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A higher-order MRF based variational model for
multiplicative noise reduction

Yunjin Chen, Wensen Feng, René Ranftl, Hong Qiao and Thomas Pock

Abstract—The Fields of Experts (FoE) image prior model, a
filter-based higher-order Markov Random Fields (MRF) model,
has been shown to be effective for many image restoration
problems. Motivated by the successes of FoE-based approaches,
in this letter we propose a novel variational model for multi-
plicative noise reduction based on the FoE image prior model.
The resulting model corresponds to a non-convex minimization
problem, which can be efficiently solved by a recently published
non-convex optimization algorithm. Experimental results based
on synthetic speckle noise and real synthetic aperture radar
(SAR) images suggest that the performance of our proposed
method is on par with the best published despeckling algorithm.
Besides, our proposed model comes along with an additional
advantage, that the inference is extremely efficient. Our GPU
based implementation takes less than 1s to produce state-of-the-
art despeckling performance.

Index Terms—speckle noise, despeckling, Fields of Experts,
non-convex optimization, MRFs

I. INTRODUCTION

Images generated by coherent imaging modalities, e.g.,
synthetic aperture radar (SAR), ultrasound and laser imag-
ing, inevitably come with multiplicative noise (also known
as speckle), due to the coherent nature of the scattering
phenomena. The presence of this noise prevents us from
interpreting valuable information of images, such as textures,
edges and point target, and therefore speckle reduction is often
a necessary preprocessing step for successful use of classical
image processing algorithms involving image segmentation
and classification. The topic of speckle noise reduction (de-
speckling) has attracted a lot of research attention since early
1980s [17], [16]. At present it has been extensively studied.
Roughly speaking, the major despeckling techniques fall into
four categories: filtering based methods in (1) spatial domain;
or (2) a transform domain, e.g., wavelet domain; (3) nonlocal
filtering and (4) variational methods.

Early filtering techniques in the spatial domain are devel-
oped under the minimum mean square error (MMSE) criterion
[17], and then progress to more sophisticated and promising
maximum a posterior (MAP) approaches [16]. Recently, bi-
lateral filtering has also been modified for despeckling [18].
The emergence of wavelet transform in the early of 1990s,
opened the way to a new generation of despeckling techniques.
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There were intensive studies of wavelet based despeckling
approaches, see, for instance [5], [3] and references therein.

The nonlocal approaches, which can take the advantage of
self-similarity commonly present in natural as well as SAR
images, have been already introduced to SAR despeckling
[13], [20], [10]. By taking into account the peculiar features
of multiplicative noise, the so-called SAR-BM3D algorithm
[20], which is a SAR-oriented version of the well-known
BM3D algorithm [12], exhibits the best published despeckling
performance at present.

The last class of methods are variational ones, which
minimize some appropriate energy functionals, consisting of a
regularizer (also called image prior) and a data fitting term. Up
to now, the well-known total variation (TV) has been widely
used as a regularizer [22], [24], [4], and the total generalized
variation (TGV) regularizer [6] also has been investigated in
a recent work [14].

There is a long history of research on regularization tech-
nique for image processing problems. The recently proposed
Fields of Experts (FoE) [21] image prior model (a higher-order
filter-based MRF model), which explicitly characterizes the
statistics properties of natural images, defines more effective
variational models than hand-crafted regularizers, such as
TV and TGV models. The variational model based on a
discriminatively trained FoE prior can generate clear state-
of-the-art performance for many image restoration problems,
such as the additive white Gaussian noise (AWGN) denoising
task, see for instance [7], [8].

Motivated by the results of [7], [8], it is interesting to
investigate the FoE prior based model for despeckling. In this
letter, we propose a novel variational approach for speckle
removal, which involves an expressive image prior model -
FoE and a highly efficient non-convex optimization algorithm
- iPiano, recently proposed in [19]. Our proposed method
obtains strongly competitive despeckling performance w.r.t.
the state-of-the-art method - SAR-BM3D [20], meanwhile,
preserve the property of computational efficiency.

II. PROPOSED VARIATIONAL MODELS FOR DESPECKLING

In this section, we propose FoE prior based variational
models for speckle noise removal and in particular for SAR
images. We introduce an efficient algorithm to solve the
corresponding optimization problems.

Given an observation image f corrupted by multiplicative
noise, the FoE prior based despeckling model is defined as the
following energy minimization problem

û = arg min
u
E(u, f) = EFoE(u) +D(u, f) , (II.1)
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Fig. 1. 48 learned filters of size 7 × 7 exploited in our despeckling model.
The first number in the bracket is the norm of the filter and the second one
is the weight θi.

where u is the underlying unknown image, the first term is
the FoE prior model, and the second part is the data fidelity
term, derived from the multiplicative noise model.

A. The FoE prior utilized in our despeckling model

The FoE model is defined by a set of linear filters. Accord-
ing to [8], [7], the student-t distribution based FoE image prior
model for an image u is formulated as

EFoE(u) =
∑Nf

i=1
θiρ(ki ∗ u) , (II.2)

where ρ(ki∗u) =
∑N
p=1 ρ((ki∗u)p), N is the number of pixels

in image u, Nf is the number of linear filters, ki is a set of
learned filters with the corresponding weights θi > 0, ki ∗ u
denotes the convolution of the filter ki with a two-dimensional
image u, and ρ(·) denotes the non-convex Lorentzian potential
function,

ρ(x) = log(1 + x2) ,

which is derived from the student-t distribution. Note that the
FoE energy is non-convex w.r.t. u. In this work, we make
use of the learned filters of a previous work [8], as shown in
Figure 1.

B. Modeling of the data term

Let f be the observed SAR image amplitude, which follows
a Nakagami distribution depending on the underlying true
image amplitude u, the square root of the reflectivity [15]

p(f |u) =
2LL

Γ(L)u2L
f2L−1exp

(
−Lf

2

u2

)
,

with L the number of looks of the image (i.e., number of
independent values averaged) and Γ is the classical Gamma
function.

According to the Gibbs function, this likelihood leads to the
following energy term via E = −logp(f |u)

D(u, f) = L · (2logu+
f2

u2
) . (II.3)

Combining this data term with the FoE prior model (II.2), we
reach the following variational model

arg min
u>0

∑Nf

i=1
θiρ(ki ∗ u) +

λ

2

〈
2logu+

f2

u2
, 1

〉
, (II.4)

where 〈·, ·〉 denotes the common inner product. Note that the
data term is not convex w.r.t. u > 0, which will generally
make the corresponding optimization problem harder to solve.

There exists an alternative method to define a convex data
term by using the classical Csiszár I-divergence model [11].
Although the I-divergence data fitting term typically used in
the context of Poisson noise, this seemingly inappropriate
data term performs very well in the TV and TGV regularized
variational models for despeckling [22], [14]. Therefore, we
also study this variant for data term modeling in this work. Fol-
lowing previous works of modeling the SAR image intensity
[22], [14], the I-divergence based data term for the amplitude
model is given by

D(u, f) =
λ

2
(u2 − 2f2logu) , (II.5)

which is strictly convex w.r.t. u for u > 0. Then the variational
model involving this convex data term is given by

arg min
u>0

∑Nf

i=1
θiρ(ki ∗ u) +

λ

2

〈
u2 − 2f2logu, 1

〉
. (II.6)

C. Solving the variational despeckling models

Due to the non-convexity of the prior term, the proposed
variational models impose generally very hard optimization
problems, especially for the model (II.4) with a non-convex
data term. In this work, we resort to a recently published non-
convex optimization algorithm - iPiano [19] to solve them.

The iPiano algorithm is designed for a structured non-
smooth non-convex optimization problem, which is composed
of a smooth (possibly non-convex) function F and a convex
(possibly non-smooth) function G:

arg min
u
H(u) = F (u) +G(u) . (II.7)

iPiano is an inertial force enhanced forward-backward splitting
algorithm with the following basic update rule

un+1 = (I + α∂G)
−1

(un − α∇F (un) + β(un − un−1)) ,

where α and β are the step size parameters.
For the model (II.4) with a non-convex data term, we can

convert the data term to a convex function via commonly used
logarithmic transformation (i.e., w = logu). Therefore, the
minimization problem is rewritten as

arg min
w

∑Nf

i=1
θiρ(ki ∗ ew) +

λ

2

〈
2w + f2e−2w, 1

〉
, (II.8)

with u = ew. Casting (II.8) in the form of (II.7), we see that
F (w) =

∑Nf

i=1 θiρ(ki∗ew) and G(w) = λ
2

〈
2w + f2e−2w, 1

〉
.

In order to use the iPiano algorithm, we need to calculate the
gradient of F and the proximal map w.r.t. G. It is easy to
check that

∇wF =
∑Nf

i=1
θiWK>i ρ

′(Kie
w) ,

where Ki is an N × N highly sparse matrix, implemented
as 2D convolution of the image u with filter kernel ki, i.e.,,
Kiu⇔ ki ∗ u, ρ′(Kiu) = (ρ′((Kiu)1), · · · , ρ′((Kiu)N ))> ∈
RN , with ρ′(x) = 2x/(1 + x2), and W = diag(ew).

The proximal map w.r.t. G is given as the following mini-
mization problem

(I + τ∂G)
−1

(ŵ) = arg min
w

‖w − ŵ‖22
2

+
τλ

2

〈
2w + f2e−2w, 1

〉
.

(II.9)
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(a) Noisy image (21.23/0.4267) (b) Model (II.8) (29.30/0.8567)

(c) Model (II.6) (28.40/0.8264) (d) Combined (III.1)(29.62/0.8794)

Fig. 2. Despeckling results for a widely used natural image corrupted by
multiplicative noise with L = 8, using our proposed variational models with
different data terms. The recovery quality is measured by PSNR/SSIM index.

Instead of using a direct solver for (II.9) in terms of the
Lambert W function [9], we utilized Newton’s method. We
found that this scheme has a quite fast convergence (less than
10 iterations).

For the variational model (II.6), F (u) =
∑Nf

i=1 θiρ(ki ∗ u),
G(u) = λ

2

〈
u2 − 2f2logu, 1

〉
. Then we have

∇uF =
∑Nf

i=1
θiK

>
i ρ
′(Kiu) ,

and the proximal map w.r.t. G is given by the following point-
wise calculation

(I + τ∂G)
−1

(û)⇔ up =
ûp +

√
û2p + 4(1 + τλ)τλf2p

2(1 + τλ)

III. EXPERIMENTAL RESULTS

In this section, we evaluated the performance of our pro-
posed variational models based on images corrupted by syn-
thetic speckle noise and real noisy SAR images. For synthetic
experiments, we calculated the common measurements PSNR
and SSIM index [23], and compared the results with the state-
of-the-art algorithm - SAR-BM3D [20].

A. The influence of data term

We started with conducting a preliminary despeckling test
on a commonly used natural image contaminated by multi-
plicative noise with L = 8, using our proposed variational
models (II.8) and (II.6). We carefully tuned the parameter λ
to insure that the corresponding variational models achieve
the best performance. The despeckling results are shown in
Figure 2(b) and (c).

A first impression from this result is: the variational model
with an accurate data fitting term, which is exactly derived
from the multiplicative noise model can lead to better result
than the model with an “inappropriate” data term. But after
having a closer look at the despeckling images, we found an in-
teresting phenomena: these two methods possess complemen-
tary strengths and failure modes. For example, for the highly

Fig. 3. Standard test images of size 256×256 (Couple, Lenna and Peppers).

Lenna Peppers Couple

L = 8
31.29 0.8948 29.69 0.8693 29.01 0.8416
31.38 0.8968 30.64 0.8803 29.23 0.8368

L = 3
28.81 0.8453 27.48 0.8233 26.60 0.7559
28.85 0.8541 28.38 0.8409 26.52 0.7510

L = 1
25.92 0.7432 24.95 0.7495 23.98 0.6210
25.85 0.7771 25.34 0.7770 23.79 0.6023

TABLE I
DESPECKLING RESULTS OF SAR-BM3D [20] AND OUR APPROACH. OUR
RESULTS ARE MARKED WITH BLUE COLOR (WITH (III.1)). THE RESULTS

ARE REPORTED WITH PSNR AND SSIM VALUES.

textured region (highlighted by the white rectangle), (II.8)
works much better than (II.6); however, for the homogeneous
region (highlighted by the red rectangle), (II.6) generates
preferable result. Then an intuitive idea arises to integrate these
two data terms so as to leverage their advantages.

As a result, a new variational model incorporating these two
data terms comes out as follows

arg min
w
EFoE(ew) +

λ1
2

(2w + f2e−2w) +
λ2
2

(e2w − 2f2w) ,

(III.1)
with u = ew. The data fitting term is still convex, and we can
utilize iPiano to solve it. The proximal map w.r.t. G is also
solved using Newton’s method.

We manually tuned the parameters λ1 and λ2, and con-
ducted the same despeckling experiment. The final result is
shown in Figure 2(d). One can see that the combined model
indeed leads to significant improvement in terms of both
PSNR and SSIM index value. From now on, we will use the
combined model (III.1) for despeckling experiments.
B. Results on synthetic speckle noise

We first evaluated the performance of our proposed varia-
tional model (III.1) for despeckling based on synthetic noisy
images. The results are compared to the best published
despeckling algorithm - SAR-BM3D [20]. First of all, we
considered three standard test images widely used in image
processing community, see in Figure 3. The despeckling
results at three representative numbers of look L = 1, 3, 8
are summarized in Table I. We made the following empirical
choice for the parameters λ1 and λ2 for different L: if L = 8,
λ1 = 550, λ2 = 0.02; if L = 3, λ1 = 310, λ2 = 0.008; and if
L = 1, λ1 = 160, λ2 = 0.004. A practical guideline to tune
λ1 and λ2, as well as the implementation of the proposed
approach can be found at our homepage [2].

From Table I, one can see that these two competing ap-
proaches generate very similar results, with almost identical
PSNR and SSIM values. We present three despeckling exam-
ples obtained by these two algorithms in Figure 4.

As we know, the despeckling performance of one particular
method varies greatly for different image contents, in order to
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L = 8 L = 3 L = 1
Noisy 21.61 0.5355 17.42 0.3778 12.95 0.2231

SAR-BM3D 29.35 0.8520 27.12 0.7756 24.85 0.6757
Ours 29.54 0.8481 27.07 0.7628 24.65 0.6691

TABLE II
DESPECKLING RESULTS ON 68 BERKELEY TEST IMAGES. THE RESULTS

ARE REPORTED WITH AVERAGE PSNR AND SSIM VALUES.

(a) L = 1 (12.10/0.1595) (b) [20](25.92/0.7432) (c) Ours (25.85/0.7771)

(d) L = 3 (16.48/0.2939) (e) [20](27.48/0.8233) (f) Ours (28.38/0.8409)

(g) L = 8 (23.19/0.6981) (h) [20](28.06/0.8663) (i) Ours (28.39/0.8647)

Fig. 4. Performance comparison to state-of-the-art algorithm - SAR-BM3D
[20] for different L. The results are reported by PSNR/SSIM index.

make a comprehensive comparison, we conducted additional
despeckling experiments over a standard test dataset - 68
Berkeley test images identified by Roth and Black [21], which
is widely used for AWGN denoising test. All the results were
computed per image and then averaged over the test dataset.
We present the results in Table II. Again, two competing
algorithms behave similarly, which implies that our proposed
variational model based on the FoE prior is on par with the
best published despeckling algorithm - SAR-BM3D.

In experiments, we found that our method introduces block-
type artifacts for the case of low L, e.g., L = 1 in Figure 4(c).
The main reason is that our method is a local model, which
becomes less effective to infer the underlying structure solely
from the local neighborhoods, if the input image is too noisy.
In this case, the advantage of non-locality comes through.

C. Results on a real SAR image

In order to demonstrate the effectiveness of our proposed
method on real SAR image despeckling task, we conducted a
despeckling test on a real noisy SAR image, which is taken

(a) Noisy image, L = 5 (b) SAR-BM3D[20] (c) Ours

(d) PPBit[13] (e) TGV based[14]

Fig. 5. Performance comparison of different algorithms on a real SAR image.

by the radar system equipped with the JSTARS aircraft [1]
(the number of looks L = 5). For this experiment, we set
λ1 = 50, λ2 = 0.15 for our model.

The results of different algorithms are shown in Figure 5.
One can see that the tiny structures in the image, especially the
region highlighted by the white rectangle, are well-preserved
by our approach after despeckling; however, they are smoothed
out to different extents by other algorithms.

D. Run time
Efficiency is also an important aspect for real SAR despeck-

ling task. On the server platform of Intel X5675 3.07GHz, for
images of size 481×321 exploited in our experiments, a typical
run time of the SAR-BM3D algorithm is about 65.4s, which
can be reduced to 5.6s, by its improved version - FANS [10],
at the expense of slight performance degradation. Our method
typically consumes 27s with a pure Matlab code.

However, our model is a local model, which solely contains
convolution of linear filters with an image, in contrast to non-
local models, e.g., SAR-BM3D and its variant FANS. There-
fore, our model is well-suited to GPU parallel computation.
Our GPU implementation based on a NVIDIA Geforce GTX
680 accelerates the inference procedure significantly; for a
despeckling task with L = 8, it typically takes 0.6s for images
of size 512×512, 0.41s for 481×321 and 0.2s for 256×256.

IV. CONCLUSION

In this letter, we have proposed a novel variational model
for speckle noise reduction, based on an expressive image
prior model - FoE model. Our new variational model poses
a generally demanding non-convex optimization problem and
we have used the recently proposed algorithm - iPiano to solve
it efficiently. Numerical results on synthetic images corrupted
by speckle noise and a real SAR image demonstrate that the
performance of our method is clearly on par with the best
published despeckling algorithm - SAR-BM3D. Furthermore,
our model comes along with the additional advantage of
simplicity and therefore well-suited to GPU programming. The
GPU based implementation can conduct despeckling in less
than 1s with state-of-the-art performance.
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