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ABSTRACT 

Important welding questions are often easy to ask and difficult to answer. For example, the question "what 

is the width of the weld?" is essential for understanding the strength of a weld, but it is currently answered 

through trial and error, or through sophisticated numerical modeling. In this work, it is proposed that there 

is a third approach based on a deep understanding of physics, and a basic command of mathematics. From 

the point of view of the practitioner, the answer can be approximated using formula, tables, and graphs of 

great generality. In this approach, the aspect of interest of the weld is reduced to its minimal representation, 

neglecting all secondary physical phenomenon. Mathematically, this corresponds to an asymptotic regime. 

In contrast with other asymptotic techniques such as perturbation analysis, in the proposed methodology, 

blending techniques are applied. The advantage of these blending techniques is that they approach the 

exact solutions (typically within a few percentage points) but involve only a few constants that are suitable 

to be transmitted in print. Much of the existing work on heat transfer outside welding is summarized in 

this form, but the approach has not been applied to welding yet. Some welding problems are outside the 

range of standard blending techniques, and an extension of the techniques will be discussed. The 

application of this approach will also be discussed using the width of the weld and other related problems. 
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INTRODUCTION 

The complexity of an engineering problem can be decomposed into the complexity of its 

physics, which can be assessed by the number of parameters related to the physics of the 

problem, and the complexity of its geometry, given by the number of parameters necessary 

to capture the shape of the problem [1]. In the field of welding, the geometry of welding 

processes (e.g. bead geometry and joint preparation) is generally not complex; however, 

the large number of parameters relative to relevant physics such as heat and mass transfer, 

fluid dynamics, electromagnetism, thermodynamics, as well as their tight coupling make 

welding very difficult to understand at intuitive level and more complex than most other 

engineering fields. 

Typically, there are three approaches to analyze welding problems: trial and error 
(making a prototype), numerical simulation and design rules. Trial and error is the most 

common and reliable way in welding procedure development as it is capable of producing 

the reality with complex geometries and provides direct measurements from experiments. 

However, case-by-case results of specific processes are difficult to be synthesized for the 
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next trial or extended to new operating parameters. The horizontal axis in Fig. 1 is the cost 

of making a prototype and the vertical axis represents the total cost. 

Sophisticated computer simulations are cost effective in the fields such as aerospace and 

nuclear industry where the prototype is time-consuming and expensive to make. In welding, 

running a weld may cost on the order of one to thousand dollars and within this range of 

cost, making a prototype or trial and error usually costs much less money than developing 

or implementing a comprehensive simulation. Numerical models excel at dealing with the 

complexity of geometries, but implementing multicoupled physics is often challenging. 

Design rules (the red horizontal line in Fig. 1) can significantly lower costs, and enable 

a design approach to welding procedures which are usually done by trial and error. 

Typically, the design rules can be expressed in the form of simple formulae and correction 

factors. The simple formulae are the asymptotic solutions to ideal case and their correction 

factors are developed to capture the departures from the ideal cases. 

Instead of considering every point in the space-time domain, the target of the design rules 

is to predict the characteristic values such as a maximum velocity, or maximum 

temperature. The concept of characteristic values was discussed in detail in [2] to normalize 

the governing equations into proper magnitudes and it is typically chosen as the maximum 

absolute value of the function of interest. Asymptotic analysis and blending do not present 

convergence problems and they are well suited for multiphysics problems. 

The use of design rules can provide guidelines for follow-up tests and significantly 

reduce the money and effort put in the trial and error stage. There are very few of these 

design rules in the field of welding; for example, the practical question "what is the resulting 

width of a weld bead by a given set of parameters" is difficult to be answered quickly within 

the existing knowledge.  

   

Fig. 1 Costs of simulation, prototypes, and design rules. For the aerospace industry, a prototype 

is much more expensive than simulations. For welding, a prototype is often cheaper than 

simulations, resulting in trial-and-error approaches. Design rules are much less expensive than 

simulations, and should enable a design approach where it is seldom done currently. 

Expressions in explicit form which are general, accurate, easy-to-calculate are 

convenient for transmission and amenable to be used by practitioners in industry. This 
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paper proposes a systematic methodology based on asymptotics and blending techniques to 

develop a set of formulae in standardized form (asymptotics and correction factors) that can 

predict (or estimate reasonably) important weld properties valid for general welding 

procedures with different alloys, process conditions and operating parameters. The 

predictions sought would target the size of the weld pool, heating and cooling rates, melting 

efficiencies, etc., such that they could be coupled with metallurgical and performance 

models. 

The systematic methodology advocated here to obtain engineering formulas of interest 

can be roughly summarized as a six-step procedure call the Minimal Representation and 

Correction Factors (MRCF) [3]. MRCF considers the dominant phenomena and the 

deviations from the ideal case using the exact analytical solutions, experimental 

measurements or results from numerical models. Once a complex multicoupled problem is 

minimally represented by its dominant mechanisms, explicit, closed-form expressions can 

be developed. 

Blending techniques will be applied to extend the asymptotic solutions to the whole 

domain of dimensionless groups capturing the characteristic values of interest. Blending 

has been widely applied in many disciplines such as heat transfer [4, 5], including moving 

heat sources [6], mass transfer [7], and fluid dynamics [8]. With blending, correction factors 

can be rigorously derived to capture the deviation from asymptotic behavior and define the 

validity of the asymptotics. Blending techniques and their extension are the main focus of 

this paper. 

MRCF: MINIMAL REPRESENTATION AND CORRECTION FACTOR 

The approach presented here for asymptotic analysis of engineering problems is the 

Minimal Representation and Correction Factor (MRCF). It was first proposed in [3] and 

has been successfully implemented to construct general expressions for thermal 

characteristics of moving heat sources in  [6, 9]. The MRCF approach consists of the 

following six steps:   

 

• List all physics considered relevant  

• Identify dominant factors  

• Solve approximate problem considering only dominant factors (Minimal 

Representation)  

• Check for self-consistency  

• Compare predictions to "reality"  

• Create correction factors  

 

The minimal representation of a problem corresponds to the formulation of the problem 

with parameters such that all secondary phenomena become negligible. There are various 

techniques for obtaining the minimal representation. They can be roughly divided into 

manual and computational techniques. Manual Asymptotics include "Informed" 

Dimensional Analysis: generate dimensionless groups based on knowledge about system 

[10-15], Inspectional Analysis: dimensionless groups from normalized equations[16-19], 
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Order of Magnitude/Balancing Techniques [20-22]. Computational Asymptotics include 

Statistical analysis/data mining[23-25], and analysis of the Governing equations[2, 3, 26]. 

The MRCF is an iterative approach of identifying dominant phenomena and solve the 

simple solutions of this minimal represented problem by considering only dominant factors 

and characteristic values of the simplified problem can be addressed by asymptotics to 

capture the behavior of the system for combinations of parameters that result in the same 

dominant phenomena (which is called a Regime). Thus, a multicoupled complex problem 

will be decomposed into its minimal representation of the dominant mechanisms. The 

dominant factors are typically unknown and need ingenuity and expertise to make a 

reasonable postulation. The advantage of the MRCF is that this iterative process transverses 

all possible choice of dominant factors and self-consistency is checked for the obtained 

results to assure the neglected phenomenon are secondary. Departure from the reality 

caused by the neglect of secondary phenomenon will be accounted by the correction factors, 

which capture the deviation from the ideal solutions. Correction factors can be calibrated 

with experimental numerical results to account for secondary phenomena not considered 

explicitly. 

IMPORTANT CONCEPTS AND NOTATION IN MRCF 

Because of the complexity of the concepts involved in MRCF, careful notation is essential. 

We will call here {𝑈} the set of dependent variables with elements u({X}, {P}), where {X} 

is the set of independent variables, and {𝑃} is the set of problem parameters. 

When the parameters of an engineering problem change, the resulting characteristic 

values will be influenced even if the independent variables remain unchanged. Thus, the 

set of problem parameters {𝑃} is also included as arguments of the solution functions. 

Accordingly, uc represents the characteristic value of 𝑢({𝑋}, {𝑃}). 

For the sake of greater generality, normalization will be applied to transform relevant 

variables into dimensionless form and thus, results in different units or from different 

operating parameters can be generalized and compared within the same scale. The 

magnitude 𝑢̂c,i is the asymptotic behavior of 𝑢c({𝑃}) in Regime i (e.g. Regime I, Regime 

II) where the value of the dimensionless groups based on parameters is asymptotically large 

or small. Very often, the asymptotic behavior has power-law dependence on the 

dimensionless groups. 

In normalized form, u∗({X∗}, {Π}) is the dimensionless dependent variable where {𝑋∗} 

is the set of normalized independent variables, and {Π} is a set of independent 

dimensionless groups based only on the problem parameters. 𝑢c
∗({Π}) is the characteristic 

value of 𝑢∗({𝑋∗}, {Π}). Similarly, 𝑢∗̂
c,i ({Π}) is the asymptotic behavior of 𝑢c

∗({Π}) in 

Regime 𝑖 (often in the form of a power law). 

Dimensional analysis indicates that a problem can be captured by a set of 𝑛 

dimensionless groups, where 𝑛 = 𝑚 − 𝑘, 𝑚 is the number of independent physical 

magnitudes involved in the problem, and 𝑘 is the set of independent reference units of the 

problem [27]. Typically, the functional dependence between the characteristic value 

targeted (𝑢c) and the dimensionless groups is monotonic, thus the number of regimes is two 

per dimensionless group (close to zero, and close to infinity, then the number of regimes 

𝑛𝑟 is:  
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𝑛𝑟 = 2𝑛 (1) 

FOUNDATIONS OF BLENDING TECHNIQUES 

Blending is the general description of a family of techniques of interpolation between two 

asymptotic solutions. In this work, the focus is on techniques that use a very small number 

of parameters (typically one or two). The advantage is that they are very easy to 

communicate and implement. Surprisingly, in many practical cases these techniques have 

a very small error (typically few percentage points) against the exact solution they are 

interpolating. 

The oldest technique of interest for this work was first described by Acrivos [28, 29] for 

the rate of heat and mass transfer in several laminar boundary layer flows and was later 

extended and generalized by Churchill and Usagi [30, 31] as the CUE (Churchill-Usagi 

equation). 

In this work we will use the notation ℬ to represent the blending of asymptotics 

𝑢∗̂
c,i ({Π}), corresponding to regime i (Regime I, Regime II, etc.) using the set of blending 

parameters {𝐵}, thus:  

 

𝑢c
∗({Π}) ≈ 𝑢c

∗̂+
({Π}) = ℬ(𝑢∗̂

c,I ({Π}), 𝑢∗̂
c,II ({Π}), 𝑢∗̂

c,III ({Π}) … {𝐵}) (2) 

  

where the symbol ̂  indicates that the magnitude is an asymptotic approximation and 

the  + superscript represents the improvement over the asymptotics after blending. 

There are several approaches to determine the set of blending constants {𝐵} and the 

minimax optimum procedure [6] applied in this paper is used to determine the optimum set 

of blending constants which minimizes the maximum error defined as:  

 

Maxerror = max
Π

[ln
𝑢c

∗̂+
({Π})

𝑢c
∗({Π})

] (3) 

  

where 𝑢c
∗({Π}) is the target dimensionless characteristic value, which can be an exact 

analytical solution, experimental measurements or numerical simulation results. The 

maximum value is explored over the whole domain of {Π}, and the minimum is explored 

over the blending parameters {𝐵}. 

Eqn. (3) has the advantage of revealing the comparable magnitudes for large errors and 

it is equivalent to the definition of relative error when the error is small. The set of blending 

constants {𝐵} needs be determined only once for each blending function. 

One essential property of the blending function ℬ is that it shares the asymptotic behavior 

of the original function:  

 

𝑢c
∗({Π}) → 𝑢∗̂

c,i ({Π})    when{Π} → {Π}i   (Regime  i) 
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DEVELOPMENT OF CORRECTION FACTORS 

Based on the blending of Eqn. (1), correction factors can be established for each 

asymptotic regime to capture the departure of the blended approximation from asymptotic 

behavior. In dimensionless form:  

 

𝑢c
∗({Π}) ≈ 𝑢c

∗̂,i
+ ({Π}) = 𝑢∗̂

c,i ({Π})ℬ (
𝑢∗̂

c,I ({Π})

𝑢∗̂
c,i ({Π})

,
𝑢∗̂

c,II ({Π})

𝑢∗̂
c,i ({Π})

,
𝑢∗̂

c,III ({Π})

𝑢∗̂
c,i ({Π})

… {𝐵}) 

= 𝑢∗̂
c,i 𝑓𝑢c,i

(Π)       for  Regime  i (4) 

 

 and its dimensional counterpart:  

 

𝑢c({Π}) ≈ 𝑢ĉ,i
+ ({Π}) = 𝑢̂c,i ({Π})ℬ (

𝑢̂c,I ({Π})

𝑢̂c,i ({Π})
,
𝑢̂c,II ({Π})

𝑢̂c,i ({Π})
,
𝑢̂c,III ({Π})

𝑢̂c,i ({Π})
… {𝐵}) 

= 𝑢̂c,i 𝑓𝑢c,i
(Π)       for  Regime  i (5) 

 

 where the 𝑖th term inside the correction factor is equal to 1 and the set of blending 

constants {𝐵} is the same as in Eqn. (2) and 𝑓𝑢c,i(Π) is a shorthand notation for the blending 

function that leads to correction factors. In the shorthand notation, the set of blending 

parameters is not stated explicitly, but it is present. 

As the blending function ℬ maintains the asymptotic behavior of the original function, 

the value of the correction factor 𝑓𝑢c,i(Π) tends to the value of 1 or at the same order as 1 

in its corresponding Regime i:  

 

𝑓𝑢c,i
(Π) → 1     when{Π} → {Π}i   (Regime i) 

 

Eqn. (4) and Eqn. (5) capture the deviation of the blended approximation from the 

asymptotic behavior. These equations can also be used to determine the range of validity 

of the asymptotic equations for a given acceptable error, and can also be used to account 

for systematic errors from the mathematical treatment of the asymptotics, or random errors 

from the physics caused by neglected secondary phenomenon. The correction factors 

developed are explicit and can typically be calculated with a handheld calculator or a 

spreadsheet. 

1D BLENDING 

When the target function depends on only one dimensionless group, the system has two 

asymptotic regimes (Eqn. (1)). Thus, according to Eqn. (4):  

 

𝑢c
∗({Π}) ≈ 𝑢c

∗̂+
({Π}) = ℬ(𝑢∗̂

c,I ({Π}), 𝑢∗̂
c,II ({Π}), {𝐵}) (6) 

 

Blending in 1D (when blending depends on only one dimensionless group) is the 

simplest case and the basis of the extension of blending to more complex scenarios. 

Standard 1D blending was treated in [28-31]; however, these studies could not account for 
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the case when the asymptotes did not cross. Also, the standard blending technique can result 

in high errors when the functions involved are not power laws. 

STANDARD 1D BLENDING 

In the case where the two asymptotic solutions are known and intersect with each other 

only once, the two asymptotes can be blended with only one blending constant (in this case 

{𝐵} = {𝑛}):  

 

𝑢c
∗({Π}) ≈ 𝑢c

∗̂+
({Π}) = [𝑢∗̂

c,I ({Π})𝑛 + 𝑢∗̂
c,II ({Π})𝑛]

1
𝑛 (7) 

 

 where the optimal value of 𝑛 needs to be determined only once for each blending 

function. A sufficient (more restrictive than necessary) condition to permit the use of Eqn. 

(7) is that the target function is monotonous on its dependence on the dimensionless group. 

A vast number of engineering problems have an asymptotic behavior in the form of power 

laws. Eqn. (7) can also be used to create the correction factors 𝑓𝑢c,I(Π) (based on asymptotic 

in Regime I) and 𝑓𝑢c,II
(Π) (based on asymptotic in Regime II) as follows:  

 

𝑓𝑢c,I
(Π) = ℬ (1,

𝑢∗̂
c,II ({Π})

𝑢∗̂
c,I ({Π})

, 𝑛) = {1 + [
𝑢∗̂

c,II ({Π})

𝑢∗̂
c,I ({Π})

]

𝑛

}

1
𝑛

(8) 

𝑓𝑢c,II
(Π) = ℬ (

𝑢∗̂
c,I ({Π})

𝑢∗̂
c,II ({Π})

, 1, 𝑛) = {1 + [
𝑢∗̂

c,II ({Π})

𝑢∗̂
c,I ({Π})

]

−𝑛

}

1
𝑛

(9) 

 

Eqn. (8) and Eqn. (9) are exactly equivalent and they capture the difference between the 

blended approximation and different starting asymptotic expressions. They tend to the exact 

value of 1 in their corresponding limits for all finite values of 𝑛. The value of 𝑛 for Eqn. 

(8) and Eqn. (9) are the same as for Eqn. (7). 

Standard 1D blending provides a new paradigm to obtain a general solution over the 

whole domain in terms of simple, known, limiting solutions with minimal degree of explicit 

empiricism, which is typically caused by the additional introduction of the blending 

constants {𝐵}. Eqn. (7) is a canonical expression for the formulation of correlating 

equations and has the advantage of simplicity, generality, inherent accuracy, and 

convergence to theoretical solutions in the limits. Nevertheless, it must be applied with an 

understanding of its restrictions. It can not represent processes with irregular transition in 

the non-asymptotic part and Eqn. (7) only applies for the situation where asymptotes in the 

limiting regimes have a single intersection. What's more, the asymptotic solutions must be 

free of singularities because the existence of singularity will persist and disrupt the 

prediction even though the singularity occurs outside asserted range of the asymptote [30, 

31]. 
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1D BLENDING OF NON-CROSSING ASYMPTOTICS 

Eqn. (7) is not applicable for non-crossing asymptotics. For any finite positive value of 𝑛, 

the blended result will always be the asymptotic of larger magnitude and the smaller 

asymptotic would be chosen as the approximation for any negative value 𝑛. 

A modified blending technique is proposed here to extend the applicability of Eqn. (7), 

by applying a factor exp(𝑎Π𝑏) to either of the asymptotes to force the two asymptotics to 

have a single intersection. This approach is useful for asymptotic behavior weaker than 

exponential; for example, it can not be used in the case such as a Γ function. The 1D 

blending function for non-crossing asymptotics has the following expression:  

 

𝑢c
∗({Π}) ≈ 𝑢c

∗̂+
({Π}) = ℬ(𝑢∗̂

c,I ({Π}), 𝑢∗̂
c,II ({Π}), {𝑛, 𝑎, 𝑏}) 

= {𝑢∗̂
c,I ({Π})𝑛 + [𝑢∗̂

c,II ({Π}) exp(𝑎Π𝑏)]𝑛}
1
𝑛 (10) 

 

 where in this case, {𝐵} = {𝑛, 𝑎, 𝑏}. 

The reason of choosing exponential function as the form of modification factor is due to 

its simplicity and that its dependence on the dimensionless group is stronger than any power 

law or other common functional relationships in engineering design. The sign of the 

coefficient 𝑎 determines the type of the modification factor: when 𝑎 > 0, the modification 

factor is always larger than 1 while for 𝑎 < 0, the modification factor exp(𝑎Π𝑏) varies 

within the interval of (0,1]. Both the sign and the magnitude of 𝑏 matter as the modification 

factor has increasing dependence on the independent variable for 𝑎𝑏 > 0 while for the case 

of 𝑎𝑏 < 0, it decreases as the independent variable increases. An appropriate magnitude of 

𝑏 should be chosen to ensure the modified asymptote intersects the other. With a suitable 

selection of the blending constants {𝑛, 𝑎, 𝑏}, the modified asymptote still maintains its 

asymptotic behavior, while the exponential term changes its intermediate behavior such 

that the two asymptotes intersect. A similar approach was made in [7] to obtain a general 

correlation of three functions, with the applied modification factor using 𝑏 = 1. 

1D BLENDING OF CONSTANT ASYMPTOTICS 

Many phenomena demonstrate the asymptotic behavior of two limiting solutions of 

different constant values, for example, in the field of welding, the maximum hardness of 

the heat affected zone [32, 33] and in heat transfer, the temperature distribution of a slab 

heated on both surfaces at different constant temperatures. Although the treatment of non-

crossing asymptotes could apply to constant asymptotics, a specific treatment of this 

particular problem results in convenient solutions of smaller complexity. 

 

The following three blending functions are explored:  

 

𝑢c
∗({Π1}) ≈ 𝑢c

∗̂+
({Π1}) = ℬ(𝑢∗̂

c,I , 𝑢∗̂
c,II , {𝑎1, 𝑏1}) 

= 𝑢∗̂
c,I+

𝑢∗̂
c,II− 𝑢∗̂

c,I
2

(1 +
1 − 𝑎1Π1

𝑏1

1 + 𝑎1Π1
𝑏1

) (11) 
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𝑢c
∗({Π2}) ≈ 𝑢c

∗̂+
({Π2}) = ℬ(𝑢∗̂

c,I , 𝑢∗̂
c,II , {𝑎2, 𝑏2})

= 𝑢∗̂
c,I+

𝑢∗̂
c,II− 𝑢∗̂

c,I
2

[1 + tanh(𝑎2Π2 + 𝑏2)] (12)
 

𝑢c
∗({Π3}) ≈ 𝑢c

∗̂+
({Π3}) = ℬ(𝑢∗̂

c,I , 𝑢∗̂
c,II , {𝑎3, 𝑏3}) 

= 𝑢∗̂
c,I+

𝑢∗̂
c,II− 𝑢∗̂

c,I
2

[1 +
2

𝜋
arctan(𝑎3Π3 + 𝑏3)] (13) 

 

where Π1, Π2, Π3 represents three different blending expressions, not implying multi-

variable dependence, and {𝑎1, 𝑏1}, {𝑎2, 𝑏2}, {𝑎3, 𝑏3} are the corresponding sets of blending 

constants. Eqn. (11)-(13) converge to exact asymptotics in both regimes for all finite values 

of {𝑎, 𝑏}. Eqn. (11) is consistent with the correlation method proposed by Churchill [31] 

when only limiting values are known by replacing the constant asymptotic behavior of 

either regime with a postulated functional dependence (typically power functions) and then 

blending the constructed function with constant asymptotic in the other regime with a 

blending exponent 𝑛. Eqn. (11) is the special case with 𝑛 = 1. Eqn. (11) and Eqn. (12) are 

essentially equivalent with the transformation of variables: Π2 = −
1

2
ln(Π1), 𝑎2 = −

1

2
𝑏1 

and 𝑏2 = −
1

2
ln(𝑎1). 

The two blending constants {𝑎, 𝑏} capture the two degrees-of-freedom of the functional 

behavior after blending: the location of the midpoint 𝑢c
∗(Π) = (𝑢∗̂

c,I+ 𝑢∗̂
c,II )/2 and the 

slope of tangent at the midpoint, 
d𝑢c

∗̂+
({Π})

dΠ
, which represents the steepness of the 

transformation between the two asymptotics. 

The differences in the form of the three blending expressions make them applicable for 

different scenarios. The main difference between Eqn. (11) and Eqn. (12) is the domain, 

which is (0, ∞) of Eqn. (11), and (−∞, ∞) of Eqn. (12). Eqn. (12) and Eqn. (13) share the 

same domain of (−∞, ∞) and but the curvature is different, with the same slope at the value 

of 1 and the same location of midpoint, Eqn. (13) is less sharp than Eqn. (12) as shown in 

Fig. 2.  
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Fig. 2 Comparison between Eqn. (12) and Eqn. (13). The solid line is 𝑢c

∗({Π}) = 1 +
1

2
[1 + tanh(Π)], and the dash line represents 𝑢c

∗({Π}) = 1 +
1

2
[1 +

𝜋

2
arctan (

𝜋

2
Π)]. Two 

constant asymptotics are 1 and 2. The center point Π = 0 and its slope is the same for both 

functions but the dash line is less steep than the solid line. 

ASYMPTOTES WITH CHANGES IN THE SIGN 

The blending techniques proposed require that all asymptotes are positive over the whole 

domain; however, in some cases the asymptotic function might be negative outside its range 

of asymptotic validity. For example, when the asymptotic behavior towards infinity is 

logarithmic  (e.g. 𝑢c
∗̂({Π}) = ln Π as Π → ∞), the asymptotic tends to minus infinity as Π 

tends to zero, which is invalid for the techniques proposed. One possible solution in this 

case is replacing the asymptoteln Πwith ln(1 + Π), such that asymptotic behavior keeps 

unaffected as ln(1 + Π) ≈ ln(Π), when Π → ∞and the modified expression is always 

positive over the whole domain of (0, ∞). 

ADDITION OF INTERMEDIATE TERMS 

The blending function Eqn. (7) guarantees the limiting solutions in asymptotic regions and 

estimates values of the intermediate region by optimization of the blending constant n. For 

power-law functions, this approach is simple and accurate; however, when the functions to 

be blended are not power-laws, such as logarithmic or exponential functions, Eqn. (7) 

converges very slowly towards small errors. When convergence is slow, the blending error 



Mathematical Modelling of Weld Phenomena 12 

11 

is small at unrealistically large or small orders of magnitude. An alternative approach is 

proposed here to deal with these functions while preserving simplicity and accuracy. To 

improve the accuracy of estimation in the intermediate regime, an additive term 𝐺(Π) can 

be introduced as: 

 

𝑢c
∗({Π}) ≈ 𝑢c

∗̂+
({Π}) = [𝑢∗̂

c,I ({Π})𝑛 + 𝑢∗̂
c,II ({Π})𝑛 + 𝐺(Π)𝑛]

1
𝑛 (14) 

 

where the choice of 𝐺(Π) is flexible as long as it does not change the asymptotic 

behavior, i.e., for the case of 𝑛 > 0, 𝐺(Π) ≪ 𝑢c,I
∗̂ ({Π}) as Π → ∞, and 𝐺(Π) ≪ 𝑢c,II

∗̂ ({Π})  

as Π → 0. Although the blended result could be more accurate with a sophisticated 𝐺(Π), 

the format of 𝐺(Π) should be as simple as possible to minimize the number of involved 

blending constants. 

The added term can be interpreted as the departure between normal blending equation 

and the exact value of the intermediate regime, or the ``asymptote'' of the intermediate 

regime. 

As the absolute value of blending constant n is typically of the order of magnitude of 1, 

it is reasonable to set the blending parameter 𝑛 = ±1 to reduce the number of optimization 

variables to two. These variables  can be optimized by the proposed minimax optimum 

procedure of minimizing the maximum error defined in Eqn. (3). The sign of n is chosen 

based on the asymptotic solutions. When both asymptotes are the lower bounds in their 

corresponding regimes, 𝑛 = 1 while the dependent variable, 𝑢c
∗({Π}), has a decreasing 

power of Π, 𝑛 = −1. 

For the case of two power asymptotes, the additive term can be chosen in the form of 

power law as 𝐺(Π) = 𝑎Π𝑏,, with blending constants {𝐵} = {𝑎, 𝑏, ±1}. Denoting the two 

power asymptotes as 𝑢c,I
∗̂ ({Π}) = 𝑐𝐼Π𝑑𝐼and 𝑢c,II

∗̂ ({Π}) = 𝑐𝐼𝐼Π𝑑𝐼𝐼, the exponent of the 

additive term b has to be set between 𝑑𝐼 and 𝑑𝐼𝐼 to make sure 𝐺(Π) is negligible in the 

asymptotic regions. It is not clear in what cases this approach is more accurate than Eqn. 

(7) . One obvious difference is that this approach needs to optimize two variables instead 

of one. 

 

For the case of logarithmic asymptotes (e.g. 𝑢c,II
∗̂ ({Π}) = ln Π), 𝐺(Π) = 𝑎Π𝑏 fails in 

maintaining asymptotic behavior, because ln Π is always smaller than power laws when Π 

tends to infinity, no matter the value of exponent. In this case, additive term 𝐺(Π) can be 

expressed in the fractional form as 𝐺(Π) = 𝑎Π/(𝑏 + Π) instead with blending constants 
{𝐵} = {𝑎, 𝑏, ±1}, such that the additive term can be smaller than the logarithmic asymptote 

in the limiting regime when Π → ∞. 

AN EXTENSION OF 1D BLENDING: PARAMETRIC 1D BLENDING 

Some problems involve multiple dimensionless groups, so they are not 1D blending 

problems. However, when the some dimensionless groups have a reduced range of 

variation, they can be considered as another parameter in the blending problem, as opposed 

to another dimensionless group to be blended. For example, solid mechanics problems 

involve the dimensionless parameter 𝜈 (Poisson's ratio), which is seldom far from 0.3 for 
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most engineering materials. In this case, it is convenient to consider 𝜈 as a constant instead 

of performing blending over unrealistic values. 

This approach is especially valuable when the dimensionless groups that can be 

considered as parameters is such that blending can be reduced to 1D. 

CHALLENGES BEYOND 1D BLENDING 

The 1D blending describes many engineering problems concerning to one independent 

variable with much rigor and elegance, however, in some cases, the secondary factors play 

a significant role and are not negligible indeed, for example, welding on a plate of medium 

thickness[34, 35], or where the size of a Gaussian distributed heat source can not be 

neglected [36]. It is necessary to develop a series of practical and systematic 2D blending 

methods on the basis of current 1D blending theory. 

In normalized form, 2D blending problem can be defined as 𝑢c
∗(Π1, Π2), where 𝑢c

∗ is the 

target characteristic value dependent on two dimensionless variables {Π} = {Π1, Π2}. The 

2D blending problem can also be addressed with an equivalent expression in implicit form: 

𝐹(𝑢c
∗, {Π}) = 𝐹(𝑢c

∗, Π1, Π2) = 0, which could be one equation or a group of equations 

associated with problem parameters. The general strategy to construct 2D blending is to 

decompose the 2D blending problem into several 1D blending branches, where 1D blending 

theory is well-developed, and then combine the solved 1D blending equation of each branch 

to assemble the solution to 2D problem. 

Asymptotes in 2D problems are typically derived with limitation theorems, but the 

limitation theorems of two variable or multi-variable functions are much more complex 

than functions of single dependence. The complexity includes but not restrict to the division 

of limiting regimes, different types of asymptotics, relationship between double limits and 

iterated limits, and so on. The decomposition of 2D blending into 1D blending problems 

and the assembly of 2D blending solution based on 1D blending functions have high 

demand on mathematical skills and are never trivial. The simplest case of 2D blending is 

that the target function 𝑢c
∗(Π1, Π2) is assumed variable separable over its entire domain, 

which means 𝑢c
∗(Π1, Π2) = 𝑣(Π1) ⋅ 𝑤(Π2), and the 2D blending could be directly split into 

two 1D blending functions of 𝑣(Π1) and 𝑤(Π2). Thus the assembled 2D blending is in 

form of the product of both 1D blending equation 𝑢c
∗̂+

(Π1, Π2) = 𝑣̂+(Π1) ⋅ 𝑤̂+(Π2), where 

𝑣̂+(Π1) 𝑤̂+(Π2) are relatively simple and easily tractable with in 1D blending theory 

proposed in this paper. Systematic 2D blending methods to obtain general estimation of the 

target characteristic value in terms of asymptotics and correction factors with high accuracy 

are the focus of current research. 

CASE STUDIES 

Four case studies are be presented to demonstrate the application of MRCF approach. 

Target characteristic values of interest are expressed in terms of asymptotics (simple case 

solutions in the extreme cases) and the type of the blending approach for each case will be 

identified and applied to generate correction factors in explicit form. 

 



Mathematical Modelling of Weld Phenomena 12 

13 

CASE A: ESTIMATION OF MAXIMUM BEAD WIDTH BASED ON ROSENTHAL 3D MODEL 

Step 1: List all physics considered relevant 

Relevant physics involved in the shape of the weld pool include heat transfer, heat 

dissipation on the surface to the environment, convective flow, the effects of fluid dynamics 

and so on. It is impossible to list all relevant mechanisms but the dominant phenomenon 

and the best practice is to list typical and essentially relevant approximations, which can be 

suggested by published papers and experimental observations. 

Step 2: Identify dominant factors 

For the case of the maximum bead width, the dominant mechanism is postulated as heat 

transfer via conduction and the classic Rosenthal 3D model [37, 38] was utilized to 

calculate thermal characteristics which assumes the heat source as a point moving with 

constant velocity in a straight line on the surface of the semi-infinite base materials with 

constant thermal properties. Heat dissipation on the mental surface, convective flow, and 

the effects of fluid dynamics are neglected as secondary phenomenon. This Rosenthal 3D 

model assumes the heat source as a infinitely small point (which is actually not), and 

considers everything as solid by neglecting the effect of fluid dynamics and phase changes. 

What' more, it only focuses on the conduction within the solid base metal and the advection 

due to the relative motion between heat source and the subtrate without considering the 

effects of convective heat transfer in the molten metal and heat dissipation to the external 

environment (convection and radiation). Due to the huge simplifications, this idealized 

model with the assumption of identifying pure conduction as the most dominant phenomena 

and the obtained estimations must check self-consistency which will be discussed in step 

4. 

Step 3: Solve approximate problem considering only dominant factors (Minimal 

Representation) 

Starting from the Fourier's law and the boundary conditions of the moving system, the 

simplified problem has been solved in [6] and the obtained analytical solution of the 

temperature field has the following expression:  

 

𝑇(𝑥, 𝑦, 𝑧) = 𝑇0 +
𝑞

2𝜋𝑘𝑟
exp [−

𝑈

2𝛼
(𝑟 + 𝑥)] (15) 

 

 where 𝑞 is the net thermal power absorbed by the base material, 𝑘 is the thermal 

conductivity of the base material, and 𝑇0 is the temperature of the substrate far from the 

heat source or the preheat temperature. In welding, the power 𝑞 is estimated as the product 

of nominal power of the heat source and its thermal efficiency. 

Eqn. (15) provides the value of temperature for each point in the domain with a 

singularity at 𝑟 = 0, which is the location of the point heat source and the temperature value 

there is infinite. It is the theoretical solution of the temperature field as a function of position 

to the simplified welding problem by considering conduction as the dominant mechanism. 

However, in practical applications, temperatures of interest always appear as known 

conditions, for example, melting temperature and the A 1, A 3 where phase transformations 
typical occur are readily known beforehand. Characteristic values which capture the 

essence of thermal history such as maximum bead width and the location where it occurs 

are unknown and difficult to obtain. 
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In this idealized model, dependent variable is the temperature {𝑈} = {𝑇}, and there are 

three spatial independent variables {𝑋} = {𝑥, 𝑦, 𝑧}, and five parameters {𝑃} =
{𝑇0, 𝑞, 𝑘, 𝑈, 𝛼}. The characteristic value of interest is the maximum isotherm width: 

𝑢𝑐({𝑃}) = 𝑦max. After normalization and dimensional analysis of Eqn. (15), the conclusion 

is that if we denote the temperature value of the isotherm under consideration as 𝑇 = 𝑇𝑐, 

the dimensionless characteristic values associated with 𝑇 = 𝑇𝑐 depend only on one 

dimensionless group (more details can be found in [6]): The Rykalin number (Ry), first 

proposed by Fuerschbach [39] and has the following expression in terms of parameters:  

 

Ry =
𝑞𝑈

4𝜋𝑘𝛼(𝑇𝑐 − 𝑇0)
(16) 

 

 where the constant of 1/4𝜋 is added to simplify the final expressions detailed below. 

All dimensionless characteristic values associated with an isotherm 𝑇 = 𝑇𝑐 can be 

captured with functions depending only on Ry, thus the set of independent dimensionless 

groups based only on parameters turns into {Π} = {Ry} and the dimensionless characteristic 

value 𝑢𝑐
∗({Π}) = 𝑦max

∗ ({Π}) can be expressed with sole dependence on Ry as 𝑦max
∗ (Ry). As 

Ry is the only one dimensionless group necessary to capture all characteristic values, the 

number of asymptotic regimes is given by 21 = 2 and they are Regime I, corresponding to 

large values of Ry ("fast heat source" where advection dominates over conduction), and 

Regime II, corresponding to small values of Ry ("slow heat source" with heat transfer 

dominated by conduction) and the two asymptotics can be represented as 𝑢∗̂
c,I ({Π}) =

𝑦 ∗̂
maxI

(Ry) and 𝑢∗̂
c,II ({Π}) = 𝑦 ∗̂

maxII
(Ry), respectively. These asymptotic regimes yield 

simple expressions for the characteristic values, usually in the form of power laws. 

Asymptotic analysis of Eqn. (15) yields the following two asymptotics of the dimensionless 

maximum isotherm width dependent only on Ry [6]:  

 

𝑦 ∗̂
maxI

(Ry) = √
2Ry

e
    for Regime I (fast) (17) 

𝑦 ∗̂
maxII

(Ry) = Ry    for Regime II (slow) (18) 

 

Step 4: Check for self-consistency 

As Eqn. (15) comes directly from the postulated model, the validity of calculations based 

on Eqn. (15) (Eqn. (17) and Eqn. (18)) will remain in the limit of the validity of this model 

itself. The self-consistency of this idealized model has been accomplished by comparison 

with experiments as it is impossible to prove the accuracy of the Rosenthal 3D model from 

the mathematical point of view. Christensen in the 1960s has done a series of experiments 

to test the validity of this Rosenthal 3D model [16] of different operating parameters and 

materials. It has shown that despite of the great simplifications, the model by considering 

conduction and advection as the dominant phenomena can still generate reasonable results 

for points far away from the heat source at temperatures below the melting temperature. 

Step 5: Compare predictions to "reality" 

Eqn. (17) and Eqn. (18) are less accurate for intermediate values (Ry=O(1)). As the 

obtained two asymptotics are in the form of power laws, Standard 1D Blending method is 
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applicable for this case. For the non-asymptotic region, simple and accurate expression can 

be obtained with Eqn. (7). 

Substitute Eqn. (17) and Eqn. (18) into Eqn. (7), the blended function of the maximum 

isotherm width in dimensionless form is obtained:  

 

𝑦∗
max

(Ry) ≈ 𝑦 ∗̂
max

+
(Ry) = [𝑦 ∗̂

maxI
(Ry)𝑛 + 𝑦 ∗̂

maxII
(Ry)𝑛]

1
𝑛 (19) 

 

 The optimal blending constant 𝑛 was determined using a minimax approach with two 

nested optimizations as detailed in [6]. With Rosenthal 3D model and the resulting 

temperature field, the "reality" used here to calibrate the deviations from the idealized 

behavior is the maximum value of the isotherm width calculated from Eqn. (15) 

numerically. When 𝑛 is equal to -1.7312, the maximum error over the whole domain of Ry 

is less than 0.7236%. 

Step 6: Create correction factors 

Substituting the two asymptotics 𝑢∗̂
c,I ({Π}) = 𝑦 ∗̂

maxI
(Ry)and 𝑢∗̂

c,II ({Π}) =

𝑦 ∗̂
maxII

(Ry) into Eqn. (8) and Eqn. (9), the following expression for the correction factors 

are obtained:  

 

𝑓𝑦max
(Ry) = [1 + (√

eRy

2
)

±𝑛

]

1
𝑛

    +for Regime I (fast)

    −for Regime II (slow)
(20) 

 

 where the exponent +𝑛 corresponds to Regime I, and −𝑛 corresponds to Regime II. The 

minimax error is always smaller than 0.7236% at the optimal value of 𝑛=-1.7312. 

Correction factors based on both asymptotics are plotted in Fig. 3 and the reflected 

symmetry are consistent with Eqn. (20) as expected. They can also be used to check the 

validity of both asymptotics. The intersection of the correction factors, Ry 𝑐 = 0.7359, can 

be considered as the rough divider of the two asymptotic regions: Regime I, Regime II and 

the intermediate region (the vicinity of Ry 𝑐) where the typically the maximum departure 

occurs.  
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Fig. 3 Correction factors for maximum isotherm width 𝑦max [6] 

CASE B: PREDICTIONS OF THE MAXIMUM HARDNESS OF THE HAZ 

One of the major challenges in welding industry is predicting the maximum hardness of the 

heat affected zone that depends the chemical composition and the welding parameters. 

During the 1970s and the 1980s, many empirical models (based on statistical regression of 

experimental data) was proposed to address this problem [33, 40]. Although each proposed 

model is different, they all treat the problematic with a similar nature using asymptotic 

values to obtain a hardness value as a function of the cooling rate. 

Basically, the hardness of a specific point on heat affected zone depends on the present 

microstructures and their volume fraction. At the same time, the type and amount of each 

microstructure is a function of the thermal history and chemical composition. In the case, 

the characteristic value of interest is the the maximum hardness of the HAZ, many variables 

can be discarded as the assumptions are made. For example, austenitization peak 

temperature, which plays an important role on the kinetics of austenite decomposition, can 

be assumed to be equal for all cases by considering that the maximum hardness will be 

found adjacent to the fusion line where the peak temperature is maximum, very close to the 

fusion temperature (i.e in the coarse grain heat affected zone). By making this 

simplification, hardness can be written down as a function of the cooling rate at 700 ∘C (or 

cooling time, 𝑡8/5), and the nominal chemical composition of the welded plate.  
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Fig. 4 Characteristic hardness in HAZ as a function of cooling time between 800  ∘C and 500 

 ∘C [33] 

One clear example of using asymptotes to address this problem is given by the Yurioka's 

model [33] and a proposed Continuous Cooling Transformation Structure Hardness 

(CCTSH) curve is represented in Fig. 4. In this case, the maximum hardness in HAZ 

depends only on the cooling time between 800 ∘C and 500 ∘C. With only one dependence 

on the cooling time, there are in total two regimes and the characteristic points given by the 

hardness upper (𝐻𝑀) and lower limits (𝐻𝐵) and their characteristic times are used to develop 

a equation able to predict the hardness value for any time between 𝜏𝑀 and 𝜏𝐵. 

Upper and lower hardness asymptotes are easy to picture when this problem is addressed, 

if the different possible microstructures are consider. The upper limit, is directly related 

with the hardness of the martensite, which means 𝑢̂c,II = 𝐻𝑀. No other microstructure is 

harder than the fresh martensite obtained from cooling from the austenite region with 

cooling rates higher than a critical value 𝜏𝑀. On the other hand, the lower limit it can be 

quite more complicated to picture, since different criteria used depends on the author. 

However, the main idea resides on using a lower limit, 𝑢̂c,I = 𝐻𝐵, that represents a 

microstructure with no martensite, 𝜏𝐵. After the formulation of the two limiting constant 

hardness values empirically, a blended expression in the form of Equation 13 was proposed: 

 

𝐻𝑉 =
𝐻𝑀 + 𝐻𝐵

2
−

𝐻𝑀 − 𝐻𝐵

2.2
arctan𝑥 (21) 

 

 where 𝑥 is defined as:  

𝑥(rad) = 4
log

𝑡8/5

𝜏𝑀

log
𝑡𝐵
𝜏𝑀

− 2 
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It is important to remark that, when blending two constant asymptotics (point A and B 

in Fig. 4), Eqn. (13) must be applied with a understanding of its applicable scope as for 

cooling times that are not between 𝜏𝑀 and 𝜏𝐵, Eqn. (21) is not applicable. As it was 

mentioned before, Eqn. (11) and Eqn. (12) can also be applied for this case and there are 

many other types of functions proposed by different authors. 

CASE C: THERMAL STRESS FIELD IN THE VICINITY OF A MOVING POINT HEAT SOURCE 

Step 1: List all physics considered relevant 

The thermal stress field produced by non-uniform temperature field surrounding a moving 

point heat source is of significant interest in welding research due to the implications for 

the size and magnitude of the residual stress field. This example will focus on estimation 

of the thermal stresses produced by a moving heat source in a thin-plate (i.e. 2D material). 

The characteristic values (𝑢c) which are of primary interest in the analysis of thermal 

stresses are the longitudinal stress (𝜎𝑥,c) and transverse stress (𝜎𝑦,c) produced by some 

critical temperature change (Δ𝑇𝑐). The dimensionless form (𝑢c
∗ = {𝜎𝑥

∗, 𝜎𝑦
∗}) of the 

characteristic values is obtained by normalizing with respect to the product of the elastic 

modulus (𝐸), coefficient of thermal expansion (𝑎), and critical temperature change (Δ𝑇𝑐): 

 

{𝑢c
∗} = {𝜎𝑥,c

∗ , 𝜎𝑦,c
∗ } = {𝜎𝑥,c/(𝐸𝑎Δ𝑇𝑐), 𝜎𝑦,c/(𝐸𝑎Δ𝑇𝑐)} 

 

The mathematical formulation for the thermal stress field in a 2D plane composed of a 

homogeneous, isotropic, linear elastic material involves a total of six dependent variables, 

three independent variables and six fixed parameters. The dependent variables are: 

{𝑈} = {𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦, 𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦} 

which represent the 𝑥, 𝑦, and shear components of the strain and stress fields; the 

independent variables are: 

{𝑋} = {Δ𝑇, 𝑥, 𝑦}  

where Δ𝑇 is the temperature field at a given location (𝑥,𝑦) in a 2D cartesian plane; and 

the parameters are: 

{𝑃} = {Δ𝑇𝑐 , 𝑥𝑐, 𝑦𝑐 , 𝐸, 𝐺, 𝑎}  

where Δ𝑇𝑐 is some characteristic temperature change, 𝑥𝑐 is the maximum length of the 

characteristic temperature isotherm, 𝑦𝑐 is the maximum width of the characteristic 

temperature isotherm, 𝐺 is the shear modulus of the material, 𝐸 is the elastic modulus of 

the material, and 𝑎 is the linear coefficient of thermal expansion. 

Step 2: Identify dominant factors 

Applying the Buckingham Π theory, it is found that there can only be exactly two 

independent dimensionless groups in this analysis. Any 2 dimensionless groups that form 

an independent set may be selected. In this example, the dimensionless parameters are 

chosen as: 

{Π} = {𝐸/𝐺, 𝑥𝑐/𝑦𝑐}  

                                                 
 by convention stresses/strains oriented parallel to the heat source movement (i.e. 𝑥 direction) are termed longitudinal, 

and stresses/strains oriented perpendicular to heat source movement (i.e. 𝑦 direction) are referred to as transverse 
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where 𝐸/𝐺 is the ratio of the elastic modulus to shear modulus which can be equivalently 

expressed in terms of the Poisson's ratio (𝜈) as 𝐸/𝐺 = 2(1 + 𝜈) and 𝑥𝑐/𝑦𝑐 = 𝐴𝑅 defined 

as the aspect ratio of the critical isotherm Δ𝑇𝑐. 

Note that in this example, since there are two dimensionless groups (𝐺/𝐸 and 𝐴𝑅), there 

will be four asymptotic regimes: 

  

• Regime I:  𝐴𝑅  → ∞, 𝐸/𝐺 → 0  

• Regime II: 𝐴𝑅  → 1, 𝐸/𝐺 → 0  

• Regime III:  𝐴𝑅  → ∞, 𝐸/𝐺 → ∞  

• Regime IV:  𝐴𝑅  → 1, 𝐸/𝐺 → ∞  

 

Note that the lower asymptotic value of the aspect ratio 𝐴𝑅 is 1, which corresponds to a 

perfectly circular temperature isotherm (i.e. an infinitely slow or stationary heat source). 

For all isotropic materials it is necessary that −1 ≤ 𝜈 ≤ 0.5[41], which constrains the 

allowable range of the modulus ratio to 0 ≤ 𝐸/𝐺 ≤ 3. For all commonly welded metallic 

materials, Poisson's ratio is approximately 𝜈 = 0.3 and the modulus ratio is approximately 

𝐸/𝐺 = 2.6. Since for all practical problems, the modulus ratio is relatively small, the 

Regime I, and Regime II are of practical interest. 

Step 3: Solve approximate problem considering only dominant factors (Minimal 

Representation) 

The asymptotic solutions for the dimensionless stresses in Regime I are [42]:  

𝜎 ∗̂
𝑥,c,I = 1 

𝜎∗̂
𝑦,c,I = 1/𝐴𝑅

2
 

 and the corresponding dimensional stress values are:  

𝜎̂𝑥,c,I = 𝑎𝐸Δ𝑇𝑐 

𝜎̂𝑦,c,I = 𝑎𝐸Δ𝑇𝑐/𝐴𝑅
2
 

Analytical expressions for the asymptotic solutions of the dimensionless stresses in 

Regime II is the subject of an ongoing study, but these expressions will have the general 

form:  

𝜎 ∗̂
𝑥,c,II = 𝜎∗̂

𝑥,c,II({𝐴𝑅 , 𝜈}) 

𝜎∗̂
𝑦,c,II = 𝜎∗̂

𝑦,c,II({𝐴𝑅 , 𝜈}) 

 

Step 4: Check for self-consistency 

For single-pass full-penetration welding of plain carbon and low-alloy steel, the aspect 

ratio is expected to vary between 2-20 depending on the welding process. Although the 

asymptotic equations may provide reasonable estimates in some of these cases, it is clearly 

an issue of practical interest necessary to obtain estimates of the characteristic stresses at 

intermediate values of the aspect ratio. The asymptotic blending technique provides a 

powerful and convenient method to develop a closed form equation for estimating the 

stresses at these intermediate values. 

Step 5 and 6: Compare predictions to "reality" and create correction factors 

In this case, the standard approach for 1D asymptotic blending may be applied with only 
one minor modification. Although the asymptotic solutions in Regime I depend on only 

𝐴𝑅 , this will not necessarily be the case in Regime II. If the asymptotic expressions in 

Regime II are found to depend on the value of Poisson's ratio, it will be necessary to 
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optimize the value of the set of blending constants {𝐵} over a range of typical values of 𝜈 

(ex. 0.25-0.35) using Parametric 1D blending. In this case, the value of 𝜈 is treated as a 

parameter and the optimization for the 1D blending coefficients is evaluated in the 2D space 

defined by 1 < 𝐴𝑅  < ∞ and 𝜈 is around the value of 0.3. The 1D parametric blending 

technique provides a simple and powerful alternative to full 2D blending in 2-parameter 

systems where the range of one parameter is relatively restricted. 

Although significant challenges are associated with obtaining experimental 

measurements of thermal stresses, the "reality" for the critical stress at a selection of 

intermediate values used in the optimization may be readily obtained from finite-element 

analysis (FEA). A limited number of experimental measurements may then be performed 

to validate the final solution and aid in the development of additional correction factors for 

secondary effects. 

CASE D: MAXIMUM TEMPERATURE IN FRICTION STIR WELDING (FSW) 

Step 1: List all physics considered relevant 

Relevant physics involved in FSW are the plastic flow near the pin and the generated heat, 

heat conduction into the base material, heat loss to the environment, inertial factors, 

kinematics and forces related in the deformation and so on. 

Step 2: Identify dominant factors 

For the case of FSW, the dominant factors are identified as the heat diffusion in a 

localized soft layer in [1, 43]. Four groups of competing phenomena are considered: heat 

diffusion vs. heat advection, kinematics of rotational flow vs. translational flow, thickness 

of the soft shear layer vs. the radius of the pin and the peak temperature jump caused by 

shoulder vs. the contribution of plastic area around the pin. Among the four groups, 

dominant factors are identified as the heat diffusion, rotational flow, thickness of the shear 

layer and the dominance of the pin on peak temperature. Self consistency will be check for 

the secondary factors in step 4 by comparing the obtained expression for maximum 

temperature against experiments published in literature. 

Step 3: Solve approximate problem considering only dominant factors (Minimal 

Representation) 

The problem is greatly simplified to its minimal representation by considering only 

dominant factors listed above. Target characteristic value is the maximum temperature 

developed during process can be expressed as 𝑢𝑐 = 𝑇𝑠 and asymptotics obtained have the 

following form[43]:  

 

𝑇𝑠̂ = 𝑇0 + Δ𝑇m [
3

2

𝜂𝑠

𝐴𝐵Δ𝑇m
(

𝜂𝐾0

Δ𝑇0
)

𝑛−1

(
𝑎2𝜏R

𝑘
)

𝑛

𝜔𝑛+1]

1
2

(22) 

 

 where 𝑇𝑠 is the maximum temperature achieved at the pin-shear layer interface, 𝑇0 is the 

temperature at the interface between shear layer and the base plate, Δ𝑇m = 𝑇𝑚 − 𝑇0 and 𝑇𝑚 

is the melting temperature of the substrate, 𝜂𝑠 is the efficiency which considers mechanical 

energy converted into heat, excluding the mechanical energy accumulated in the form of 

dislocations, 𝐴 is the constant of constitutive behavior of the alloy and 𝜂 is the total 
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efficiency of the process, accounts for energy stored in the form of dislocations in the shear 

layer and heat lost to the tool, 𝐾0 is the Modified Bessel function of second kind and 0 

order, Δ𝑇0 = 𝑇0 − 𝑇∞, 𝑎 is the pin radius, 𝜏R is the reference shear stress of the alloy, 𝑘 is 

the thermal conductivity of the alloy at 𝑇0 and 𝜔 is the angular velocity of rotation of the 

pin. 

Step 4: Check for self-consistency 

All predictions based on the minimally represented problem must be checked for self-

consistency. For the case of FSW, Eqn. (22) evaluated by comparing the effect of assumed 

secondary factors on the accuracy of the estimation. The relative magnitude of selected 

secondary factors can be represented by its value to that of the dominant factors. In this 

way, a value of 1 indicates that the secondary factor is of similar magnitude than the 

dominant factor. Very small values on the horizontal axis correspond to the self-consistent 

regime, while high values correspond to inconsistent cases in which the factors considered 

secondary are actually larger than the dominant factors. There are four independent 

dimensionless groups that characterize the secondary phenomena {Π} = {Pe, 𝑉/𝜔𝛿̂, 𝛿̂/
𝑎, (𝑇𝑝 − 𝑇∞)/(𝑇𝑠

+ − 𝑇∞)} 

Step 5: Compare predictions to "reality" 

Eqn. (22) must be validated through comparisons with reality. In summary, three factors 

considered secondary (advective heat transfer, pin translation on maximum temperature 

and shoulder heat input on the peak temperature in FSW) have been proved indeed 

secondary for the vast majority of cases in [1, 43], and that for those valid cases, Eqn. (22) 

predicts the proper order of magnitude and dependence on process parameters. However, 

the approximation by considering the shear layer thickness on peak temperature as 

secondary phenomena is not always valid and correction factor for the estimation of 

maximum temperature are necessary. The 4D blending problem can be simplified into 

Parametric Blending of one dependence: {Π} = {Pe, 𝑉/𝜔𝛿̂, 𝛿̂/𝑎, (𝑇𝑝 − 𝑇∞/𝑇𝑠
+ − 𝑇∞)} ≈

{𝛿̂/𝑎} 

Step 6: Create correction factors 

In this FSW case, systematic errors in the math and physics can be accounted for by the 

correction factor in Standard 1D blending form with blending constants {𝐵} = {𝐶1, 𝐶2, 𝐶3}:  

𝑓𝑇
+ = 𝐶1 (1 + 𝐶2

𝛿̂

𝑎
)

𝐶3

 

 Blending constant 𝐶1 takes care of the systematic error in the mathematics while 𝐶2 and 

𝐶3 are used to account the secondary phenomena for best accuracy. When 𝐶1=0.764, 

𝐶2=0.259, and 𝐶3=-0.857, optimal match between Eqn. (22) and the published experimental 

values has been achieved with 12% standard deviation. 

CONCLUSIONS 

Design rules in the form of a simple formula (asymptotic behavior of the simplified problem 

by considering only dominant mechanisms) and correction factors which capture the 
deviation from the ideal cases are proposed. This approach is of much help to solve complex 

multiphysics problems such as welding and is based on a six-step framework we termed 

Minimal Representation and Correction Factor (MRCF). The formulation of the design 
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rules makes it convenient to couple them to represent multi-coupled phenomena and embed 

them in numerical models and control systems. It is shown through examples that the 

technique of blending has wide applicability for correlating experimental or numerical data 

or theoretical values for processes with known asymptotic solutions. 

The proposed blending theory extends the applicability of standard blending approaches 

to obtain general, accurate and explicit expressions in terms of known asymptotic solutions 

and blending constants determined with a systematic optimization procedure. The blending 

expressions are also used to develop correction factors that capture the deviations from 

ideal cases. 

Blending is also useful in summarizing isolated experimental results and numerical data 

from simulation. The general and systematic formulation can be extended to other multi-

coupled phenomena besides welding. 
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APPENDIX: NOTATION 

Table 1 Notation 

Symbols Description 

Varialbes  

𝑎   Blending constant  

𝑏   Blending constant  

𝑓   Correction factors  

𝑘   Number of independent reference units  

𝑚  Number of independent physical magnitudes  

𝑛   Blending exponent  

𝑛𝑟   Number of regimes  

𝑢   Dependent variable and related function  

𝑣   Variable separated function of 𝑢  

𝑤   Variable separated function of 𝑢  

𝐵   Blending constants  

𝐹   Implicit Function  

𝑃   Problem parameter  

𝑋   Independent variable  

𝑈   Dependent variable  

Π   Independent dimensionless groups  

ℬ   Blending functions  

Superscripts    

 ∗   Normalized value  

̂    Asymptotic behavior  

 +   Blended approximation  

Subscripts    

I   Corresponding to Regime I  

II   Corresponding to Regime II  

III   Corresponding to Regime III  

i   Regime i  

c   Characteristic values  

Others    

{⋯ }   Set  
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