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Welcome Note

Bridging Science and Application

The reason for the choice of the title for our conference was to strengthen new ways and push for
translation.

New insights naturally lead to open questions which we want to investigate and find solutions.
However, we have to keep in mind the high goal of this research — to find solutions for people with
disabilities, end users and not to forget their relatives. This year, the Conference has, besides
workshops on specific topics one very special side event: The CYBATHLON BCI Series 2019.
Pilots with physical impairments, who control computer avatars with their thoughts, will
demonstrate how far brain-computer interface research has come. The BCI race will take place in
front of a live audience and — challenging for all involved, pilot as well as developing team: far
away from any lab conditions. As a special keynote, we present Prof. Robert Riener (ETH Zurich,
Switzerland). He is full professor of sensory motor systems and the initiator of CYBATHLON. With
his talk he will make a link between the BCI field, his research disciplines and CYBATHLON.

Furthermore, participating teams are invited to present their technologies, methods and algorithms
in form of posters throughout the whole conference — hopefully provoking stimulating discussions.
This 8th Graz Brain-Computer Interface Conference (GBCIC2019) offers the opportunity for
extensive discussions and exchange of ideas among BCI experts from more than 20 countries. We
received 76 scientific contributions from roughly 250 authors. The scientific contributions have
been peer-reviewed by at least two reviewers (acceptance rate 87%) and collected in form of open
access conference proceedings.

For the Conference itself, we have been able to setup a colorful and multifaceted program. We are
very happy that the GBCIC2019 has been officially endorsed by the BCI Society. Further, we are
lucky that outstanding experts in the field, Dr. Damien Coyle (Ulster University, Northern Ireland,
UK), Prof. Moritz Grosse-Wentrup (University of Vienna, Austria), Dr. Robert Gaunt (University of
Pittsburgh, PA, USA), Dr. Mariska Vansteensel (University Medical Center Utrecht, The
Netherlands), and Prof. Pim Haselager (Radboud University Nijmegen, The Netherlands) accepted
our invitation to present keynote addresses at the Conference.

We hope that this conference contributes towards a strong scientific cooperation among our field,
and we wish all participants an exciting, stimulating and productive Graz BCI Conference 2019!

SN

Gernot R. Miller-Putz
Conference Chair
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Editorial Board

Prof. Dr. Gernot Rudolf Miiller-Putz is head of the Institute of Neural Engineering and its
associated Laboratory of Brain-Computer Interfaces. He received his MSc in electrical and
biomedical engineering in 2000, his PhD in electrical engineering in 2004 and his habilitation and
“venia docendi” in medical informatics from Graz University of Technoloy in 2008. Since 2014 he is
full professor for semantic data analysis. He has gained extensive experience in the field of
biosignal analysis, brain-computer interface research, EEG-based neuroprosthesis control,
communication with BCI in patients with disorders of consciousness, hybrid BCI systems, the
human somatosensory system, and BCls in assistive technology over the past 18 years. He has
also managed several national projects (State of Styria) and international projects (Wings for Life,
EU Projects) and he recently coordinated the EU Horizon 2020 project MoreGrasp. Furthermore,
he organized and hosted six international Brain-Computer Interface Conferences over the last 13
years in Graz and chairing the 8th Conference in Sept. 2019. He was also in the Programm
Committees of the 7th International BCl Meeting 2018, 10th NeurolS Restreat, ICCHP 2018. He is
Review Editor of Frontiers in Neuroscience, special section Neuroprosthetics, Associate Editor of
IEEE Transactions in Biomedical Engineering and Associate Editor of the Brain-Computer Interface
Journal. Since August 2019 he is Speciality Chief Editor of Frontiers in Human Neuroscience:
Brain-Computer Interfaces. He has authored more than 156 peer reviewed publications and more
than 180 contributions to conferences which were cited more than 14300 times (h-index 60).
Recently he was awarded with an ERC Consolidator Grant “Feel your Reach” from the European
Research Council. In May 2017 he received the Ludwig-Guttman Award from the German Medical
Spinal Cord Injury Association (DMGP). In May 2018 he was elected into the Board of Directors of
the International Brain-Computer Interface Society. In May 2010 he received the Science Award
from the State of Styria.

Jonas Christian Ditz is university assistant at the Institute of Neural Engineering (BCl-Lab), Graz
University of Technology, Austria. He received his M.Sc. in Bioinformatics from the Eberhard Karls
University Tubingen in 2018. From 2016 to 2018 he worked as a research assistant at the Max
Planck Insitute for Biological Cybernetics in the Cognition & Control in Human-Machine Systems
group. Currently he is working towards his PhD degree in computer science.

Selina Christin Wriessnegger is assistant professor at the Institute of Neural Engineering (BCI-
Lab), Graz University of Technology, Austria. From 2001 to 2005 she was PhD student at the Max-
Planck-Institute for Human Cognitive and Brain Sciences and received her PhD from the Ludwig-
Maximilians University. During that time, she spent one year in Rome as research assistant at
IRCCS (Fondazione Santa Lucia), Laboratory for Human Psychophysiology. From 2005 to 2008
she was university assistant at the Karl-Franzens-University Graz, section neuropsychology. From
2009 until May 2016 she was senior researcher at the Institute of Neural Engineering (BCI-Lab). In
2017 she was visiting professor at SISSA (Scuola Internazionale Superiore di Studi Avanzati),
Trieste. Her research interests are subliminal visual information processing, neural correlates of
motor imagery, novel applications of BCIs for healthy users, passive BCls and embodiment of
language acquisition.
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NIRS-BASED NEUROFEEDBACK TRAINING TO TREAT DYSPHAGIA
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ABSTRACT: Neurological patients often show
difficulties in swallowing, so-called dysphagia. Here we
investigated whether motor imagery of swallowing
during neurofeedback activates brain areas, which are
involved in swallowing, and consequently fosters
neuronal plasticity. Based on findings in healthy
individuals, we performed a NIRS-based neurofeedback
training (4 training sessions over 2 weeks) with one male
stroke patient with dysphagia, in which the patient tried
to modulate the hemodynamic response over the
swallowing motor cortex by motor imagery while
receiving real-time feedback of changes in the NIRS
signal. Before and after the training, brain activation
patterns during active swallowing were assessed offline.
A healthy male control subject performed the same
training. Both subjects were able to modulate the NIRS
signal in a desired direction during neurofeedback
training. The stroke patient also showed changes in
maladaptive brain activation patterns elicited by active
swallowing due to neurofeedback training. These results
indicate the potential value of NIRS-based
neurofeedback using motor imagery of swallowing to
treat dysphagia.

INTRODUCTION

Dysphagia, which is a difficulty in swallowing, is a
common consequence of brain lesions since swallowing
activates a large network of cortical and subcortical brain
areas [1, 2]. More than two thirds of stroke patients show
dysphagia symptoms [3]. Swallowing difficulties are also
prevalent in neurologic healthy elderly (13.5%-16%) [4,
5]. Dysphagia often causes chest infection and
malnutrition and is associated with a slower rate of
recovery, poorer rehabilitation potential and mortality [6,
7]. Natural recovery of post-stroke dysphagia can range
between 6 months and 4 years after stroke onset [3, 8].

Here we investigated whether motor imagery of
swallowing can be used to activate brain areas, which are
involved in the swallowing process, to foster neuronal
plasticity. A large portion of brain-computer interface
(BCIl) and neurofeedback (NF) training studies
successfully showed that receiving real-time feedback
about the activity in motor brain areas while imagining
limb movements can be used to foster neuronal plasticity
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and consequently improve motor functions [9-25]. Prior
near-infrared spectroscopy (NIRS) studies showed that
healthy individuals as well as stroke patients generally
show comparable brain activation patterns during
executing and imagining swallowing movements [26—
29]. Both tasks lead to the strongest NIRS signal change
over the inferior frontal gyrus (IFG), which is part of the
swallowing network [1, 28]. Healthy young adults are
also able to modulate voluntarily the NIRS signal in a
desired direction during NF training [27, 30].

The aim of the present proof of concept study was to
investigate whether a stroke patient with dysphagia is
also able to modulate the activity in the swallowing
motor cortex when imagining swallowing movements
during NIRS-based NF training. To reveal possible
neuronal plasticity processes due to NF training, we
examined brain activation patterns elicited during active
swallowing before and after NF training, too.

MATERIALS AND METHODS

Participants: A 70-years old male stroke patient with
multiple brain lesions in the right hemisphere (4 months
after stroke) participated in this study during his
stationary stay in the rehabilitation clinic Judendorf-
Strallengel. The patient showed no psychiatric symptoms
or cognitive deficits. The patient showed a moderate
dysphagia at the beginning of the NF training
(Bogenhauser Dysphagia Score BODS of 3) [31, 32].
During his stay in the rehabilitation clinic, he additionally
received traditional logopedical treatment. Additionally,
we investigated a 78-years old male subject with no
neurological deficits and no dysphagia symptoms as
control subject. Both participants gave written informed
consent. The study was approved by the Ethics
Committee of the University of Graz, Austria (reference
number GZ. 39/25/63 ex 2013/14) and is in accordance
with the ethical standards of the Declaration of Helsinki.

NIRS-based NF training: To assess the NIRS signal
change (relative concentration changes in oxygenated
oxy- and deoxygenated deoxy- hemoglobin Hb) over the
bilateral IFG, a NIRSport 88 system from NIRx Medical
Technologies (Glen Head, NY) consisting of 8 photo-
detectors and 8 light emitters resulting in a total of 20
channels was used. The sampling rate was set to 7.81 Hz
and the distance between the optodes was 3 ¢cm. Both
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subjects performed four NF training sessions within two
weeks. The task was to increase deoxy-Hb over the
bilateral IFG [27, 30] while receiving visual real-time
feedback (color changes over the bilateral IFG area
depicted on a three-dimensional head model) of relative
concentration changes in deoxy-Hb over the bilateral IFG
when imagining swallowing movements (imagining how
it feels to swallow saliva). In each NF training session,
20 feedback trials were performed (each trial lasted 17-
23 s). Pause intervals were presented between the
feedback trials with a duration of 30 s.

Pre-post assessment: Before and after the NF training,
brain activation patterns elicited by executing
swallowing movements (swallowing saliva) were
assessed offline (no real-time feedback was provided).
Participants performed 10 execution trials with a duration
of 15 seconds. Between the motor execution trials, a
variable pause of 28-32 seconds was presented.

NIRS data analysis: Relative concentration changes in
deoxy-Hb during NF training were analyzed as well as
changes in oxy- and deoxy-Hb during the offline
measurements (pre-post assessment while executing
swallowing movements). Data preprocessing included an
artifact correction (visual inspection by a trained expert
in NIRS data analysis), band-pass filtering (0.01 Hz high-
pass filter, 0.90 Hz low-pass filter), and baseline
correction (5 s baseline interval prior to task-onset,
seconds -5 to 0). The NIRS signal change was averaged
task-related.
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For statistical analysis of the NF training data, the 20
feedback trials per session were divided in five blocks
(B1 — B5) a four trials: the NIRS signal of the first four
feedback trials (trial 1-4: B1), trial number 5-8 (B2),
trials 9-12 (B3), trials 13-16 (B4), and the last four trials
(trial 17-20: B5) were averaged, respectively. For
statistical comparisons, the NIRS signal was averaged for
the time interval 5-10 s after task onset (NF task). To
analyze changes in deoxy-Hb over the NF training
course, regression analyses were performed (predictor
variable = block number B1-B5; dependent variable=
average of deoxy-Hb for second 5-10 after start of the NF
task). The NIRS signal of the left IFG and right IFG was
used for statistical analysis.

RESULTS

Both subjects were able to linearly increase deoxy-Hb
over the right IFG, while deoxy-Hb over the left IFG did
not change significantly during NF training (Fig. 1).

During the offline pre-assessment, the stroke patient
showed a stronger NIRS signal change when executing
swallowing movements over the right IFG (affected
hemisphere) compared to the left IFG, while the healthy
control subject showed a bilateral activation pattern over
the IFG during the execution task (Fig. 2). After the NF
training, both subjects showed a bilateral NIRS
activation pattern during active swallowing (Fig. 2).
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Figure 1: Neurofeedback performance of the stroke patient (upper panel) and the healthy control subject
(lower panel). Depicted are changes in deoxy-Hb over the five blocks (B1-B5) within one training
session averaged across all 4 NF training sessions and the results of the regression analysis.
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Figure 2: Activation patterns during the motor execution offline task. Oxy- and deoxy-Hb is depicted separately for
the stroke patient and the healthy control subject for the 20 NIRS channels. The IFG is marked with a black rectangle

in the upper left picture.

DISCUSSION

Here we showed that a stroke patient with dysphagia is
able to modulate voluntarily the hemodynamic response
in the swallowing motor cortex by imagining swallowing
movements and that this NF training leads to neuronal
plasticity processes in the swallowing motor cortex after
stroke.

A stroke patient with dysphagia and a healthy control
subject were able to increase deoxy-Hb linearly during
NF training. This indicates that stroke patients with
multiple brain lesions can learn to modulate voluntarily
activity in the swallowing motor cortex when imagining
swallowing movements. Our results are in line with prior
findings of NIRS-based NF training studies in healthy
young adults [27, 30]. Kober et al. (2018) used the same
NIRS-based NF training paradigm as in the present study
[30]. In this prior study, healthy young adults (mean age
between 23-27 years) trained to modulate the NIRS
signal in a desired direction by imagining swallowing
movements. One group of healthy young adults also
trained to increase deoxy-Hb over the bilateral IFG,
comparable to the NF paradigm of the present study.
Interestingly, the healthy young adults were also able to
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increase deoxy-Hb linearly over the right IFG but not
over the left IFG, which is in line with the present
findings in a stroke patient and a healthy elderly control
subject [30]. As discussed in [30], it might be that
participants concentrated more on signal changes over
one hemisphere when receiving visual feedback of
activation changes over the left and right IFG on a three-
dimensional head model simultaneously, which might
have caused the observed hemisphere differences.

When executing swallowing movements, the stroke
patient showed a more unilateral brain activation pattern
(stronger activation of the affected right hemisphere
compared to the left hemisphere) while the healthy
control subject showed a more bilateral distribution of
brain activity before the start of the NF training. This is
in line with prior findings that dysphagia patients often
show a stronger activation of the affected hemisphere
during swallowing, while healthy individuals show a
more bilateral activation [3, 26-28, 33-36]. After NF
training, the stroke patient showed a bilateral activation
of the IFG during active swallowing. This activation
pattern was comparable to the brain activation pattern of
the healthy control subject [26, 28]. Hamdy et al. (1996)
also found that the cortical activation of dysphagia
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patients becomes more bilaterally distributed with
recovery of swallowing [36]. Hence, brain activation
patterns over swallowing motor areas elicited by
executing swallowing movements seem to “normalize”
in the stroke patient with dysphagia after NF training.

CONCLUSION

This first proof of concept study shows that a stroke
patient with dysphagia can benefit from NIRS-based NF
training in which motor imagery of swallowing
movements is used as mental strategy to activate the
swallowing motor cortex. There is evidence that external
stimulation or inhibition of the swallowing motor cortex
using repetitive transcranial magnetic stimulation
(rTMS) leads to recovered swallowing function in
dysphagia patients [3, 35, 37—39]. With NIRS-based NF,
dysphagia patients might learn to increase or decrease
voluntarily the activation level in specific swallowing
related brain areas, without the need of external
stimulation such as rTMS [28].

Our results indicate that future NF training studies with
larger samples of dysphagia patients might reveal the
usefulness of NF training in dysphagia rehabilitation.

REFERENCES

[1] Soros P, Inamoto Y, Martin RE. Functional brain
imaging of swallowing: An activation likelihood
estimation meta-analysis. Hum. Brain Mapp.
2009;30:2426-39. doi:10.1002/hbm.20680.

[2] Humbert IA, Robbins J. Normal Swallowing and
Functional Magnetic Resonance Imaging: A
Systematic Review. Dysphagia. 2007;22:266-75.
d0i:10.1007/s00455-007-9080-9.

[3] Khedr EM, Abo-Elfetoh N. Noninvasive Brain
Stimulation  for  Treatment of Post-Stroke
Dysphagia. Neuroenterology. 2013;2:1-9.
d0i:10.4303/ne/235663.

[4] Eslick GD, Talley NJ. Dysphagia: epidemiology,
risk factors and impact on quality of life--a
population-based study. Aliment Pharmacol Ther.
2008;27:971-9. d0i:10.1111/j.1365-
2036.2008.03664.x.

[5] Ashford J, McCabe D, Wheeler-Hegland K,
Frymark T, Mullen R, Musson N, et al. Evidence-
based systematic review: Oropharyngeal dysphagia
behavioral treatments. Part 111--impact of dysphagia
treatments on populations with neurological
disorders. J Rehabil Res Dev. 2009;46:195-204.

[6] Haider C, Zauner H, Gehringer-Manakamatas N,
Kadar K, Wood G., Wallner K, Gassner A.
Neurogenic dysphagia: Nutrition therapy improves
rehabilitation. Journal fur Erndhrungsmedizin.
2008;10:6-11.

[71 Bours GJIW, Speyer R, Lemmens J, Limburg M,
Wit R de. Bedside screening tests vs.
videofluoroscopy  or  fibreoptic ~ endoscopic
evaluation of swallowing to detect dysphagia in

CC BY-ND

DOI: 10.3217/978-3-85125-682-6-01

patients with neurological disorders: systematic
review. Journal of  Advanced  Nursing.
2009;65:477-93. doi:10.1111/j.1365-
2648.2008.04915.x.

[8] Bath PMW, Bath FJ, Smithard DG. Interventions
for dysphagia in acute stroke. The Cochrane
Library. 2002;1.

[9] Mihara M, Hattori N, Hatakenaka M, Yagura H,
Kawano T, Hino T, Miyai |. Near-infrared
Spectroscopy-mediated Neurofeedback Enhances
Efficacy of Motor Imagery-based Training in
Poststroke  Victims: A Pilot Study. Stroke.
2013;44:1091-8.
doi:10.1161/STROKEAHA.111.674507.

[10] Gentili R, Han CE, Schweighofer N, Papaxanthis C.
Motor learning without doing: trial-by-trial
improvement in motor performance during mental
training. Journal of Neurophysiology.
2010;104:774-83. doi:10.1152/jn.00257.2010.

[11] Yéagiez L, Nagel D, Hoffmann H, Canavan AGM,
Wist E, Homberg V. A mental route to motor
learning: Improving trajectorial kinematics through
imagery training. Behavioural Brain Research.
1998;90:95-106.

[12] Mulder T, Zijlstra S, Zijlstra W, Hochstenbach J.
The role of motor imagery in learning a totally novel
movement.  Experimental ~ Brain  Research.
2004;154:211-7. doi:10.1007/s00221-003-1647-6.

[13] Liew S-L, Rana M, Cornelsen S, Fortunato de
Barros Filho M, Birbaumer N, Sitaram R, et al.
Improving Motor Corticothalamic Communication
After Stroke Using Real-Time fMRI Connectivity-
Based Neurofeedback. Neurorehabil Neural Repair.
2016;30:671-5. doi:10.1177/1545968315619699.

[14] Goebel R, Zilverstand A, Sorger B. Real-time
fMRI-based  brain—computer interfacing for
neurofeedback therapy and compensation of lost
motor functions. Imaging in Medicine. 2010;2:407—
15. d0i:10.2217/iim.10.35.

[15] Watanabe T, Sasaki Y, Shibata K, Kawato M.
Advances in fMRI Real-Time Neurofeedback.
Trends Cogn Sci (Regul Ed ). 2017;21:997-1010.
d0i:10.1016/j.tics.2017.09.010.

[16] Sitaram R, Caria A, Veit R, Gaber T, Rota G,
Kuebler A, Birbaumer N. fMRI Brain-Computer
Interface: A Tool for Neuroscientific Research and
Treatment.  Computational  Intelligence and
Neuroscience. 2007;2007:1-10.
doi:10.1155/2007/25487.

[17] Sitaram R, Ros T, Stoeckel L, Haller S,
Scharnowski F, Lewis-Peacock J, et al. Closed-loop
brain training: The science of neurofeedback. Nat
Rev Neurosci. 2017;18:86-100.
d0i:10.1038/nrn.2016.164.

[18] Linden DEJ, Turner DL. Real-time functional
magnetic resonance imaging neurofeedback in
motor neurorehabilitation. Curr Opin Neurol.
2016;29:412-8.

[19] Kober SE, Wood G, Kurzmann J, Friedrich EVC,
Stangl M, Wippel T, et al. Near-infrared

Published by Verlag der TU Graz
Graz University of Technology



Proceedings of the

8th Graz Brain-Computer Interface Conference 2019

spectroscopy based neurofeedback training
increases specific motor imagery related cortical
activation compared to sham feedback. Biological
Psychology. 2014;95:21-30.
doi:10.1016/j.biopsycho.2013.05.005.

[20] Pfurtscheller G, Neuper C. Motor imagery activates
primary sensorimotor area in humans. Neuroscience
Letters.  1997;239:65-8.  do0i:10.1016/S0304-
3940(97)00889-6.

[21] Weiskopf N. Real-time fMRI and its application to
neurofeedback. Neurolmage. 2012;62:682-92.
doi:10.1016/j.neurcimage.2011.10.009.

[22] Wriessnegger SC, Kurzmann J, Neuper C. Spatio-
temporal differences in brain oxygenation between
movement execution and imagery: A multichannel
near-infrared spectroscopy study. International
Journal of Psychophysiology. 2008;67:54-63.
doi:10.1016/j.ijpsycho.2007.10.004.

[23] Faralli A, Bigoni M, Mauro A, Rossi F, Carulli D.
Noninvasive Strategies to Promote Functional
Recovery after Stroke. Neural Plasticity.
2013;2013:1-16. doi:10.1155/2013/854597.

[24] Hardwick RM, Caspers S, Eickhoff SB, Swinnen
SP. Neural Correlates of Motor Imagery, Action
Observation, and Movement Execution: A
Comparison Across Quantitative Meta-Analyses.
bioRxiv. 2017:1-50. doi:10.1101/198432.

[25] Lorey B, Naumann T, Pilgramm S, Petermann C,
Bischoff M, Zentgraf K, et al. How equivalent are
the action execution, imagery, and observation of
intransitive movements? Revisiting the concept of
somatotopy during action simulation. Brain Cogn.
2013;81:139-50. doi:10.1016/j.bandc.2012.09.011.

[26] Kober SE, Bauernfeind G, Woller C, Sampl M,
Grieshofer P, Neuper C, Wood G. Hemodynamic
Signal Changes Accompanying Execution and
Imagery of Swallowing in Patients with Dysphagia:
A Multiple Single-Case Near-Infrared Spectroscopy
Study. Front. Neurol. 2015;6:1-10.
doi:10.3389/fneur.2015.00151.

[27] Kober SE, Gressenberger B, Kurzmann J, Neuper C,
Wood G. Voluntary modulation of hemodynamic
responses in swallowing related motor areas: A
near-infrared spectroscopy based neurofeedback
study. PLoS ONE. 2015;10:1-17.

[28] Kober SE, Wood G. Changes in hemodynamic
signals accompanying motor imagery and motor
execution of swallowing: A near-infrared
spectroscopy study. Neurolmage. 2014;93:1-10.
doi:10.1016/j.neuroimage.2014.02.019.

[29] Kober SE, Wood G. How to Exercise by Imagining
Movements. Front. Young Minds. 2017;5:247.
doi:10.3389/frym.2017.00042.

[30] Kober SE, Hinterleitner V, Bauernfeind G, Neuper
C, Wood G. Trainability of hemodynamic
parameters: A near-infrared spectroscopy based
neurofeedback study. Biol Psychol. 2018;136:168—
80. doi:10.1016/j.biopsycho.2018.05.009.

[31] Bartolome G, Schréter-Morasch H. Bogenhausener
Untersuchungsprotokoll ~ fiir ~ die  Klinische

CC BY-ND

DOI: 10.3217/978-3-85125-682-6-01

Schluckuntersuchung (KSU). In: Bartolome G,
Schréter-Morasch H, editors. Schluckstérungen —
Diagnostik und Rehabilitation. 5th ed. Munchen:
Elsevier; 2014.

[32] Bartolome G, Schroter-Morasch H, editors.
Schluckstdrungen — Diagnostik und Rehabilitation.
5th ed. Miinchen: Elsevier; 2014.

[33] Kober SE, Wood G. Hemodynamic signal changes
during saliva and water swallowing: a near-infrared
spectroscopy study. 2018;23 IS -:015009-23-7.

[34] Ertekin C, Aydogdu 1. Neurophysiology of
swallowing. Clinical Neurophysiology.
2003;114:2226-44. d0i:10.1016/S1388-
2457(03)00237-2.

[35] Khedr EM, Abo-Elfetoh N, Rothwell JC. Treatment
of post-stroke dysphagia with repetitive transcranial
magnetic  stimulation.  Acta  Neurologica
Scandinavica. 2009;119:155-61.
doi:10.1111/j.1600-0404.2008.01093.x.

[36] Hamdy S, Aziz Q, Rothwell JC, Singh KD, Barlow
J, Hughes DG, et al. The cortical topography of
human swallowing musculature in health and
disease. Nature Med. 1996;2:1217-24.

[37] Verin E, Leroi AM. Poststroke Dysphagia
Rehabilitation by Repetitive Transcranial Magnetic
Stimulation: A Noncontrolled Pilot  Study.
Dysphagia. 2009;24:204-10. doi:10.1007/s00455-
008-9195-7.

[38] Michou E, Raginis-Zborowska A, Watanabe M,
Lodhi T, Hamdy S. Repetitive Transcranial
Magnetic Stimulation: A Novel Approach for
Treating  Oropharyngeal = Dysphagia.  Curr
Gastroenterol Rep. 2016;18:10.
d0i:10.1007/s11894-015-0483-8.

[39] Cabib C, Ortega O, Kumru H, Palomeras E,
Vilardell N, Alvarez-Berdugo D, et al
Neurorehabilitation  strategies for  poststroke
oropharyngeal dysphagia: From compensation to
the recovery of swallowing function. Ann N Y Acad
Sci. 2016;1380:121-38. doi:10.1111/nyas.13135.

Published by Verlag der TU Graz
Graz University of Technology



Proceedings of the

8th Graz Brain-Computer Interface Conference 2019

DOI: 10.3217/978-3-85125-682-6-02

THE RIEMANNIAN MINIMUM DISTANCE
TO MEANS FIELD CLASSIFIER

M Congedo, P.L.C. Rodrigues, C. Jutten

GIPSA-lab, Université Grenoble Alpes, CNRS, Grenoble-INP

E-mail: Marco.Congedo@Gipsa-Lab.fr

ABSTRACT: A substantial amount of research has
demonstrated the accuracy of the Riemannian minimum
distance to mean (RMDM) classifier for brain-computer
interface (BCI). This classifier is simple, fully
deterministic, robust to noise, computationally efficient
and prone to transfer learning. The use of the geometric
mean in the Riemannian manifold of symmetric positive
definite matrices has proved fundamental to obtain these
characteristics. Recently the general family of power
means living on this manifold, which includes the
geometric mean, has been defined. In this article we
extend the RMDM algorithm in an unsupervised and
adaptive fashion using a sampling of power means,
named means field. We show that the resulting
Riemannian minimum distance to means field
(RMDMF) classifier features superior performance. Our
conclusion is supported by the analysis of 17 public
databases covering two BCI paradigms, for a total of 335
individuals, using the open-source MOABB (Mother of
all BCl Benchmark) framework. In order to promote
reproducible research, our full code is released.

INTRODUCTION

Riemannian geometry is a branch of differential
geometry that studies smooth manifolds, curved spaces
with peculiar geometries. In these spaces notions of
angles, shortest path between two points, distances,
center of mass of several points, etc., allow to study
analytic properties of mathematical operators from a
geometric perspectives, making them accessible to
intuition [1]. In the field of brain-computer interface
(BCI) the manifold of symmetric positive-definite (SPD)
matrices [2] has proved very useful, since multivariate
electroencephalography (EEG) data in finite time
windows can effectively be mapped as points onto this
manifold through the estimation of some form of their
covariance matrix [3-6]. This approach has led to the
introduction of classifiers with remarkable characteristics
as compared to the state-of-the-art [6]; for a formal
introduction to the SPD Riemannian manifold the reader
is referred to [2], while for a primer and review of its use
in the BCI context to [7,8].

Riemannian classifiers have proved accurate, general and
robust to noise, largely superior to state-of-the-art
competitors [9], winning five international BCI machine
learning competitions in which they have competed [7].
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In particular, the Riemannian minimum distance to mean
(RMDM) classifier, while not the most accurate among
Riemannian classifiers, stands out for its simplicity,
computational efficiency and universality (it applies to
all BCIl paradigms). It is a fully deterministic and
parameter-free classifier, thus no parameter needs to be
tuned by cross-validation or other methods that may
jeopardize its generalization. Further, it can be easily
extended to the multi-user scenario [10], has proved
accurate also in individuals affected by clinical
conditions [11] and has proved apt to integrate transfer
learning [12, 13] and adaptation strategies [14], as
demonstrated by the calibration-less P300-based BCI
video game Brain Invaders [14-16].

In its non-adaptive (test-training) form, the RMDM
works as it follows: a training provides a set of SPD
matrices encoding BCI trials for the available classes. For
each class a center of mass of the available trials is
estimated. Finally, in test mode, a BCI trial to be
classified is encoded in the same way as an SPD matrix
and is assigned to the class whose center of mass is the
closest according to a suitable distance function acting on
the manifold [7]. In adaptive mode instead, the centers of
mass are initialized by a database of previous users for a
naive user and/or a database of the same user for a non-
naive user thanks to transfer learning strategies [12, 13],
then the centers of mass are adapted to the user while the
BCl is operated [14]. In any case, the good performance
of the RMDM classifier derives from the adoption of an
appropriate metric for the SPD manifold. The metric in
turn determines both the distance function between two
points and the definition of a center of mass for a cloud
of points, which is also a function of the distance since it
is defined as the point on the manifold minimizing the
dispersion of the cloud around itself [7, 17]. So far, the
hyperbolic (geometric) distance and the geometric mean
as a center of mass, which arise adopting the Fisher-Rao
(affine-invariant) metric, have been preferred, due to a
number of desirable invariance properties they possess.
As explained in [7], those are the extension to SPD
matrices of the usual hyperbolic distance and geometric
mean for scalars. Simply stated, their use instead of the
much more common Euclidean distance and arithmetic
mean has engendered the success of Riemannian
classifiers dealing with covariance matrices [7, 8].

In [18] the authors have defined a one-parameter family
of means generalizing to SPD matrices the power means
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for scalars. Given a set of K scalars {c,...,c«}, the power
mean with real parameter h =0 is given by

g - (E2)" @

As for the scalar power means, the SPD matrix power
means of [18] (see also [19-21]) interpolate between the
harmonic mean (h=-1) and the arithmetic mean

(h=1), while the geometric mean that we have

discussed corresponds to the limit of h evaluated at 0,
from either side. This generality of power means is
appealing in the BCI context; as suggested in [22], in
EEG data the sensor measurement is affected by several
noise components and varying the order h one can find
an optimal mean depending on the signal-to-noise-ratio.
In [22] we have tested the accuracy of the RMDM
algorithm using 13 power means with h={+1, £0.8, 0.6,
+0.4, £0.2, £0.1, 0} (see Fig. 7 therein). The classical
RMDM classifier corresponds to the power mean with
h=0 (geometric mean). We have found that the value of
h offering the maximum accuracy gravitated around zero,
but h=0 was optimal only for three out of the 38 tested
subjects. Instead, the optimal value of h was highly
variable across individuals. Also, there was a significant
positive correlation between the maximal accuracy and
the value of h allowing such maximum. Thus, the higher
the accuracy, which is an indirect measure of signal-to-
noise ratio, the higher the optimal value of h.

Finding the optimal value of h for a given subject and
session, as we have done in [22], is a supervised
procedure. Therefore in seeking the optimal value we roll
back to the problem of obtaining a classifier that is prone
to overfitting, that lacks transfer learning and that is not
capable of adaptation. Let us instead name a means field
a sampling of power means in the interval he[-1, 1] such
as the one used in [22]. Then, in this article we propose
the Riemannian minimum distance to means field
(RMDMF) classifier. It uses in an unsupervised and
adaptive fashion all the means in the field for classifying.
In particular, for a given unlabeled datum, the closest
power mean, regardless of its class, is found, then the
MDM is applied using the power means with the value
of h that corresponds to the closest mean. Such method is
unsupervised, in that it can be used blindly to any datum
without any learning and is adaptive, in that the preferred
value of h is allowed to change during the session.

We employ MOABB (Mother of All BCl Benchmark)
[9] for testing the RMDMF against the RMDM classifier
on 17 databases covering two BCI paradigms (motor
imagery and P300), for a total of 335 individuals.
MOABB is an open-source framework for objectively
assessing the performance of BCI classifiers on large
amount of data. The use of MOABB ensures that exactly
the same processing pipeline is applied to all databases
of the same type and that both the cross-validation
procedure and the Riemannian classifiers operate exactly
in the same way for all databases, regardless the BCI

type.
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MATERIALS AND METHODS

Table 1 reports the main characteristics of the 17
databases we have used for testing. 12 concerns a motor
imagery (MI) BCI, five concerns a P300 BCI. For some
databases several sessions are available, therefore the
actual number of EEG recordings analyzed is superior to
the total number of subjects. Also, one may notice that
the number of electrodes used in the experiments is
highly variable, ranging from three to 128.

Table 1: Main characteristics of the databases used for the
analysis. Legend: Ch.=number of channels; Sess=number of
sessions; Ss=number of subjects. For extended names of the
databases see Table 2.

Name Type Ch  Trials Sess Ss
Zhou 2016 MI 14 100 3 4
BNCI 2014-009 | P300 18 4200 1 10
BNCI 2015-001 MI 13 200 2o0r3 13
BNCI 2014-002 Ml 15 160 1 14
BNCI 2015-003 | P300 10 5400 1 10
BNCI 2014-004 Ml 3 120-160 5 9
BNCI 2015-004 MI 30 70-80 2 10
BNCI 2014-008 | P300 10 4200 1 8
Alexandre MI Ml 16 40 1 9
Weibo 2014 Ml 60 160 1 10
Brain Inv 2013a | P300 16 480 lor8 24
Cho 2017 MI 64 200 1 49
EPFL P300 P300 32 800 4 8
GW 2009 MI 128 300 1 10
Physionet MI Ml 64  40-60 1 109
Shin 2017a Ml 25 60 3 29
BNCI 2014-001 MI 22 144 2 9

The pipeline for MI databases included: filtering in the 8-
32Hz band-pass region, computing the sample
covariance matrix for all trials and evaluating the
classifiers using (5-fold) cross-validation [3]. The
pipeline for P300 included filtering in the 1-24Hz band-
pass region and then, during (5-fold) cross-validation,
estimating on the training set a spatial filter specifically
conceived to enhance the signal-to-noise ratio of event-
related potentials (ERPS) [23, 24] retaining the best eight
discriminative components, filtering all the trials in the
training and test set using this filter, computing the 16x16
extended sample covariance matrix used for ERP data [3,
14] on all trials and finally evaluating the classifiers.

Using these two pipelines we have run statistical tests in
MOABB to compare the ROC-AUC classification
accuracy of the RMDMF classifier vs. the RMDM
classifier for all databases. The power means for the
RMDMF classifier where computed for h={+1, £0.75,
+0.5, +0.25, £0.1, +0.01}. If several sessions for the same
subject were available, the ROC-AUC score was
averaged across-sessions to provide a unique score for
each subject. For each database a paired permutation one-
sided t-test has been carried out, enumerating all raw data
permutations if the number of subjects was <20, yielding
in this case an exact test [25,26], otherwise employing
the Wilcoxon signed-rank test, which basically is
equivalent to a permutation test performed on the ranked
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data. The p-values thus obtained for each database have
been combined using the weighted Liptak combination
function [26] (also known as Stouffer’s combination
function when expressed in terms of standard normal
variables), which is given by

O]

zt W @71(1—pi)
p=1- d{—' = :
Zi:lwiz

where @ is the standard normal cumulative distribution
function, & its inverse function, n is the number of
databases (17 in our case), pi the p-value observed for the
i" database and w; weights taken as the square root of the
number of subjects in each database. This returned a
single p-value for the global one-sided comparison
RMDMF vs. RMDM. Such p-value is to be interpreted
as the probability to observe n p-values under the
Omnibus hypothesis, i.e., given that the null hypothesis
is true for all of them. Notice that the Liptak combination
function (2) assumes that the p-values to be combined
result from all pair-wise independent hypotheses, which
in our case is verified since all the databases are
independent. Notice also that this combination function
is optimal (most powerful) when all tests have the same
effect size, which, although rarely verified in practice, is
a desirable property. The effect sizes were also
determined, akin to meta-analysis studies, computing the
standardized mean difference (SMD) for each database
and combining them by the weighted arithmetic average
using the same weighs as those used for Liptak’s p-value
combination method. All statistical analysis tools here
above described are already embedded in MOABB [9].

RESULTS

Table 2 reports the p-values and SMDs obtained on the
17 databases along with the combined p-value and the
average SMD. Figure 1 depicts the SMDs and their 95%
confidence interval obtained on the 17 databases. One
can see that for five databases the RMDMF classifier
significantly outperforms the RMDM classifier. Among
the remaining 12 databases, in nine of them RMDMF
tends to perform better than RMDM (as seen by the
positive SMD or, equivalently, by a p-value smaller than
0.5), while the opposite happens in three. There is no
evidence that the RMDM significantly outperforms
RMDMF for any databases. The weighted average SMD
was 0.3 and the weighted combined p-value was
extremely low (p=0,0000377), allowing a firm rejection
of the Omnibus hypothesis. Notice finally that, as
expected, the confidence interval for the SMDs tends to
be inversely proportional to the sample size.

DISCUSSION
Using MOABB we have presented results on 17
databases for a total of 335 individuals. Those results are

therefore solid and powerful. For doing this we have
added several databases to MOABB, including one of our

! https://sites.google.com/site/marcocongedo/science
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own database on the P300 video-game Brain Invaders
[14-16] and we will continue this effort. MOABB is an
ideal framework for testing classifiers objectively and we
invite the community to contribute to it in terms of
development and data. More in general, we urge the BCI
community to promote publications on machine learning
for BCI where either real on-line accuracy is reported or
the classifiers are tested on large and diverse data. The
Python code of this analysis and our data are available
along with many other contributions?.

Table 2: p-values and standardized mean differences (SMD)
obtained on the 17 databases along with the combined p-value
and SMD. Small p-values (underlined for p<0.05) indicate that
the accuracy is significantly higher for the RMDMF as
compared to the RMDM.

Name Type Ss p SMD
Zhou 2016 MI 4 0,188 0,679
BNCI 2014-009 P300 10 0,271 0,201
BNCI 2015-001 MI 13 0,004 0,964
BNCI 2014-002 Ml 14 0,041 0,499
BNCI 2015-003 P300 10 0,374 0,136
BNCI 2014-004 Ml 9 0,648 -0,120
BNCI 2015-004 MI 10 0,322 0,150
BNCI 2014-008 P300 8 0,078 0,659
Alexandre MI MI 9 0,285 0,182
Weibo 2014 Ml 10 0,023 0,711
Brain Invaders 2013a | P300 24 0,744 -0,132
Cho 2017 Ml 49 0,085 0,259
EPFL P300 P300 8 0,836 -0,372
Grosse-Wentrup 2009 Ml 10 0,011 0,687
Physionet MI MI 109 0,109 0,090
Shin 2017a Ml 29 0,052 0,304
BNCI 2014-001 Ml 9 0,010 0,998
Combination p=0,0000377 0,302
—t—
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Figure 1: Standardized mean differences (diamond) and their
95% confidence interval (horizontal lines) for the 17 databases
(from top to bottom in the same order as in table 1 and 2). A
positive SMD value indicate that the accuracy of the RMDMF
classifier is higher as compared to the RMDM, the opposite for
a negative SMD value. *= significant p-value (see table 2).
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CONCLUSION

In this article we have proposed an improvement to the
Riemannian minimum distance to mean classifier for
BCls, leveraging on recent advances on mathematics (the
definition of power means for symmetric positive
definite matrices [18-21]) and signal processing (an
efficient algorithm for estimating them [22]). Comparing
the proposed RMDMF to the RMDM classifier on 17
databases using MOABB has yielded an average SMD
equal to 0.3 and a combined p-value equal to 0,0000377.
As it can been seen in Table 2, the effect is driven by Ml
databases, whereas for no P300 database the effect is
significant. We believe this is due to the fact that in our
pipeline for P300 an optimal spatial filter has been
estimated during cross-validation, thus the signal-to-
noise ratio for these data has been optimized; under these
circumstances the benefit of using a means field
populated by power means is likely lost. If this is
confirmed by further analysis, the RMDMF classifier
would prove better apt for working on raw data as
compared to the RMDM, but of course it can be used also
on spatially filtered data without losing performance, as
our analysis suggests. Then the RMDMF, while
preserving the other desirable properties of the RMDM
(simplicity, computational efficiency, universality, ease
of extension to the multi-user scenario, good attitude for
transfer learning and for adaptation), truly would support
parameter-free classification pipelines.

The computational cost of the RMDMF as compared to
the RMDM is increased proportionally to the number of
means used to populate the means field. Since the
computational complexity of Riemannian classifiers is
cubic on the size of the covariance matrices used to
encode the EEG data, this does not represent a substantial
additional cost. When the dimension of the covariance
matrices is high, it can be reduced by well-known
methods such as principal component analysis or by
methods inspired by Riemannian geometry [27, 28]. As
reported in [6], the performance of the MDM drops in
high dimension, therefore in these situations a
dimensionality reduction step in practice is necessary.
The RMDMF may turn more robust than the RMDM also
with respect to the dimensionality. Further research is
necessary to verify these hypotheses.

For defining the RMDMF we have found effective a
‘closest mean’ approach. However, better strategies may
exist to exploit the richness of the means field, such as,
for example, pooling and majority voting. Further
research is therefore needed to find optimal strategies for
exploiting the Riemannian means fields. Not only the
strategy can be optimized, but also the definition of the
means field itself: while in this work we have populated
the means field with power means, other means not
belonging to this family may be added to the field, such
as the log-Euclidean mean and a sample of the o-
divergence means, to which the Bhattacharyya mean
belongs [29], making the means field even more rich.
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ABSTRACT: A brain-computer interface (BCI) is an
highly interdisciplinary research topic which involved
psychology, signal processing, machine learning, medi-
cal engineering etc. A steady-state visually evoked po-
tentials (SSVEP) paradigm-based Brain Computer Inter-
face systems are the most promising and reliable commu-
nication systems for people with disabilities on clinical
purposes. This paper proposes the use of Deep Neural
Network models for decoding the data acquired through
visual-based Electroencephalography (EEG). in this pa-
per, we concentrate on two points with the Convolutional
Neural Network The first is decoding of the EEG data
using the raw signal (time domain) and the extracted fre-
quency features of the signal after Fourier analysis. The
second point explored in this paper is the evaluation of the
selection of electrodes on the performance of the Deep
Neural Network models for raw signals (time domain
data). We have also compared the performance of Canon-
ical Correlation analysis of the data with the Deep Neural
Network models.

INTRODUCTION

Brain-Computer Interface (BCI) systems provide direct
communication between the human brain and an external
device. BCI systems are applicable in different areas such
as spellers [1], for operating wheelchairs [2], computer
games, virtual reality and controlling home environment

[3]. BCI systems make use of different types of signals
comprising of slow cortical potentials, P300, sensorimo-
tor rthythms and SSVEPs [1]. SSVEPs are recorded over
the scalp from repetitive external stimulations. SSVEPs
are of the same frequency as of the stimulus. In other
words, looking at an image of frequency 12Hz with 0°
phase angle will generate a signal of the same value and
angle in the occipital region of the brain. High Signal-To-
Noise (SNR) ratio, high Information Transfer Rate (ITR),
little user training and less susceptibility to eye move-
ments are the advantages leading to the usage of SSVEPs
in BCIs over other types of signals [4].

Essentially, a visual BCI has four sections, signal acqui-
sition, signal processing, signal classification, and out-
put device which realizes the selected commands by the
user of BCI indicated by Figure 1. The principal task in
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Figure 1: Working of SSVEP-based BCI [§]

this process is signal classification with reliable perfor-
mance in regards to accuracy and response time. A num-
ber of methods for detection of SSVEPs have been used
such as Minimum-Energy Combination (MEC), Canoni-
cal Correlation Analysis (CCA), Support Vector Machine
(SVM) and Power Spectral Density Analysis (PSDA).
These methods would require the data to be refined by
human intervention. The use of Deep Neural Networks
in BCIs has gained popularity due to its robust nature and
the capability of extracting high-level features from the
data without prior knowledge [7][11]. Use of Convolu-
tional Neural Networks (CNN) for image classification
and recognition provides high accuracy, automatic fea-
ture extraction with the multiple convolutional layers thus
making it the perfect choice for EEG data. The EEG data
received from a variety of participants having different
features makes CNN an apt solution for classification of
the signals. Despite of high performance of CNN, it has
a necessity to have a large training dataset so that no or
less over-fitting occurs in the model, which is a challenge
in the EEG data, given it’s relatively smaller size.

In this paper, there are two parts of the implementation,
the first is the impact on performance, when giving raw
signal as input and extracted frequency features as input.
The second part compares the performance of the selec-
tion of electrodes and without the selection of electrodes
in the input.

MATERIALS AND METHODS

EEG Dataset: This paper uses data published in [5],
which is recorded using a 40-target BCI speller. The BCI
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speller consists of a 5x8 matrix of 40 characters, out of
which 26 are English alphabets, 10 digits, and 4 sym-
bols. A total number of 35 participants (27 naive, 8 expe-
rienced) participated in the experiment. The experiment
had 6 blocks, each comprising of 40 trials corresponding
to the 40 symbols on the screen. One trial total length is 6
s, with 0.5 s target cue and last 0.5 s was blank. There was
a gap of several minutes between two consecutive blocks
for the participant to rest. The 40 frequencies recorded
are from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The
whole-head EEG data is recorded using 64 electrodes ac-
cording to the 10-20 system at a sampling rate of 1000Hz
as shown in Figure 2. The recorded data epochs were
downsampled to 250 Hz as the upper limit of the SSVEP
range is 90 Hz. No pre-processing has been performed on
the data. At the end of the experiment, the data available
for each participant is 240 trials i.e. 6 blocks x 40 trials.
Each trial consisted of 64 channels x 1500 time points.

Channel Locations

Figure 2: Electrode placement

Canonical Correlation Analysis: Canonical Correla-
tion Analysis is a multivariable statistical method which
finds a correlation between two sets of variables. It was
introduced in the field of EEG analysis by Lin et. al
in [9]. In the case of SSVEP-based EEG signals, there
are two variables, X which is the recorded multi-channel
EEG signal and Y refers to the reference signals. The fre-
quency recognition is obtained by calculating the canon-
ical correlation between multi-channel SSVEP and the
reference signals. The frequency which has the max-
imum correlation value in the reference signals is the
same as the frequency of the multi-channel SSVEP sig-
nal. CCA helps in reducing a large amount of information
into useful information by maximizing the correlation.

Convolutional Neural Network: Recently CNNs have
attained success and popularity in so many different
fields. The different layers of CNN help in dimension-
ality reduction, in turn, reducing the number of training
parameters which will increase the training speed and im-
prove performance. A CNN consists of an input layer,
convolutional layer, activation, pooling layer, and fully
connected layer. Various parameters such as Dropout and
Batch Normalization can be used for further optimization
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Table 1: CNN for Time Domain
Number / Size

Layer / Parameter

ConvlD 32 filters
MaxPooling1D 2
Dropout 0.5
BatchNormalization -

ConvlD 64 filters
MaxPooling1D 2
Dropout 0.5
BatchNormalization -

Flatten -

Dense 256 filters
Dense 512 filters, 40 output

in the CNN model. The convolution layer slides a fil-
ter of a particular size over the given input to produce a
feature map. As done in any Neural Network, we use ac-
tivation function on the output of the convolution layer
after which we have a non-linear output. The dimension-
ality reduction is performed by the pooling layers, which
extracts useful parameters and thus reduce the number
of parameters to compute and to be learned. This will
also prevent overfitting of the model. There can be such
multiple layers, each comprising of convolution layer, ac-
tivation function, and pooling layer. The last few layers
are fully connected layers which are similar to the regular
neural networks. But before we pass the data from con-
volutional layers to the fully connected layers, we need to
flatten the data as fully connected layers understand only
I-dimensional data. The main part of the training is the
configuration of the above-described layers.

In the past few years, the use of CNN in the area of
SSVEP has increased. In [6], the accuracy of CNN was
69.03% 256 channel SSVEP recordings of 11 subjects,
whereas in [7] the accuracy of CNN classification is as
high as 99.27% for static and 94.03% for ambulatory
SSVEP data of 7 subjects. In these papers, a power spec-
tral density analysis has been performed to extract fre-
quency features and then feed it to the model for classi-
fication. Here in this paper, we will compare the perfor-
mance of the model between such extracted features and
raw signal.

CNN Model for raw signal: The raw signal is in form
of time domain as indicated by 64 channel x 1500 time
points is given as input to the CNN model. To evalu-
ate the performance of the CNN model on the raw signal
as input, we make use of Convolutional Neural Network
in 1 dimension. The structure is described in Table 1, 1
Conv1D layer with 32 filters having 'ReLU’ as activa-
tion function and a Max Pooling layer with size 2. The
second layer comprises of 1 Conv1D layer with 64 filters
having "ReL.U’ as activation function and a Max Pooling
layer with size 2. The Dropout value is taken as 0.5 and
BatchNormalization has been applied. Fully connected
layers of size 256 and 512 have been used. The last fully
connected layer uses Softmax as the activation function
for giving the output. Adam optimization algorithm is
used for updating the network weights in training data.
The training and validation accuracy indicated in Figure 3
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Table 2: CNN for Frequency Domain
Layer / Parameter Number / Size

Conv2D 32 filters
MaxPooling2D 3

Dropout 0.5
BatchNormalization -

Conv2D 64 filters
MaxPooling2D 3

Dropout 0.5
BatchNormalization -

Flatten -

Dense 512 filters, 40 output

shows the learning of the model.

Training & Validation Accuracy

Accuracy

Epochs

Figure 3: Training & Validation Accuracy - Time Domain

CNN Model for extracted frequency features: Power
Spectral Density Analysis (PSDA) is performed on the
signal before giving input to the CNN model. Here we
use Convolutional Neural Network in a 2 dimensions ma-
trix. The structure is described in Table 2, 1 Conv2D
layer with 32 filters having "ReL.U’ as activation function
and Max Pooling layer with size 3x3. The second layer
consists of 64 filters with "ReL U’ as activation function
and Max Pooling layer with a filter of size 3. The Dropout
value is taken as 0.5 and BatchNormalization has been
applied. The last layer which is fully connected layer is
of size 512 with Softmax as an activation function. Adam
optimization algorithm is used just like the previous for
updating the network weights in training data. The train-
ing and validation accuracy indicated in Figure 4 shows
the learning of the model.

Training & Validation Accuracy

Accuracy
N
7

Epochs

Figure 4: Training & Validation Accuracy - Frequency Domain

Selection of electrodes: The SSVEP signals decoding
have a much better quality when the electrodes placed
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Across Subject Accuracy - Time Domain & Frequency Domain
E Time Domain
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Figure 5: Overall Accuracy of Subjects in both domains

over the occipital and parietal areas are thus removing
other background activities [5S]. From the 64 electrodes
shown in Figure 2, the electrodes selected in this paper
are 9 i.e. Pz, POS5, PO3, POz, PO4, PO6, O1, Oz and
02 which give a better performance in classification of
the signal [5]. The data from those electrodes is selected
for classification. The same model is given two differ-
ent inputs of raw signal (time domain) and the result is
compared to check the performance of the model in both
scenarios. The structure of the model is just the same as
the one described in Table 1. The channel selection is
tested in the case of the time domain.

RESULTS

Comparison of CNN models for raw signal and ex-
tracted frequency features: In our models, we have at-
tained an accuracy of 76.5% in the time domain, 80%
accuracy in the frequency domain. The CNN model with
time domain performs almost as well as the model with
frequency extracted features. The accuracy of the model
in time domain is quite higher in certain subjects than in
frequency domain as shown in Figure 5 indicating that
the extraction of the frequency component is alternative.
The idea behind using CNN models is an automatic fea-
ture extraction and learn the signal specific oscillation in
the hidden layers which is achieved in the model used for
raw signal. From the given data, we have used has 240
trials per subject, the number of samples is quite less for
the model to train in the time domain.

Channel Selection results: The model achieves 76.5%
accuracy when data from only 9 channels is taken into
consideration and achieves 22.5% accuracy without se-
lection of 9 channels. In [5], it is mentioned that utiliza-
tion of electrodes positioned over occipital and parietal
will give better accuracy in classification of the given sig-
nals. Our CNN model verifies that the channel selection
proves beneficial in the classification as shown in Fig-
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Figure 6: Overall Accuracy of Subjects with 9-channel and 64-
channel data

ure 6.

Comparison of CCA with CNN models: The accuracy
of CCA for all the subjects can be compared with the ac-
curacy of CNN models in various conditions. The CCA
model requires hand-crafted data for processing and get-
ting the maximum correlation values. While the CNN
models automatically detect the high-level features with
the help of hidden layers. It can also be observed that
the CCA and CNN give quite similar results on cer-
tain subjects, however as the most successful algorithms
in SSVEP decoding for many years,CCA generated the
overall higher accuracy than the time and frequency do-
main. The CCA and CNN results are shown in Figure 7
and Table 3.
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Table 3: CCA time and frequency domain accuracy

CCA Accuracy for All Subjects
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Figure 7: Overall Accuracy of Subjects using CCA

DISCUSSION
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Sub\Acc | CCA | Time Domain | Frequency Domain
Subject 1 85 85 71.5
Subject 3 100 57.5 95
Subject 5 100 52.5 92.5
Subject 6 100 60 92.5
Subject 7 97 40 425
Subject 9 80 58.5 62.5
Subject 10 | 100 58.5 80
Subject 11 87 55 62
Subject 12 80 47.5 58.5
Subject 13 87 17.50 35
Subject 14 95 60 90
Subject 17 87 375 70
Subject 19 82 45 50
Subject 20 97 58.5 90
Subject 23 82 40 70
Subject 25 100 65 80
Subject 26 | 100 82.5 85
Subject 29 30 2.5 5
Subject 30 95 12.5 40
Subject 31 100 85 97.5
Subject 33 22 12.5 10
Subject 34 | 100 70 71.5
Subject 35 | 100 90 71.5
Mean 87.21 51.02 65.55
Sub\Acc | CCA | Time Domain | Frequency Domain
Subject 2 80 60 90
Subject 4 97 50 97.5
Subject 8 80 78.5 100
Subject 15 97 72.5 98
Subject 16 47 60 62
Subject 18 62 58.5 80
Subject 21 25 60 95
Subject 22 87 82 100
Subject 24 85 60 100
Subject 27 90 77.5 98.5
Subject 28 75 50 98.5
Subject 32 97 90 100
Mean 76.83 65.5 92.90
Sub\Acc | CCA | Time Domain | Frequency Domain
Overall 83.65 56.51 76.30

The evaluation of the CNN model on time and fre-
quency domain with different architectures were per-
formed. from the result, we reconfirmed the method of
electrode selection gave a lot higher accuracy than the
usual data without selection with deep neural networks.
In the time domain data, the CNN model itself learns the
low-level and the high-level features and makes the de-
cision of discarding the unnecessary data unlike in the
extracted frequency features. the CCA was implemented
to compare the traditional algorithm and deep neural net-
works. We conclude two points from the above experi-
ments. The first being that given the raw signal and ad-
justed parameters, CNN can classify the input data with-
out prior feature extraction. Initially, the classification ac-
curacy did not increase as the number of parameters like
Dropout, BatchNormalization, Regularizers were contin-
uously updated and the model’s accuracy was checked.
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The second conclusion is that in a certain kind of data,
the data taken from selected electrodes would assist the
model in better classification than the whole data.

CONCLUSION

Two different deep neural network structure on time and
frequency domain have been put forward and tested in
this paper. The accuracy of the model in the time domain
is quite higher in certain subjects than in the frequency
domain which may indicate that the extraction of the fre-
quency component is alternative. Generally on all sub-
jects, frequency domain show the overall higher accuracy
than the time domain. The traditional CCA algorithm still
achieved the best accuracy in the case of small data on
time domain which is not unexpected. The selection of
channels play an important role in identifying the brain
rhymes. Despite having good accuracy, each of the model
can be further tested and configured to achieve even more
accuracy given more amount of data. Data augmentation
method will be applied for the next round test. 240 trials
per subject is not enough for CNN to learn the features
and also might generate the overfitting problems in the
model. Hence, a reiteration was performed and then se-
lected values for the parameters of regularization to avoid
overfitting. Furthermore, CNNs can be combined with
Recurrent neural network (RNN)to explore Brain physi-
ological data on time domain data as well as on frequency
domain.
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ABSTRACT:

Non-invasive Brain-Computer Interfaces (BCIs) based
on motor imagery (MI) tasks represent a valuable tool
both from a societal and a clinical perspective.
Nevertheless, performances vary inconsistently across
subjects and the mechanisms underlying a successful
skill acquisition is poorly understood. In this longitudinal
study performed with the -electroencephalography
(EEG), we show that BCI training can be characterized
by patterns that rely on the neurophysiology. We
observed that the desynchronization effect increases
significantly over the sessions within the o and B sub-
bands for subjects who showed a significant
improvement of their BCI scores. Notably, we observed
that they also presented a decrease of the functional
connectivity in regions beyond those targeted during the
BCI experiments, whereas the subjects who did not
improve their performances did not show any significant
change over sessions. Taken together, these results give
additional insights about the skill acquisition process
during MI-based BCI trainings.

INTRODUCTION

Non-invasive BCIs are largely used to produce thought-
provoked action, by exploiting the ability of subjects to
voluntary modulate their brain activity through mental
imagery. Despite its societal and clinical applications [1],
[2], voluntarily modulating brain activity to control a BCI
appears to be a learned skill [3], [4], based on the
feedback presented to the user, and, in general, several
weeks or even months may be needed to reach relatively
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high-performance (> 90 %) in BCI control [1],[15].
Furthermore, between 15 and 30 % of the users [6] face
difficulties in controlling a BCI even after several
training sessions, eliciting a high inter-subject variability.
This point shows the difficulty to understand the key-
aspects, or subject-related patterns, of an efficient
learning process in MI-based BCI more specifically.

In previous studies, two main types of predictors of MI-
based BCI success have been elicited [7]. The first
category corresponds to the behavioral or psychological
predictors. Among them, kinesthetic imagination score,
mental rotation ability, self-reliance, visuo-motor
coordination and concentration have shown significant
correlations with BCI scores [8]-[11]. The second
category corresponds to the neurophysiological
predictors. Most of them relied on resting state or pre-
stimulus recordings and are associated with power
spectra. More specifically, these activations involve
mainly sensorimotor areas (p, low o and high 6 power
[12], [13]) and the fronto-parietal axis (within the y band
[14], [15]).

However, while there is a large number of inter-subject
comparisons, less longitudinal studies have been
conducted and little is known about how the
communication between brain areas may differ during
the learning process and between subjects.

In this work, we propose an original approach that aims
at eliciting patterns that come from functional
connectivity (FC) of successful learning process based on
a longitudinal study performed with EEG. We
hypothesize that the FC changes over the training,
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involving areas beyond those targeted during the BCI
experiment, and that the associated properties present a
specific pattern of learning efficiency.

MATERIALS AND METHODS
BCI protocol and participants

Twenty healthy subjects (aged 27.45 + 4.01 years,
12 men), right-handed and BClI-naive, participated in the
study. It consisted of a longitudinal EEG-based BCI
training composed by four sessions (i.e. twice in a week
for two weeks). None presented medical or psychological
disorders. A written informed consent was obtained from
subjects after explanation of the study, approved by the
ethical committee CPP-IDF-VI of Paris. All participants
received financial compensation at the end of their
participation. The BCI task consisted of a standard 1D,
two-target box task [16] in which, to control the vertical
position of a cursor moving from the left to the right side
of the screen, the subjects modulated their brain activity.
To hit the target-up, the subjects imagined a sustained
movement of the right hand (MI condition) and they
remained at rest to hit the target-down (Rest condition).
Thus, the BCI scores are defined here as the proportion
of hit targets. Each session was composed by 6 runs of
32 trials. Each trial lasted 7 s and consisted of a 1 s of
inter-stimulus, followed by 2 s of target presentation, 3 s
of feedback and 1 s of result presentation (Fig 1). At the
beginning of each session, BCI features (EEG channels
and frequency) were selected in a calibration phase in
which the subjects were instructed to perform the BCI
tasks without any visual feedback. We selected the
features within the a-f band and localized within the
motor area contralateral to the movement. The online
classification was performed with a Linear Discriminant
Analysis, suited for a two-class paradigm [17].

Day 1 Day 4 Day 8 Day 11 Time
Session 1 Session 2 Session 3 Session 4
Training Testing
1 run
1 trial
t=0s 1s 3s 6s 7s

Fig 1 Experimental design. The different timescales
(session, run, trial) are presented.

Following the last inclusion, we selected two groups of
five subjects each to elicit the most extreme profiles in
terms of learning process. The selection was based on the
difference in terms of BCI scores between the first and
the last session. The five subjects who showed the best
improvement in terms of BCI scores (aged
27.40 £ 2.07 years, 4 men) were gathered within the
Group 1 (G1). The five subjects who improved the less
(aged 27.60 £+ 3.36 years, 1 men) were gathered within
the Group 2 (G2).
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Materials
EEG signals were collected with a 74-channel BrainAmp
system (referenced to mastoids signals). Left and right
electromyogram (EMG) signals were recorded to ensure
that subjects were not moving their forearm while
performing the tasks. Recordings wer<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>