
INTERPRETABLE RIEMANNIAN CLASSIFICATION IN
BRAIN-COMPUTER INTERFACING

Jiachen Xu1,2, Moritz Grosse-Wentrup1,3,4, Vinay Jayaram1

1Max Planck Institute for Intelligent Systems, Department of Empirical Inference, Tübingen,
Germany

2Technical University of Munich, Department of Electrical and Computer Engineering, Munich,
Germany

3Ludwig Maximilian University of Munich, Department of Statistics, Munich, Germany
4University of Vienna, Faculty of Computer Science, Vienna, Austria

E-mail: {jiachen.xu, moritzgw, vjayaram}@tuebingen.mpg.de

ABSTRACT: Riemannian methods are currently one of
the best ways of building classifiers for EEG data in a
brain-computer interface (BCI). However, they are com-
putationally complex and suffer from a lack of inter-
pretability. Since the full covariance matrix is used
for each classification, it is not immediately possible to
see what underlying signals are generating the classified
changes in variance. Particularly in a rehabilitation con-
text, where it is essential to control which brain signals
are used for classification, this can be a severely limiting
factor. Further, the requirement to perform a matrix log-
arithm can become prohibitively complex for real-time
computation. In this work, we explore a method for ex-
tracting spatial filters from a solution in the Riemannian
tangent space and compare it against common spatial pat-
terns. We show via comparisons on multiple open-access
datasets that it is possible to generate filters that approach
the performance of the full Riemannian solution while
maintaining interpretability.

INTRODUCTION

One of the major reasons that spatial filtering has en-
joyed decades of popularity within the field of brain-
computer interfacing is its interpretability. In contrast to
most other methods, spatial filters can be directly eval-
uated to see whether they represent sources of brain ac-
tivity or correlated noise sources, which is crucial in the
fields of rehabilitation and neurofeedback. As they serve
the dual purposes of dimensionality reduction and ex-
plainability, there has been a large amount of research
on how to calculate optimal ones for a given task. From
the original paper on common spatial patterns (CSP) [1]
to modern divergence-based approaches [2], hundreds of
manuscripts have been written on how to find them.
In parallel to this development, in the last few years, there
has been an upsurge of interest in methods based on Rie-
mannian methods [3, 4]. By considering the sensor co-
variance matrix as a whole, instead of trying to isolate
particular sources of interest, it is possible to overcome
many of the non-stationarity issues that have plagued ma-

chine learning in EEG, resulting in tangent-space meth-
ods out-performing all others in a recent meta-analysis
[5]. In contrast to the often complex optimization meth-
ods required for modern approaches to spatial filtering,
and the uncertain gains they provide, Riemannian tangent
space methods are amenable to standard machine learn-
ing algorithms, which significantly increases their ease of
use. The downside is that, by using the entire covariance
matrix, it is no longer possible to determine what exact
sources are generating a difference between experimen-
tal conditions. This is of little concern in consumer BCIs,
where the goal of the device is usability for healthy sub-
jects, but in the case of neurofeedback or patient groups,
this is a severely limiting factor. Proof that a brain signal,
and not a correlated physiological signal such as muscu-
lar activity, is the driving force for a BCI is necessary for
these contexts, and so it is not yet possible to use Rie-
mannian methods there.
Our contribution is the following: Based on recent find-
ings [6], we validate a method for decomposing a linear
function in the Riemannian tangent space into a set of
spatial filters. We show in tests on multiple datasets that
these spatial filters approach the performance of the full
Riemannian method and further that they are more robust
than CSP to different numbers of filters used. We also
show associated spatial patterns to validate that the filters
capture relevant brain regions. In summary, our contribu-
tions render Riemannian classification methods applica-
ble to BCIs for rehabilitation and neurofeedback.

METHODS

BCI paradigms commonly influence the amplitude of
brain rhythms. To create better features, spatial filters
have been used to isolate the component of the recorded
signal corresponding to a rhythm of interest. These fil-
ters are often found by maximizing variance differences,
as the variance is a mathematically convenient proxy for
amplitude.
One of the most representative and common data-driven
spatial filters is CSP [1, 7], which is computed by find-
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ing the sources that maximize the variance ratio between
two conditions. CSP has made a great contribution to
the stable increase of BCI’s performance and has over
the years spawned many improved versions, such as filter
bank CSP [8], regularized CSP [9] and divergence-based
CSP [2]. In addition to increased decoding performance,
another important reason behind the popularity of CSP is
its interpretability. By observing the spatial patterns as-
sociated with discovered spatial filters, it is possible to
verify whether they are related to neural or other sources.
Unlike spatial filtering, which uses variance-based fea-
tures, Riemannian methods are based on directly compar-
ing sensor covariance matrices. In this paper, the adopted
Riemannian metric is called the affine-invariant Rieman-
nian metric (AIRM) [10], where the "affine-invariance"
means that the distance between two symmetric positive
definite (SPD) matrices is invariant to the distance after
applying an affine transformation to both matrices [11],
i.e.,

δR(TC1,TC2) = δR(C1,C2) =
∥∥Log
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C−1

1 C2
)∥∥

F , (1)

where ‖·‖F represents the Frobenius norm, Log(·) means
the logarithm of a matrix, C(.) are SPD matrices, and T
is any affine transformation matrix. While this method
returns a very robust estimate of distance, most machine
learning algorithms require a Euclidean space to work.
This can be done via projecting manifold points onto the
tangent space to a given point.
The tangent space is defined as a real vector space cen-
tered around a reference point on the manifold. In prac-
tice, this point is normally selected as the mean point
across all trials [10]. After fixing the reference point, the
covariance matrices on the manifold are mapped onto this
space using the logarithmic map (Eq. 2) and then vector-
ized into the tangent vectors (TVs).
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where Exp(·) means the exponential of a matrix. Eq. 2
represents the logarithm mapping of C2 from the mani-
fold to the TS based on the point C1 and Eq. 3 shows
the inverse projection, i.e., the exponential mapping. For
the affine-invariant and log-Euclidean metrics, the loga-
rithmic map requires computing the matrix logarithm of
its argument, as a way of mapping the eigenvalues of the
input matrices from the strictly positive space of SPD ma-
trices to a real-valued space. As the tangent space repre-
sents a linearization of the manifold, distances between
points approximate true manifold distances, and geome-
try on the manifold is preserved, which allows for linear
machine learning methods to be used.
A major drawback of this procedure is the difficulty in
interpreting the resulting classifier because the tangent
space embedding cannot be easily linked to any intuitive

physical process. We address this problem by introducing
a procedure to extract spatial filters from a linear function
in the tangent space, which allows for a unified methodol-
ogy in the computation of spatial filters that can also take
advantage of the large body of work on machine learning
in linear spaces.
The procedure can be summarized in three steps: Clas-
sification, spatial filter generation, and filter selection.
For classification, we follow the approach in [12] (linked
to point 2 to point 5 in Algorithm 1, abbreviated as p2
to p5 afterwards) and find the optimal SVM solution
in the affine-invariant tangent space (p6). Though any
algorithm is possible, we chose a regularized SVM as
maximum-margin classifiers can deal well with the high
dimensionality of the tangent space. Once a linear classi-
fier is computed, we project the weight vector in the tan-
gent space back to the SPD manifold via the exponential
map (Eq. 3) (p8 to p9). From here, we compute spatial
filters by taking the solution to the generalized eigenvalue
(GE) problem between the tangent space reference point
and the exponential map of the weight vector (p10).

Algorithm 1 Extraction of Tangent Space Spatial Filters
INPUT: Band-pass filtered raw signal Xi, ∀i = 1, ...,T
OUTPUT: Spatial filter after ordering F

1: procedure I. CLASSIFICATION
2: Ci = XiXT

i ∀i = 1, ...,T
3: Cm = argmin

C∈C(n)
∑

T
i=1 δ 2

R (C,Ci){AIRM mean}

4: Si = LogCm(Ci){Mapping from manifold to TS}
5:
−→
S i = vec(Si){Vectorize the upper triangular matrix}

6:
−→
W = SVM

(−→
S i,yi

)
{Weight vector on the TS}

7: procedure II. SPATIAL FILTER GENERATION

8: Sw = devec
(−→

W
)
{Convert the vector to SPD matrix}

9: Cw = ExpCm(Sw){Mapping from TS to manifold}
10: CwV = CmVΓ{Mapping from TS to manifold}

11: procedure III. FILTER SELECTION

12: X̃i =VT Xi {Filter raw signal using full components}
13:
−→
fi = log(var(X̃i)){Compute the log-variance}

14:
−→
β = LinearRegression

(−→
fi ,yi

)
{Weight vector of

fitted classifier}
15:
−→
id = sort

(∣∣∣−→β ∣∣∣){Sort the absolute value of weight
coeficient in descending order}

16: F = V
[
:,
−→
id
]
{Get the re-ordered spatial filter}

The eigenvectors that solve a GE problem simultaneously
diagonalize both input matrices, which can be interpreted
as finding a space where the weight SPD matrix and the
input SPD matrices are all roughly diagonal. This inde-
pendence means that the logarithm of the matrices in this
space is close to the log-variances of each of the filtered
dimensions, allowing us to approximate the tangent space
linear function as a linear function of the log-variances
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Table 1: Summary of all MOABB datasets with left-hand versus right-hand motor imagery. The dataset marked in red color has only 3
channels and is hence excluded from this analysis.

Dataset Name #Channels #Subjects #Sessions
BNCI 2014-001 22 9 2
BNCI 2014-004 3 9 5
Cho et al. 2017 64 49 1

Munich Motor Imagery 128 10 1
Physionet Motor Imagery 64 109 1

Shin et al. 2017 25 29 3
Weibo et al. 2014 60 10 1
Zhou et al. 2016 14 4 3

in the filtered space. However, the associated eigenval-
ues have no relationship to the linear function, requiring
another criterion in order to determine which of the com-
puted filters are most relevant to classification. In order
to do this, we fit a linear function to the log-variances
of our projected training data (12 to 14) and attempt to
reconstruct the function values of the true tangent space
function. Based on the absolute values of the coefficients
from this regression problem, we rank the GE solution
filters (15 to 16).
To evaluate the performance of our method in a rigor-
ous and reproducible fashion, we adopted the datasets
and framework from the open source benchmark Mother
of all BCI Benchmark (MOABB) in our work [5]. For
simplicity, we choose left- versus right-hand motor im-
agery, which is one of the most common paradigms in
EEG-based BCIs. We restrict our analysis to the α-
and β -bands (8Hz ∼ 32Hz). We use all available chan-
nels except those used for electrooculography (EOG). We
exclude the dataset BNCI 2014-004 from our analysis
(marked in red in Table 1), because this data set has only
three channels.
After bandpass filtering the raw EEG signal, the corre-
sponding covariance matrices are estimated via the em-
pirical covariance estimator. Afterward, the spatial filter
is extracted according to the pseudocode shown in Algo-
rithm 1, and the classifier is fit using the log-variances of
the filtered signal. As for the classification algorithm, we
choose Fisher’s Linear Discriminant Analysis (LDA) for
simplicity. Decoding accuracy is estimated via five-fold
cross-validation within each data set.
Two statistical parameters are utilized to compare our
method against CSP and the full Riemannian approach:
the p-values and the effect sizes. The p-value for the
one-sided test is computed within each dataset, whose
null hypothesis is that the median accuracy of using CSP
is not larger than that of applying the spatial filter de-
signed by us. Effect sizes show the standardized mean
difference (SMD) between the accuracies of the two com-
pared methods. All statistical tests are implemented as
described in [5].

RESULTS

Meta-analysis:
As a spatial filtering technique, the natural comparison

for TS SF is against CSP. Therefore, we compared them
under three typical scenarios: applying very few filters
(for speed), using filters corresponding to half the num-
ber of channels (for the compromise between speed and
accuracy) and using all filters (for accuracy). To ensure
the results are rigorous, the comparison is done across
seven datasets from MOABB [5] (as shown in Table 1).
When merely applying two spatial filters (Fig. 1a), TS SF
is generally better than CSP, but the positive significance
is only present in two datasets: Shin and Munich. After
increasing the filter number to the half the channel di-
mensionality (Fig. 1b), the positive significance appears
in three more datasets Weibo, Physionet and Cho, in ad-
dition to an increased meta-effect. Moreover, the SMD
of data set Munich has increased to 1.5 which implies a
strong effect. Lastly, when using all filters (Fig. 1c), the
effect sizes are lessened in the datasets with significant
performance, except for Weibo.

Classification accuracy w.r.t. the number of applied
filters:
In addition to comparing against CSP, we are also inter-
ested in seeing how well TS SF can approximate the ac-
curacy of the full tangent space classifier, as well as how
this approximation evolves as a function of the number of
filters. Therefore, we choose three representative datasets
Munich, Cho, Physionet and plot their accuracy w.r.t. the
number of applied filters in Fig. 2, showing the tangent
space accuracy as well as an upper bound.
When using data set Munich (Fig. 2a), TS SF (green line)
first outperforms CSP (red line) when the number of ap-
plied filters is less than 16. Afterward, their accuracies
are tied with each other until using more than 40 filters.
Subsequently, TS SF maintains its stable performance,
but the accuracy of CSP starts to decrease.
The information conveyed by Fig. 2b and Fig. 2c is quite
similar to each other. TS SF and CSP perform very
comparably up until around 13 filters are used. After
this point, using more CSP components hurts the perfor-
mance, while the performance stays much more stable
when using more TS SF filters. However, in Fig. 2c, the
accuracy drops when using TS SF at high numbers of fil-
ters.
Overall, the performance of the full Riemannian method
(Full TS, brown line) is always superior to both spatial
filtering methods because the full approach utilizes the
full information decoded in the covariance matrices.
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Figure 1: Meta analysis of accuracy after applying CSP or
TS SF as spatial filter. Parameters: p-value p and SMD are
computed within each dataset. Red ∗, ∗∗ and ∗∗∗ represent
p < 0.05,0.01,0.001 respectively. Grey diamonds signify the
SMD, while grey bars show the confidence interval of the mean.

Spatial patterns:
From Fig. 1 and Fig. 2 we know that TS SF on average
outperforms CSP in terms of accuracy. For a spatial fil-
tering method, however, its interpretation is as crucial as
its classification accuracy. Therefore, we compared the

corresponding spatial patterns of both TS SF and CSP in
order to see what sources were chosen. We choose the
data set Munich because it has the best overall data qual-
ity [5] and highest channel number (128), and plot the two
best filters using both CSP and TS SF. In order to convert
spatial filters into spatial patterns, we use the approach
proposed by [13].
When comparing Fig. 3a and 3b there are some interest-
ing results. First, the spatial patterns from CSP tend to be
more patchy than from TS SF, e.g., S1, S2, S10, in par-
ticular for those subjects noted as having low data quality
[14]. Second, for the subjects who have excellent sig-
nal quality, the spatial patterns from TS SF are highly
consistent with from CSP, e.g., S3, S4, and S6. Third,
when looking at S2, the pattern from TS SF is more inter-
pretable comparing to the patchy pattern from CSP. When
solely focusing on Fig. 3b, it is obvious to see that for S2,
S3, S4, S5 and S6, they represent strong signal sources
surrounding the sensorimotor cortex which is consistent
with this paradigm. This is in contrast to, e.g., S7 and
S10, where CSP clearly picks up ocular artifacts.

DISCUSSION

We show that it is possible to construct spatial filters that
can approximate the performance of tangent space linear
functions, and validate this result on a variety of open-
source datasets. In our simulations, it can be seen that
the TS SF out-performs CSP, in particular in the cases
where the full tangent space function out-performs CSP.
Further, we show in the Munich dataset that the spatial
filters recovered by TS SF are more robust to noisy data
than those from CSP. With these advances, it is possible
to use Riemannian methods in neurofeedback and clinical
work. To evaluate the spatial filter, the first two essential
indicators are the classification accuracy and the quality
of spatial patterns.
From the perspective of performance, TS SF is still im-
perfect. First, as shown in Fig. 2, TS SF is constantly
worse than the full Riemannian methods. Hence, to move
forward, it is important to diminish the approximation er-
ror as much as possible, especially when using very few
filters. The choice of how to determine filter relevance,
though effective, can also be improved. Regularized lin-
ear regression approaches, such as LASSO or ridge re-
gression, may better isolate good filters, or using another
target variable.
The spatial patterns associated with TS SF are robust to
artifacts. As shown in Fig. 3, the reflected neural sig-
nal sources after filtering by TS SF is more reasonable
and interpretable than by CSP, especially for the low-
quality signal. For example, for S2 of the data set Mu-
nich where the percentage of trials contaminated by ar-
tifacts reaches 55% [14], CSP merely collects the arti-
facts whereas TS SF presents the strong sources around
sensorimotor cortex which is consistent with the chosen
paradigm. Nonetheless, for the subjects with high data
quality, TS SF is still as good as CSP (e.g., for S3 and S4,
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1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64
Number of applied filters

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

A
cc

ur
ac

y

CSP Full TS TS SF

(b) Dataset: Cho.
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(c) Dataset: Physionet

Figure 2: Accuracies comparison among three different pipelines and for each number of applied filters, the central line and the error
band are computed across all subjects and sessions. 1. CSP: Choose CSP as the spatial filter and classified by LDA. 2. Full TS: Use
the standard Riemannian classification framework with AIRM without any spatial filtering and classified by SVM. 3. TS SF: Apply the
spatial filters which are extracted from the tangent space and classified by LDA. Error band setting: confidence interval = 68%. Central
line: the mean accuracy. It is not difficult to notice that TS SF has a better and more robust performance than CSP w.r.t. the increase of
the number of applied filters.

where 5.0% and 6.3% of trials are affected by artifacts re-
spectively [14]). Therefore, as far as the interpretability
is concerned, TS SF is more robust than CSP.

As shown in Fig. 2, it is obvious that TS SF is always
more robust than CSP considering the tendency of the
accuracy w.r.t. the filter numbers. However, when focus-
ing at Fig. 2c, we could find an evident fluctuation for TS
SF. Accuracies drop at high numbers of filters in contrast
to the other datasets, and the overall range of mean ac-
curacies is far lower as well. Much of this can likely be
explained by the low data quality of data set Physionet,
which would lead to worse solutions of the initial tangent
space problem that likely translate into poorer spatial fil-
ters. However, it is important to understand what condi-
tions lead to better or worse TS SF solutions, especially
when applying full filters. Also, it should be explored
more that why is TS SF still more robust than CSP to
filter number even when TS SF performs badly.

Usually, the more robust performance demand more com-
plex computation, but this argument does not always
hold. Although TS SF requires a tangent space function
to be computed as an initial step which means the compu-
tation of the filters themselves is far more intensive than
that of CSP, however, in the online application, the proce-
dure is identical: the data is filtered via a linear projection
and then the log variances of the resulting time series are
used as features for a final classifier. When comparing

to the standard Riemannian classification framework, TS
SF leads to an approximation error. However, the com-
putation for online classification would be significantly
reduced, especially with large channel numbers. Given
that the loss in accuracy on average is relatively small,
this may represent a feasible way of using Riemannian
methods in high-dimensional, online settings, and further
of using them to increase the efficacy of clinical neuro-
feedback.

CONCLUSION

In this paper, we propose a new method to generate spa-
tial filters from the Riemannian classification framework,
Tangent Space Spatial Filters (TS SF), and after com-
paring between CSP and TS SF, we found that TS SF
has better and more robust performance than CSP with
the same computational cost online. By extracting spa-
tial filters, the Riemannian approach becomes more in-
terpretable without much loss of accuracy.
However, we still do not have a strong mathematical ar-
gument for why this simplification works and the inter-
pretation of the weight vector after projection to the SPD
manifold. Nonetheless, the undeniable fact is that the
performance of TS SF reveals to us the potential of in-
terpretable Riemannian approaches in BCIs.
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Figure 3: The spatial patterns of data set Munich associated with applying the first two spatial filters.
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