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ABSTRACT 

The adaptive function developed by authors allows direct correlation between welding circumstances and 

temperature distribution using limited experimental data including weld pool dimensions and temperature 

at some arbitrary points. This paper intends to investigate the effects of welding speed and welding current 

on the parameters of the adaptive function. GTAW with various welding speeds and various welding 

currents was applied on duplex stainless steel plates. According to the experimental data, the parameters 

of the adaptive function were expressed as a function of welding speed and weld pool dimensions. To 

show the effectiveness of the new method, Rosenthal model and FEM were employed to simulate the 

conducted welding and the accuracy of the predicted result rather than the measured temperature were 

estimated by relative error. The results show that the adaptive function method is more accurate than the 

FEM and Rosenthal approach in all studied cases.  
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INTRODUCTION  

Modelling and simulation of the thermal cycle and the subsequent mechanical behaviours 

have been investigated for more than 80 years. Analytical, numerical and empirical 

approaches have been employed to solve the heat flow problem in welding [1]. However, 

the proposed solutions have shown an only limited success. Analytical solutions such as 

Rosenthal solution are limited by accuracy [2] and numerical solutions are computationally 

expensive [3]. The adaptive function method (AFM) is based on a mathematical 3D 

function which can be adjusted using experimental data and it can be used to solve the 

partial differential equation of any moving heat source with high accuracy and low 

computation cost [4]. The parameters of the adaptive function are directly determined by 

temperature measurement and no information about material properties, phase 

transformation, and heat source parameters are required [4]. Therefore, the adaptive 

function method is able to overcome the obstacles of inaccuracy and computation cost. This 

paper intends to study the dependency of the parameters of the adaptive function to the 

welding speed and welding current and make a correlation between them. 
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EXPERIMENTAL SETUP 

A Gas Tungsten Arc Welding (GTAW) process using argon as shielding gas with various 

welding speed and welding current given in Table 1 was applied on duplex stainless steel 

plates with the dimensions given in Table 2 and chemical composition given in Table 3. 

Tests No. 1-4 were conducted with a same welding current of 150A; and welding speed 

varies from 7 to 12cm/min. The welding speed was constant for test series No. 2, 5-8 and 

in this series the welding current differs from 125 to 175 A. The welding parameters of test 

No. 7 and 8 are same as test No. 5 and 2 respectively but in these cases, the temperature of 

the bottom surface of the plate were measured instead of the top surface. Experimental data 

including weld pool dimension and temperatures measured at specified points were 

extracted to be used in modelling. The temperature history of points at positions shown in 

Fig.  1, were measured by type K thermocouples (0.3 mm in diameter). After welding the 

width (W), depth (D), rear tail (Lr) and front radius (Lf) of the weld pool were measured on 

the samples and are presented in Table 4. Fig.  2 shows the macrograph of the weld bead of 

the test No. 6. 

Table 1 Parameters of the welding process at the constant welding voltage of 14V 

Test 

No. 

Welding 

current (A) 

Speed 

 (cm/min) 

1 150 7 

2 8.4 

3 10 

4 12 

5 125 8.4 

6 175 

7 125 

8 150 

Table 2 Dimensions of the welding plate 

Plate size (mm) 

Width length thickness 

100 200 10 
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Table 3 Chemical composition of the duplex stainless steel 1.4462 plates 

Element C Mn P S Si Cu Cr Ni Mo Nb N 

Weight % 0.026 1.9 0.02 0.007 0.67 0.47 23 5.5 3 0.5 0.2 

 

Fig. 1 Schematic of a quarter of the welding plate and the position of the thermocouples which 

are all in one line 

Table 4 Weld pool dimensions (mm) 

Test No. W Lf Lr D 

1 4.6 3.8 8.5 2.1 

2 4.3 3.3 7.4 1.9 

3 4.0 2.8 6.2 1.7 

4 3.7 2.3 5.2 1.5 

5 3.8 2.8 5.4 1.7 

6 5.2 3.8 9.6 2.1 

7 3.8 2.8 5.4 1.7 

8 4.3 3.3 7.4 1.9 
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(a) (b) 

Fig.  2 Macrograph of the bead of the test No.6 (a) upper view (b) cross section 

MODELING METHODS 

The conducted welding tests were simulated by Rosenthal’s model and FEM beside the 

AFM to examine the accuracy of the available methods in different welding cases. 

ROSENTHAL METHOD 

The theory of heat conduction that was developed by Fourier and applied to a moving heat 

sources by Rosenthal [5] is the most popular and simplified analytical method used to 

calculate the thermal history of welds. The quasi-steady state solution of Rosenthal using 

the transformation presented by Eq. 1 for a semi-infinite plate expresses temperature as a 

function of the position and constant physical properties of the material (Eq. 2) when the 

point heat source moves along the y-axis. A Matlab routine was developed to calculate the 

temperature field based on Rosenthal’s model. The constant thermo-physical properties of 

duplex stainless steel were considered according to the Table 5 and the arc thermal 

efficiency of GTAW was considered to be 0.7 [6]. 

 

 𝜉 = 𝑦 − 𝑣𝑡 (1)) 

 𝑇 = 𝑇0 +
𝑄

2𝜋𝑘𝑅 
𝑒 

(−
𝜌𝑐𝑣
2𝑘

(𝑅+𝜉))
 (2)) 

 𝑅 = √𝑥2 + 𝜉2 + 𝑧2 (3)) 
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Table 5 Material properties of Duplex stainless steel at room temperature [7], [8] 

Heat capacity (J/kg °C) Density (kg/m2) Conductivity(J/m) Melting Point(°C) 

495 7990 15 1400 

 

By considering the quasi-steady state condition, the measured temperature history (time-

temperature) of a point can be converted into a spatial temperature distribution along the y-

axis (y-temperature) using Eq.  1. Accordingly, the temperature distribution along the y-

axis at 7, 10, 15, 20, 25, 30, 35 and, 40mm away from the centreline, were calculated 

according to the recorded temperatures at points P1- P8 (Fig.  1). Fig.  3 shows the result 

of Rosenthal model for upper surface along with calculated and measured fusion line in x-

y cross-sections and the relative errors based on the measured temperature [4]. According 

to the result, the accuracy of Rosenthal’s model is low in the prediction of the weld pool 

size and the relative error of calculated temperature is between 37-53% in the case of test 

No.1. 

 

Fig.  3 Temperature distribution on the upper surface of the plate as calculated with the 

Rosenthal equation for test No. 1(welding speed 7 cm/min, welding current 150A) 

FINITE ELEMENT METHOD (FEM) 

The thermal fields and the weld pool dimensions of the bead on plate gas tungsten arc 

welding have been investigated by using SYSWELD, a software package that can be used 

to conduct numerical analyses of welding processes. The minimum mesh size was 
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considered 0.5 mm for elements close to the welding trajectory, and 8 mm mesh size was 

considered as the maximum at the edges of the plate as shown in Fig.  4. The parameters of 

the double ellipsoidal heat source model are presented in Table 6 and the arc efficiency 

considered to be 0.7 [6]. The material properties considered to be temperature dependent 

according to the SYSWELD database. The initial temperature was set at 25°C and heat 

losses due to convection and radiation were taken into account using SYSWELD database 

for natural air cooling medium [9]. 

 

Fig.  4 Half of the FEM model 

Table 6 Double ellipsoidal heat source parameters (Goldak’s model) [9], [10] 

Test 
No. 

Width 
(2×aw) 
(mm) 

Length 
(bhf + bhr)  

(mm) 

Penetration 
(cw) 

(mm) 

Length Ratio 

(
𝐛𝐡𝐟

𝐛𝐡𝐫
) 

Energy per length 

(
𝐉

𝐦𝐦
) 

1 8.28 11.07 1.98 

0.45 1470 
2 7.74 9.63 1.71 
3 7.2 8.1 1.53 
4 6.75 6.75 1.35 
5 6.84 7.38 1.53 0.5 1225 
6 9 11.92 1.98 0.38 1715 
7 6.84 7.38 1.53 0.5 1225 
8 7.74 9.63 1.71 0.45 1470 

 

Fig.  5 shows the result of the FEM simulation of test No. 1 on the upper surface and 

compares the experimental data with the computed result.  The relative error of the FEM, 

in this case, is 12-22% that shows the FEM is almost 58-67% more accurate than the 

Rosenthal’s approach. 
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Fig.  5 Temperature distribution on the upper surface of the plate of test No. 1 as calculated 

with the FEM (welding speed 7 cm/min, welding current 150A) 

ADAPTIVE FUNCTION METHOD 

The rigid formulation of Eq. 2 does not allow for changes in such a way, that the result can 

be matched to the measured temperature. The material properties and arc thermal efficiency 

are just the parameters of the Rosenthal’s equations that can be manipulated to increase the 

accuracy of the Rosenthal’s solution. However, the different values of those parameters 

may improve local accuracy at a point but may destroy accuracy in other places and 

therefore several researchers tried to modify the Rosenthal’s equations which shows limited 

success [2], [11], [12], [13], [14], and [15]. In the case of the FEM method, the accuracy 

might increase by considering more accurate heat source model, material properties or 

boundary conditions which are required more computational and experimental works. High 

accuracy in the weld pool and its adjacent area can be obtained using a suitable heat source 

model or manipulating the parameters of the heat source model by trial and error [16]. The 

material properties which are used in FEM require considering the deconvergence effect of 

sharp changes in material properties which inhibits accuracy improvement of the FEM [17]. 

The principle of the adaptive function method is based on a function which can be matched 

to the measured temperature by determining some limited parameters directly by using 

experimental data. In fact, the adaptive function method proposes that instead of dealing 

with mathematical models of the physical phenomena which occur in welding, we can 

consider the cumulative effects of those phenomena which appear in the form of 

temperature distribution and weld pool dimensions. The adaptive function is developed by 

manipulating the Rosenthal equation so that the calculated fusion line coincides with the 

measurement. Accordingly, the term R (Eq. 3) in the Rosenthal’s equation which is the 

mathematical equation of a sphere is replaced by the equation of an ellipsoid. To coincide 

with the temperature distribution in the rest of the welding sample with the reality a 
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modification function is proposed which adjusts the temperature gradient along the main 

axis. The proposed adaptive function is as follows [4]: 

 

 𝑇 = 𝑇0 +
1

𝑅𝑝
𝑒(−𝐵(𝑅+𝑦)) 

(4)) 

 

 𝑅𝑝 = √(𝑓 (
𝑥

𝑊
) ×

𝑥

𝑎𝑚
)

2

+ (𝑓 (
𝜉

𝐿𝑓
) ×

𝜉

𝑏𝑚
)

2

+ (𝑓 (
𝑧

𝐷
) ×

𝑧

𝑐𝑚
)

2

+ 𝑑𝑚
2       ; 𝜉 ≥ 0 (5)) 

 𝑅𝑝 = √(𝑓 (
𝑥

𝑊
) ×

𝑥

𝑎𝑚
)

2

+ (𝑓 (
𝜉

𝐿𝑟
) ×

𝜉

𝑏𝑚
)

2

+ (𝑓 (
𝑧

𝐷
) ×

𝑧

𝑐𝑚
)

2

+ 𝑑𝑚
2       ; 𝜉 < 0 (6)) 

 𝑓(𝜔) = (𝑀𝜔2 − 𝑀√𝜔2 + 1)
𝑁

 (7)) 

 

The parameters of the adaptive function including 𝑎𝑚, 𝑏𝑚 and 𝑐𝑚 cause the adaptive 

function to match the real fusion line. The parameter dm removes the singularity in the 

origin of the moving heat source, and it is the main factor which determines the maximum 

temperature at the origin (centre of the heat source) [4]. By considering the weld pool 

dimensions and an estimated maximum temperature 𝑇𝑚𝑎𝑥 from the experiment, the 

optimum values of the parameters are determined so that the calculated fusion line 

coincides with the measurement [4]. 

The term 
𝑘

𝜌𝑐
 in Eq. 2 is heat diffusivity which is a temperature-dependent material 

property in the solid state, while the heat diffusivity in the weld pool strongly depends on 

the mass transfer. Since it is not possible to consider the temperature dependency of the 

physical properties and the mass transfer with an analytical equation, the term 
𝜌𝑐

2𝑘
𝑣 is 

substituted by a constant value of B as a function of welding speed which is considered to 

be a parameter of the adaptive function.  

 

 𝐵 =
𝜌𝑐

2𝑘
𝑣 (8)) 

The modification function 𝑓 is a function of dimensionless parameter of  which 

changes the scale from a length unit (m) to the scale of the weld pool dimensions. In order 

to avoid changing the melting isotherm, the modification function 𝑓(𝜔) is always 1 

everywhere along the fusion line, which is defined by Eq. 9. 

 

 𝜔𝑥 =
𝑥

𝑊
 ; 𝜔𝜉𝑓 =

𝜉

𝐿𝑓
;  𝜔𝜉𝑟 =

𝜉

𝐿𝑟
 ; 𝜔𝑧 =

𝑧

𝐷
 (9)) 

Fig. 6 shows the result of the FEM for the upper surface of the sample of test No.2. As 

shown in Fig. 6, welding temperature curves in any cross section parallel to the main axis, 

have a special waveform shape. The M and N as parameters of the modification function 

provide the flexibility so that the proposed adaptive function (Eq. 4) could reproduce this 
waveform curve. According to the Eq. 7 parameter M mainly control the slope of 

temperature in the fusion line where  is 1 Fig. 7 and Fig. 8 show the temperature curve 

along y-axis and x-axis on the upper surface of the plate of test No.2 with different values 

of M. As shown in Fig. 7 and Fig. 8 by changing the values of M temperature gradient can 
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be changed in the fusion line while the weld pool size and the maximum temperature do 

not change [4].   

 

 Fig.  6 Temperature distribution on the upper surface of the plate of test No.2 as calculated 

with the FEM and waveform curve cross section parallel to the x and y-axis 

    

Fig.  7 Effect of parameter M on temperature curve along the x-axis at point ξ=0 on the upper 

surface of welding sample of the test No. 2 



Mathematical Modelling of Weld Phenomena 12 

10 

    

Fig.  8 Effect of parameter M on temperature curve along the y-axis at point x=0 on the upper 

surface of welding sample of the test No. 2 

The temperature gradient can also be controlled by N in each direction of heat flow. For 

instance, as shown in Fig. 9, the temperature gradient of the rear part of the temperature 

curve changes by changing the N parameter in this direction (Nyr). The flexibility of the 

adaptive function to get matched to any curve with such configuration is provided by the 

parameters of the modification function (M, Nx, Nyf, Nyr, and Nz) each of which particularly 

affects a certain part of the temperature curve [4]. 

  

Fig.  9 effect of parameter Nyr on temperature curve along the y-axis at point x=0 on the upper 

surface of welding sample of the test No. 2 
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ESTIMATION OF THE PARAMETERS OF THE ADAPTIVE FUNCTION  

The parameters of the adaptive function are classified into adaptive function parameters 

including  𝑎𝑚, 𝑏𝑚, 𝑐𝑚, 𝑑𝑚 and B and parameters of the modification function including M, 

Nx, Nyf, Nyr and Nz. According to Eq. 8, the parameter B is a function of the heat 

diffusivity and welding speed. Since the heat diffusivity is a temperature dependent and it 

is not possible to consider variable material properties in an analytical solution, an optimum 

constant value is considered for the heat diffusivity of each welding material based on the 

estimated maximum temperature (Tmax) [4]. The parameters of  𝑎𝑚, 𝑏𝑚, 𝑐𝑚, 𝑑𝑚 are 

determined according to the weld pool dimensions using Eq. 4. To compensate for the 

discrepancies between the results of the adaptive function and measured temperature, the 

parameters of the modification function are adjusted in such a way that the computation 

error is reduced. The M parameter is assumed to be constant and therefore the parameters 

of Nx, Nyf, Nyr, and Nz can vary by the dimensionless parameter of . A MatLab routine 

developed to estimate the optimum values of the parameters of the modification function 

according to the measured temperature in such a way that the computation error is reduced. 

The computation error is the relative error of the calculated temperature compared to the 

measured temperature based on a method proposed in [4]. Table 7 presents the constant 

parameters of the adaptive function for tests No.1-8. The maximum temperature of 2500 

°C was assumed at the origin of the moving coordinate system and accordingly the 

estimated value of 
𝜌𝑐

2𝑘
 is 7571𝑠

𝑚2⁄  and thus, the parameter B changes in accordance with 

the welding speed (𝑣). The accuracy of the result of the adaptive function shows low 

sensitivity to the values of Nz and Nyf. Therefore, an optimum constant values were 

estimated for Nz and Nyf. 

Table 7 Parameters of the adaptive function for test No. 1-8 

Test 

No. 
am bm cm 

dm 

× 𝟏𝟎−𝟒 

𝑩 =
𝝆𝒄

𝟐𝒌
𝒗 

(𝟏
𝒎⁄ ) 

M Nz Nyf 

1 11.45 14.06 4.35 4.03 53.5 

0.45 -0.44 0.45 

2 11.02 12.09 3.71 3.92 63.6 

3 10.71 10.06 3.33 3.86 75.7 

4 11.23 8.51 3.27 3.96 90.8 

5 9.34 8.91 3.03 3.99 

63.6 
6 14.13 15.69 4.44 3.94 

7 9.34 8.91 3.03 3.99 

8 11.02 12.09 3.71 3.92 

 

Fig. 10 shows the estimated Nx as a function of x. As shown in Fig. 10 by increasing 

x, the parameter Nx decreases. Eq. 10 is a proposed extrapolation function of Nx according 

to the x. Fig. 11 shows the estimated values of Nyr as a function of x and rear tail of the 

weld pool (Lr). Eq. 11 is a linear extrapolation function for Nyr. 

 

 𝑁𝑥(𝜔𝑥) =
4.3

𝜔𝑥
2+0.61

+ 0.015    
       (10)) 

 𝑁𝑦𝑟(𝜔𝑥 , 𝐿𝑟) = −4.7𝜔𝑥 × 𝐿𝑟 + 0.02𝜔𝑥 + 4.4𝐿𝑟 − 0.24            (11)) 
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Fig.  10 Estimated Nx for test No. 1-4 as a function of x and extrapolation function result (Eq. 

10) 

 

Fig.  11 Estimated Nyr for test No. 1-4 as a function of x and Lr and extrapolation function 

result (Eq. 11) 
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ADAPTIVE FUNCTION RESULTS 

RESULTS OF THE ADAPTIVE FUNCTION METHOD  

Fig.  12 shows the temperature distribution on the upper surface of the welding plate of test 

No.1 calculated by the adaptive function. As shown in Fig.  12 the calculated fusion line by 

the adaptive function method matches to the measured fusion line quite well. The relative 

error of the calculated temperature rather than the measured temperature is between 5-9% 

while the relative error of the FEM in the case of the test No. 1 (Fig. 3) is 12-22% which 

shows almost 60% improvement. Fig.  13 and 14 show the temperature distribution on the 

upper surface of the plate of test No.2 calculated by FEM and adaptive function 

respectively. In the case of the test No. 2, the relative error of the adaptive function is less 

than 8% and the relative error of the FEM is more than 12%. It is worth noting that the 

computation cost including computation time, verification and data provisioning in case of 

the adaptive function is much less than the FEM which discussed in reference [4] with 

detail.    

 

 

Fig.  12 Temperature distribution on the upper surface of the welding sample of test No. 1 as 

calculated with the adaptive function approach (welding speed 7 cm/min, welding current 

150A) 
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Fig.  13 Temperature distribution on the upper surface of the welding sample of test No. 2 as 

calculated with the FEM (welding speed: 8.4 cm/min, welding current: 150A) 

 

 

Fig.  14 Temperature distribution on the upper surface of the welding sample of test No. 2 as 

calculated with the adaptive function approach (welding speed:8.4 cm/min, welding 

current:150A) 
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WELDING SPEED EFFECT  

Fig.  15-18 show the measured and calculated time-temperature curves at point 1-8 for tests 

No. 1-4. According to the Table 1, the welding speed for test No.1-4 are 7, 8.4, and 10 and, 

12cm/min respectively, therefore the parameter B changes accordingly (Table 7). The 

constant parameters given in Table 7 and Eq. 10 and 11 were used as the parameters of the 

adaptive function. The overall relative error of 5.3, 4.9, 5.1, and 5.1% were calculated for 

tests No. 1-4 respectively which shows high accuracy of the adaptive function in different 

welding speed. As shown in Fig.  19 by increasing welding speed, heat input decreases and 

thus, the peak temperature decreases at the same measuring points.  

 

Fig.  15 Time-temperature curve measured and calculated by the adaptive function for test 

No.1 (speed: 7 cm/min) 

 

Fig.  16 Time-temperature curve measured and calculated by the adaptive function for test 

No.2 (speed: 8.4 cm/min) 
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Fig.  17 Time-temperature curve measured and calculated by the adaptive function for test 

No.3 (speed: 10 cm/min) 

 

Fig.  18 Time-temperature curve measured and calculated by the adaptive function for test 

No.4 (speed 12 cm/min) 

 

Fig.  19 Peak temperature of P1-P5 as a function of welding speed 
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WELDING CURRENT EFFECT 

Fig. 21 and Fig. 21 show the measured and calculated time-temperature curves at point 1-

8 for tests No. 5 and 6 with welding speed of 8.4 
𝑐𝑚

𝑚𝑖𝑛
 and welding current of 125 and 175 

A. The welding speed of test No. 2 is also 8.4 
𝑐𝑚

𝑚𝑖𝑛
 while the welding current is 150 A. As 

shown in Fig. 20, Fig. 16  and Fig. 21 the adaptive function is able to predict temperature 

with a high accuracy of 5% using the constant parameters given Table 7 and Eq. 10 and 11 

as extrapolation functions of Nx and Nyr..  As shown in Fig. 22 by increasing welding 

current, heat input increases and thus, the weld pool dimensions and peak temperature 

decrease at the same measuring points.  

 

Fig.  20 Time-temperature curves measured and calculated by the adaptive function for test 

No.5 (welding current 125A) 

 

Fig.  21 Time-temperature curves measured and calculated by the adaptive function for test 

No. 6 (welding current 175A) 
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Fig.  22 Peak temperature of P1-P5 as a function of welding current 

Fig.  23 and 24 show the result of the adaptive function for test No.7 and 8. The welding 

parameters of test No.7 and 8 are the same as test No. 5 and 2 respectively but the 

temperature measurement has been done on the bottom surface. The result indicates that a 

constant value of Nz equal to -0.44 provides a good agreement between the adaptive 

function and measured temperature. 

 

Fig.  23 Time-temperature curves measured and calculated by the adaptive function for test 

No.7 (welding current 125A), thermocouples installed on the beneath of the plate 
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Fig.  24 Time-temperature curves measured and calculated by the adaptive function for test 

No.8 (welding current 150A), thermocouples installed on the beneath of the plate 

CONCLUSION 

In this paper, the new analytical model called “adaptive function method” (AFM) was 

applied to study the welding temperature distribution in different welding circumstances 

and a correlation between welding circumstance and the parameters of the adaptive function 

was developed. The heat flow problem in welding with various welding current and speed 

were solved by Rosenthal’s method, FEM, and the adaptive function method and the 

accuracy of the models compared. The results can be summarized as follows: 

• The accuracy of the adaptive function is much higher than the other methods in all 

studied cases. The relative error of the adaptive function is almost 5% which is not 

comparable with FEM and Rosenthal’s approach.  

• The parameters of the adaptive function are expressed as a function of a 

dimensionless parameter of  and Lyr (the rear tail of the weld pool). The weld 

pool dimension and dimensionless parameter can be expressed as a function of 

welding speed and current.  

 

The adaptive function method is an effective solution to heat flow problem in welding 

with the most accurate result and low computation cost. Accordingly, the following 

advantages of the adaptive function method are expected: 

• Since temperature calculation does not require meshing, the calculated temperature 

gradient helps us to develop an automatic adaptive meshing algorithm to apply in 

the mechanical simulation of welding.   

• The parameters of the adaptive function are directly determined by temperature 

measurement and no information about material properties, phase transformation, 

and heat source parameters are required. 
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