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The Coarse-to-Fine Contour-based Multimodal Image Registration
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Abstract— Image registration brings two images into align-
ment despite any initial misalignment. Several approaches to
image registration make extensive use of local image infor-
mation extracted in interest points, known as local image
descriptors. State-of-the-art methods perform a statistical anal-
ysis of the gradient information around the interest points.
However, one of the challenges in image registration by using
these local image descriptors arises for multimodal images
taken from different imaging devices and/or modalities. In
many applications such as medical image registration, the
relation between the gray values of multimodal images is
complex and a functional dependency is generally missing.
This paper focuses on registering Mass spectrometry images
to microscopic images based on contour features. To achieve
more accurate multimodal image registration performance, we
proposed a coarse-to-fine image registration framework. The
pre-registration process is performed by using contour-based
corners and curvature similarity between corners. Image block-
ing and DEPAC descriptors are used in the fine registration
process. A local adaptive matching is performed for the final
registration step.

I. INTRODUCTION

The term image registration describe the procedure of
aligning two images that have been acquired by different
imaging conditions. The overall aim of image registration
approaches is to determine a transformation between the
source and target images. There have been multiple ap-
proaches during the last decades in order to find such a
transformatation[19][17]. According to[19] the process of
image registration involves the following steps: Feature de-
tection and matching, transform model estimation and image
transformation. Two or more images are called multimodal
if different sensors or different imaging devices obtain them.
They can provide different information of the same scene but
the multimodal registration task is difficult since the images
obtained from different modalities can have extreme intensity
mapping dissimilarity.

A. Mass Spectrometry Imaging

Mass Spectrometry Imaging (MSI) technologies are pow-
erful tools to investigate the molecular information from
biological tissue samples and visualize their complex spatial
distributions [4]. MSI allows untargeted analysis of hundreds
of molecular species directly from a tissue sample, providing
direct spatial correlation between their abundances and his-
tological features. Beside mass-to-charge (m/z) values and
their respective intensities, MSI is also recording the spatial
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position where signals are desorbed and ionized from surface
[14].

Fig. 1. An example of MSI and Histology Imaging.

A schematic representation of a MSI is shown in Fig.
1. The sample (tissue section) is covered with matrix in
order to allow desorption and ionization of analytes. The
resulting ions are transferred to the mass spectrometer, and
a mass spectrum is acquired. Then, the next position by
a defined distance is analysing. MSI of a selected analyte
peak are generated after the measurement by extracting the
signal intensity within a certain m/z window. The intensities
are plotted as gray scale values for each pixel in a grid
representing the corresponding positions on the sample.

B. Challenging multimodal images

MSI can generate biomolecular profiles that describe
the spatial distribution of specific biomolecules including
metabolites, lipids, peptids and proteins. However, it can
not provide histoanatomical and molecular depth informa-
tion [4]. Therefore, the combination of information from
different modalities has proven to be a powerful approach for
obtaining molecular signatures from specific cells/tissues of
interest. For example, MSI is combined with imaging modal-
ities that have high spatial resolution (Optical Microscopy
Imaging-OMI) or tissue structural information (Histology
Images). An example of multimodal images is given in Fig.2,
an OMI and a MSI. Obviously, there are very large content
differences between these two images. It can be seen that
each of the regions in the microscopy images contains a
large amount of information. In contrast, there is much less
information in each of corresponding regions in the MSI.
Moreover, Medical microscopic images contain many objects
which are visually very similar. These issues are affecting the
accuracy of registration results.
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Fig. 2. An example OMI(a) and MSI(b). The selected regions by red lines show very large content difference between images.

C. Image Registration
The term image registration describes the procedure of

aligning two images that have been acquired by different
imaging conditions. The overall aim of image registration
approaches is to determine a transformation between the
source and target images. There have been multiple ap-
proaches during the last decades in order to find such a
transformatation [17][19]. According to [19] the process
of image registration involves the following steps: Feature
detection and matching, transform model estimation and
image transformation.

The extraction of effective features is a crucial step for
the application of image registration. Over the last decades,
numerous hand-engineered features such as SIFT[12] and
Gabor filters[11] are used in the image registration proce-
dures. However, they suffer from limitations for the multi-
modal image registration because the statistics on the local
intensity distribution are insufficient to describe the complex
relationship between modalities with different underlying
imaging physics[3].

Two or more images are called multimodal if they are
obtained by different sensors or different imaging devices.
They can provide different information of the same scene but
the multimodal registration task is difficult since the images
obtained from different modalities can have extreme inten-
sity mapping dissimilarity. Variation in intensities has two
possible consequences as ’Gradient Reversal’ and ’Region
Reversal’ which are described in the following part.

The gradient direction of corresponding parts in the mul-
timodal images are changing by exactly 180◦[15]. This is
called ’Gradient Reversal’ which is one of the main reasons
that causes SIFT to fail with multimodal images. It also
may draw on rotation normalization of regions fault. In
a consequence of gradient reversal, the direction of the
dominant orientation will reverse which may cause two
similar regions remain totally out of phase. We call this
property as ’Region Reversal’.

Among local features methods, multimodal variants of
SIFT are particularly popular in multimodal image regis-

tration, including SIFT-GM (GM: Gradient Mirroring)[10],
Symmetric SIFT [7], IS-SIFT (IS:Improved Symmetric) [9],
GO-IS-SIFT [16], PIIFD (Partial Intensity Invariant Feature
Descriptor) [6]. These variants of SIFT only consider ’Gradi-
ent Reversal’ and ’Region Reversal’ problem of multimodal
images, however the real situation may be more complex,
such as registering the two images shown in Fig. 2.

In [13], a multimodal image registration method based
on a contour-based corner technique (COREG) which is
independent of intensity and gradient changes is proposed to
overcome these challenging images. COREG algorithm has
shown satisfactory registration performance when register-
ing images without large scale difference. Although, when
the scale difference increase, the COREG performance is
decreasing.

D. Contribution of the Paper

The problem that we try to overcome in this work is
caused by large content and scale differences between MSI
and OMI. First, the multimodal image registration technique
based on a countour-based corner technique that is indepen-
dent of intensity and gradient changes is investigated [13].
Then, we proposed a method by taking the advantage of
COREG algorithm and adding Image blocking and local
adaptive matching to the registration procedure for multi-
modal medical image registration.

The rest of this paper is organized as follow. In Section
II, we present our proposed method. Coarse registration is
described in II-A, followed by fine registration steps consist
of image blocking in II-B, DEPAC descriptor extraction in II-
C and local adaptive matching in II-D. The dataset and results
are presented in Section III and this paper is concluded in
Section IV.

II. THE PROPOSED TECHNIQUE

In order to register these challenging multimodal images,
a fully automatic image registration approach is proposed
in this paper. Our proposed method is designed based on
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ftFig. 3. The proposed algorithm flowchart.

registration process in COREG using the following processes
as shown in Fig.3.

In this work, the image registration process is imple-
mented in two main steps. First, the pre-registration process
is initialized by detecting corners using Fast-CPDA and
then the matching of corners are obtained according to the
curvature similarities of all the corners. For each pair of
corner triplets, the transformation is computed. By using
this transformation, the target edge image is transformed to
the reference edge image and the Number of Overlapped
Pixels (NOP) is estimated. The transformation related to the
maximum NOP is selected for coarse registration.

Second, the algorithm performs uniform image blocking of
reference image and transformed target image obtained from
pre-registration step. In this step, the DEPAC descriptors
for all the corners are computed in each image blocks of
reference and transformed target image. The second round
matching process is carried out by local adaptive matching
strategy.

A. Pre-registration

In this paper, the fast contour-based multi-scale corner
detector based on the chord-to-point distance accumulation
(Fast-CPDA) technique by [8] has proposed to detect the
corners. This technique has proved its robustness over many
other single- and multi-scale detectors [8][2][1].The CPDA
detector [8] first extracts planar curves from the edge image
detected by the Canny edge detector [5].

After corner detection, the curvature similarity of all
detected corners in the source and the target image are
determined as following.

We have two sets of corners in the reference and target
images as

Cr =
{
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2
r , . . .CNr
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}
, (1)

and
Ct =

{
C1

t ,C
2
t , . . .CNt

t

}
, (2)

where Nr and Nt denote the number of corners in the
reference and target images respectively. The curvatures of
these corners are:
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The curvature similarity of two corners is determined as
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∣∣∣
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r
, (5)

where 1≤ i≤ Nr and 1≤ j ≤ Nt .
Then all the target corners are ranked based on their

curvature similarities to the each source corner. With these
matches, the corner triplets are generated. After matching
corner triplet pairs, the transformation is computed for each
matching pair. This transformation is used to transform
the target edge image to the reference edge image and
the Number of Overlapped Pixels (NOP) is estimated. The
transformation obtained from the pair of corner triplets with
the maximum NOP is selected as a coarse transformation.

B. Image Blocking

The large content and scale difference between MSI and
OMI are affecting the accuracy of the registration. COREG
algorithm has shown satisfactory registration performance
when registering images without large scale difference. Al-
though, when the scale difference increase, the COREG
performance is decreasing. Moreover, the space of geometric
transformations becomes larger which means costing more
time to compare corner triplets. Therefore, we employed
the image blocking method which dividing each source and
transformed target image (warp image) into the image blocks.
After pre-registration step is performed, it is assumed that the
source image size is M×N and the warp image size is P×Q.
We are dividing them into the m×n blocks that means the
size of source and warp image blocks are (M/m)× (N/n)
and (P/m)×(Q/n) accordingly. All these blocks are labeled
and the similar blocks in the two images will have the
same number. Hence, this approach decomposes a matching
problem of a whole image into numerous matching problems
of image blocks. For each block, the DEPAC method is used
to build a DEPAC descriptor for each corner. The DEPAC
descriptor is presented in Section II-C.

C. DEPAC Descriptor Extraction

G.Lv. et.al [13] presented the novel corner descriptor
which is based on the curvature of a corner in order to
capture important edge information in the neighborhood of a
corner. The proposed corner descriptor is called Distribution
of Edge Pixels Along Contour (DEPAC). The corners and
their contours are presented as Ci

r, C j
t , Γ

(
Ci

r
)

and Γ
(

C j
t

)
in
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Fig. 4. DEPAC corner descriptor [13].

Fig.4 a and b. The DEPAC corner descriptor is built using
Ci

r and Γ
(
Ci

r
)
. The main steps are as follows.

i. Each corner is used as a center to compute concentric
circles are plotted, as shown in Fig. 4. Where R is denoted
the radius of the internal circle. The radius of a concentric
circle is incremented by R, from inside to outside.

ii. The average orientations of two tangants is considered
as the main orientation of the corner, Om. Arrows in Fig. 4
c,d, show the main orientation.

iii. At each side of main orientation, the orientation bins
are defined. Therefore, the four quantized orientations are
estimated as O1 = Om− 90◦, O2 = Om− 45◦,O3 = Om and
O4 = Om + 45◦ in an anticlockwise direction. Finally, we
have 16 sub-regions which are defined in the neighborhood
of the corner and each sub-region is denoted as (c,o), where
1≤ c≤ 4 and 1≤ o≤ 4.

iv. The number of edge pixels is increased if an edge pixel,
Pe, along the contour falls into this sub-region, i.e.

(c−1)×R < d
(
Pe,Ci

r
)
≤ c×R, (6)

and
Oo ≤

−−→
Ci

rPe < Oo+1, (7)

where d
(
Pe,Ci

r
)

is the Euclidean distance between Pe and
Ci

r.
v. Final step is the normalizing the number of edge pixels

in each sub-region, NEPc,o, into [0,1] by

NEPc,o =
NEPc,o

max{NEPc,o}
. (8)

D. Local Matching Scheme

After DEPAC descriptor extraction is performed in each
image sub-block, we are assuming that DAi = { f j}i and
DBi = {g j}i are a set of DEPAC descriptors where Ai and
Bi are image sub-blocks with number i in the source and
the target image respectively. Number of extracted DEPAC
descriptors in image sub-blocks is shown by j. The Euclidean
distance is calculated between each DEPAC descriptor in
image sub-block Ai and each DEPAC descriptor in image
sub-block Bi.

By ranking the DEPAC descriptor distances, the nearest
and the next nearest distance are selected to calculate the
ratio distance as following:

R j = d j1/d j2. (9)

Where R j is the ratio distance. The nearest and next
nearest distance are denoted by d j1 and d j2, respectively.

For each image sub-block, the ratio distance calculation
is performed. All R j are ranked from small to big. The
matching corners to the smallest R are selected and merged
for fine-registration step. Similar to the final step in coarse-
registration, the matching of corner triplets is carried out
based on selected corners. These corner triplets are used to
estimate transformation which correspond to the higher NOP.
Fig. 5 shows the fine-registration process consist of image
blocking, DEPAC descriptor extraction and local adaptive
matching.

III. EXPERIMENTS

In this section we present comparative study of presented
methods for our specific multimodal images to investigate
how they perform on registering MSI to Optical microscopy
image. Then, we will evaluate our proposed method.

A. Test Data

Our dataset consists of 10 reference microscopy images
from tissues and for each reference image, 4 Mass spectrom-
etry images are available, leading to a total of 40 image pairs.
The ground truth for all of our test images are processed
using FlexAnalysis (version 3.0, Bruker Daltonics). By this
software, the MS images are manually registered to the
optical images.

B. Evaluation Metric

In order to quantitatively comparing the performance of
the presented registration methods, we used the Average
Registration Error(ARE) [18]. After aligning the reference
and target images with the estimated transformation, ARE is
used to measure the overlap error as defined by

ARE =
1

H×W

W

∑
x=1

H

∑
y=1
‖Te(x,y)−Tg(x,y)‖, (10)

where H and W are the height and width of the reference
image, Tg is the ground-truth transformation and Te is the
estimated transformation. The smaller the ARE value is, the
better the registration performance will be.

C. Performance Comparisons

Fig. 6 compares our presented method with COREG in
terms of ARE when registering image pairs of MSI and OMI.
From the experimental results, it can be summarized that our
proposed algorithm shows clear improvement over COREG.
The scale difference between two images in image pairs 24
to 40 (Image Pair ID 5-8) is approximately 1X:10X. ARE
values obtained by COREG registration process for these
image pairs are obviously bigger compared to pairs 1 to 24.
On the other hand, ARE values achieved by our method
remain relatively stable in comparison with COREG when
increasing scale differences.

In this paper we have proposed coarse-to-fine registration
method to overcome the problem of big scale difference
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Fig. 5. Fine-registration Process.

Fig. 6. ARE comparisons between our proposed method and COREG.
In this figure image pairs 1-3 have scale difference of 1X:1X and image
pairs 4-5 have scale difference of 1X:5X. Image pairs 6-8 have a large scale
difference of 10X.

when registering MSI and OMI. The impact of scale differ-
ence in terms of ARE is presented in Table I. This proposed
method has shown better results with average ARE of 80.45
in comparison of COREG with average ARE of 115.65.

TABLE I
IMPACT OF SCALE DIFFERENCE IN TERMS OF ARE.

Scale Difference Proposed Method COREG
1X : 1X 13 43
1X : 5X 27.5 38

1X : 10X 72.67 97.33

IV. CONCLUSION

We have presented a new multimodal image registration
method based on contours and DEPAC descriptor. In order
to address the large content and large scale difference in
MSI and OMI, we have proposed coarse-to-fine registration
framework. Our coarse registration is contour-based pro-
cedure. The proposed approach utilizes various techniques
including the contour matching algorithm, curvature similar-
ity, DEPAC descriptors, image blocking and local adaptive
matching as a robust matching mechanism. The algorithm
can complete fully automatic registration without any manual
intervention. At the same time, all the matching corners
extracted in the matching process are distributed uniformly,
which can consequently improve the accuracy of registration.
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