology proposed
in Section II. The dataset used and evaluation results are
presented in Section III and the conclusion of this work and

possibilities for future work are summarized in Section IV.

II. METHODOLOGY

In this section the proposed normalization strategy for
FCM data is presented. For the representation of the prob-
ability density function p(x|.) of non blast cells x a N
component Gaussian Mixture Model (GMM) S(x) is used
as a weighted sum of N Gaussian distributions Si(x) =
N (x|µi,σi) as expressed in Equation 1. θ is the set of
parameters required to parameterize a Gaussian component
i in a GMM (cf. Equation 2), where wi is the Gaussian
weighting parameter, µi the mean (cf. Equation 3) and Σi
the covariance (cf. Equation 4).

S(x) = p(x|θ) =
N

∑
i=1

wiSi(x) (1)

θ = {wi,µi,Σi}N
i=1 (2)

µi = ESi(x)[x] (3)

Σi = ES(x)[(x−µi)− (x−µi)
T ] (4)

A. GMM based Optimal Transport

The optimal transport problem is the transport of a source
distribution S(x) of a mass x on a manifold MGMM of N
component GMMs, in a way that it is transformed into
the target distribution T (x) ∈ MGMM without loss of mass
[3]. Therefore we can define an optimization function and
transport plan γ . Optimizing γ refers to the finding of
an optimal interpolation path on MGMM by minimizing
distances D between the Gaussian components Si(x),Tj(x)
in S(x) and T (x) (cf. Equation 5). In Figure 2 a schematic
illustration of the GMM based optimal transport problem
for FCM data is visualised. Two physical features (SS INT
and FS INT) are used as dimensions for visualisation. Cyan
ellipses correspond to Gaussian components of the source
GMM and black ellipses to the target GMM. In the optimal
case, components of the source GMM overlay with the target
GMM components after alignment (left image). Only non-
cancer cells are visualised.

GMM
Interpolation

Source GMMTarget GMM

BEFORE ALIGNMENT AFTER ALIGNMENT

Fig. 2. Schematic illustration of the GMM based Optimal Transport
problem with flowcytometry data. Only 2 measured features (SS INT and
FS INT) are visualised. Black ellipses correspond to Gaussian components
of the target GMM and cyan to the source GMM. Only non-cancer cells
are visualised. [Best viewed in color]
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S∗ = argminS(x)∈MGMM

M

∑
j=1

D(S(x)||Tj(x)) (5)

In this work the Wasserstein metric (cf. Equation 6 [3]) is
minimized between the Gaussian components of the source
and target GMMs. In the following, i = 1,...N and j = 1,...,M
denote the numbers of Gaussian components in the source
and in the target GMM respectively. We evaluate the perfor-
mance of the WD against the Kullback Leibler Divergence
(KLD) (cf. Equation 7) and Bhattacharyya Bound (BB) (cf.
Equation 8).

W 2 = ‖µi−µ j‖2 + tr[Σi +Σ j−2
√
(
√

Σi)Σ j(
√

Σi)] (6)

KL =
1
2

k log2π + log |Σ j|+ tr[Σ−1
j Σi]+ (µi−µ j)

T Σ−1
j (µi−µ j)

(7)

BB =
1
8
(µ j−µi)

T (
Σi +Σ j

2
)−1(µ j−µi)+

1
2

ln
|Σi+Σ j

2 |
|
√
|Σi||Σ j|

(8)

Kim et al. [6] propose Expectation Maximization (EM) to
estimate the parametrization θ of the transported GMM S∗

by minimizing the KL-divergence. We adapted this approach
for FCM data by estimating the likelihood of the WD
(responsibility) between every Gaussian component Si(x)
and Tj(x) (cf. Equation 9) in the E-step to obtain the
transportation matrix γi j ∈ RN×M×d , where d refers to the
number of features observed per cell.

γi j =
δi, j

τi
where δi j = w j exp−W 2

(
Si(x),Tj(x)

)

and τi =
M

∑
j=1

δi j

(9)

In the M-step the parameter set θ is updated using Equations
10, 11 and 12.

w j =
w j

∑M
j=1 ∑N

i=1 w j
where w j =

N

∑
i=1

wiγi j (10)

µ j =
N

∑
i=1

πiµi where

πi =
wiγi j

∑i wiγi j
for fixed j

(11)

Σ j =
N

∑
i=1

πiΣi +
N

∑
i=1

πi(µi−µ j)(µi−µ j)
T (12)

III. EVALUATION RESULTS

In this section first the dataset used is introduced, as well
as the parametrisation of the algorithm and non-cancer cell
classification procedure is described.

A. Dataset

In this work we use a FCM dataset of 116 patients with B-
ALL acquired at treatment day 15. The patient’s therapy was
guided by the AIEOP-BFM 2009 protocol1. At the national

1AIEOP-BFM 2009 is a conducted randomized clinical trial for ALL
between age 1-18 years in 10 countries in- and outside Europe, with
approximately 1000 patients observed per year (Dworzak, 2013)) https:
//bfminternational.wordpress.com/ [accessed 2019-03-15]

diagnostic reference center all samples have been prepared
and annotated according to the international standard operat-
ing procedure for 6 color FCM. For every cell ten FCM based
features are measured (3 optical features (FSC-A, FSC-W,
SSC-A), 7 fluorescence based features (CD20, CD10, CD45,
CD34, SYTO41, CD19, CD38). For every patient in average
300 000 cells are measured. In FCM partial overlapping of
fluorescence spectra of different fluorochromes is removed
by spillover compensation. The preprocessing concludes with
a normalization of the measured parameter values between
0 and 1.

B. Experimental Setup

The methodology proposed is evaluated in the following
way: As comparable performance measures for non-cancer
cell identification after data normalization, the mean sen-
sitivity, accuracy, precision, accuracy and f-score over all
patients in the test fold are computed. We used a 4 fold
cross validation setup, where the test fold consisted of 29
patients and the training fold of 87. The measured cells
in the training data were subsampled in a random way, by
extracting 100 000 non blast cells per patient, resulting in a
total of 8.7*106 non blast cells. Subsequently we learned a
GMM representation of the non-blast cells of the training set
(Source) and test set (Target) separately, using the toolbox
mixture integrated in the python framework sklearn2. The
parameter set of the transformed Source GMM is estimated
by using 1000 iterations of Expectation Maximization (EM)
and the methodology introduced in Section II. Subsequently,
the transformed model is used to predict a score for every
cell of a test patient’s sample to identify non-cancer cells.

C. Discussion

In Table I the non-blast classification performance is
summarized using three different alignment metrics and 3
different setups of component numbers to represent the
source GMM and target GMM. Non-blasts are classified
based on WD best with a precision of 0.9534, accuracy
of 0.9402 and f-score of 0.9585 in the experiment with a
number of components (3,4) and (4,6) compared to the KLD
and BB metric. This confirms the observations of Chen et
al. [3], that an GMM interpolation scheme based on WD is
efficient for high-dimensional GMM with a small number
of components. For (4,5) number of components the KL
divergence performs better compared to WD and BB with an
accuracy of 0.9366 and f-score of 0.9582. The worst results
are achieved by the BB metric with an average difference of
-0.2 of the f-score and -0.3 difference in the sensitivity for
NNB = 3 and M = 4 Gaussian components.

IV. CONCLUSION

We propose an optimal transport scheme for GMM rep-
resentation of FCM data by minimizing the Wasserstein

2PythonToolbox:https://scikit-learn.org/stable/
modules/generated/sklearn.mixture.GaussianMixture.
html#sklearn.mixture.GaussianMixture [accessed 2019-03-
15]
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TABLE I
ILLUSTRATION OF THE NON-BLAST CLASSIFICATION PERFORMANCE USING GMM INTERPOLATION WITH WASSERSTEIN DISTANCE (WD),

KULLBACK LEIBLER DIVERGENCE (KLD) AND BHATTACHARYYA BOUND (BB) FOR DIFFERENT THERAPY TIME POINTS, AND WITH DIFFERENT

NUMBER OF COMPONENTS NNB FOR THE SOURCE NON BLAST GMM, AND M FOR THE TARGET SAMPLE.

Experiment NNB M Sensitivity Precision Accuracy f-score
KLD 3 4 0.9780 0.9488 0.9339 0.9564
WD 3 4 0.9732 0.9505 0.9347 0.9558
BB 3 4 0.6904 0.9441 0.6798 0.7188

KLD 4 5 0.9821 0.9489 0.9366 0.9582
WD 4 5 0.9702 0.9503 0.9316 0.9540
BB 4 5 0.8587 0.9506 0.8274 0.8703

KLD 4 6 0.9814 0.9495 0.9376 0.9585
WD 4 6 0.9755 0.9534 0.9402 0.9585
BB 4 6 0.8711 0.9499 0.8419 0.8835

distance between GMMs using Expectation Maximization.
Results suggest that the WD performs best for non-blast
identification and normalization compared to KLD and BB,
for a low number of Gaussian mixture components. The
focus of this work is to align stable populations (non cancer
cells), which is a limit of the approach. For future work
we plan to extend this approach for normalized non-cancer
cell populations to perform anomaly detection for blast
identification of multi-center data and of data from different
treatment time points.
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