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ABSTRACT:
Improving the user performance is one of the major is-
sues in the Brain-Computer Interface (BCI) field. In this
study, the following question is asked: can hypnosis en-
hance the performance of motor imagery based BCI? In-
deed, hypnotic inductions using Ericksonian suggestions
can make the user feel simultaneously more relaxed and
more focused on the mental task, and therefore could be
used to increase performance in BCI. The aim of this
study was to evaluate the impact of an hypnotic condi-
tion on the ERD/ERS patterns during a kinesthetic mo-
tor imagery (KMI) task. To investigate this issue, 19
right-handed healthy subjects performed a KMI of the
right hand during two randomized sessions: in normal
and hypnotic conditions. We analyzed the event-related
(De)-synchronization (ERD/ERS) over the motor cortex
and compared the BCI accuracy during both conditions.
Our results suggest that the state of hypnosis reduces the
ERD phase in the sensorimotor bands, assuming a change
in the activation of the motor cortex during the hypno-
tized state and thus a worst detection of the kinesthetic
motor imagery.

INTRODUCTION

Brain-computer interfaces (BCI) allow end users to in-
teract with a system using modulations of brain activi-
ties which are partially observable in electroencephalo-
graphic (EEG) signals [1]. Originally, BCIs were devel-
oped for medical and therapeutic applications, mainly to
compensate people with severe motor disabilities. Since
several years, BCI progress has been focused essentially
to rehabilitate people with severe neuromuscular disor-
ders who represent a very large number of potential users
in the coming years [2, 3].
Most of these BCIs are based on the modulation of sen-
sorimotor rhythms during a Kinesthetic Motor Imagery
(KMI) task. A KMI is a mental representation which
can be described as the ability to imagine performing a
movement without executing it, by imagining haptic sen-
sations felt during the real movement [4]. Several stud-
ies highlighted the positive effects of KMI practice for
people with neurological disorders [5, 6]. These senso-
rimotor rhythms are characterized i) before and during

an imagined movement, by a gradual decrease of power
in -mainly- the mu/alpha (7-13 Hz) and beta (15-30 Hz)
bands and ii) after the end of the motor imagery, by an
increase of power in the beta band. These modulations
are respectively known as Event-Related Desynchroniza-
tion (ERD) and Event-Related Synchronization (ERS) or
post-movement beta rebound [7, 8].
A KMI is a highly complex task to be performed by users
[9] which makes BCI performance very heterogeneous
between studies [10, 11]. Some authors claimed that ap-
proximately 15% to 30% of users are not able to gain
control of a BCI, a phenomenon sometimes called BCI
illiteracy [12, 13]. In this way, Ang and Guan showed
that 40% of stroke patients can not achieve the critical
BCI accuracy level of 70% and highlighted the critical
issue of developing methods for patients to accomplish
KMI tasks [14].
In order to improve BCI performance and allow a bet-
ter control of KMI, it has been suggested that some of
altered states of consciousness such as mind-body aware-
ness training (MBAT) [15] or hypnosis [16] can be used.
Hypnosis is particularly interesting because several con-
ditions may be induced for patients. For example, hyp-
notic suggestions can make the subject feel more relaxed
and at the same time more focused [17]. Hypnosis is
definable as an altered state of attention, receptivity and
concentration during which the hypnotized person is cap-
tured by a suggestion made by the hypnotist [18, 19].
Although this procedure is already used to reduce pain,
manage stress or manage emotional problems [20], we
can imagine using it to have a direct impact on the BCI
performance, especially by making easier the KMI task
execution.
Despite some studies have already shown the interest of
MBAT for the BCI domain [21], according to our knowl-
edge, no studies investigated the effect of hypnosis on the
EEG signals over the motor cortex and the subsequent
impact for BCI performance. Interestingly, Muller et al.
showed activation differences between hypnotic and nor-
mal states in fMRI for the motor imagery task and sug-
gested that hypnosis enhanced the motor control circuit
engaged in the motor task by modulating the gating func-
tion of the thalamus [22]. Unfortunately, no studies have
yet confirmed their findings and reveal the effect of hyp-
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nosis on the EEG signal of the motor cortex during motor
tasks.
In this study, the following question is asked: can hypno-
sis improve MI-based BCI performance? To investigate
this issue, 19 right-handed healthy subjects performed a
KMI during 2 randomized sessions: in normal and hyp-
notic conditions. We analyzed the Event-related (De)-
synchronization (ERD/ERS) and compared the BCI ac-
curacy for both conditions. Our results suggest that the
state of hypnosis reducees the ERD phase in the beta fre-
quency band and thus a worst detection of the KMI task.

MATERIALS AND METHODS

Participants: 19 right-handed healthy subjects (10 fe-
males; from 18 to 30 years-old with a mean and a stan-
dard deviation of the age of 26.1 years ± 2.8) were re-
cruited for this experiment. This study follows the state-
ments of the WMA declaration of Helsinki on ethical
principles for medical research involving human subjects
[23]. In addition, participants signed an informed con-
sent which has been approved by the ethical committee
of Inria (the COERLE). The subjects had no medical his-
tory and no experience with hypnosis which could have
influenced the task.

Experimental Tasks: The aim of this study was to eval-
uate the impact of an hypnotic condition on the ERD/ERS
patterns during a KMI task. The motor imagery task was
to imagine performing a simple closing movement of the
right hand without executing it [24, 25].

Experimental Environment: The experiment took
place in a confined room and was conducted by two in-
vestigators. The first one assumed the technological pro-
cess of the experiment. The second investigator was
a professional hypnotherapist responsible for instructing
the subjects under both normal and hypnotic conditions.
During the experiment, the subjects were sitting comfort-
ably on a chair, with their right arm on an armrest, their
hand resting on an ergonomic pillow, without any muscu-
lar tension.

Experimental Design: The protocol contained 2 ses-
sions: the normal condition and the hypnotic condition.
The sessions were performed in a counterbalanced order
determined by computerized randomization. For each
session, one run of 8 minutes were performed. During
a run, the subject had to perform the KMI task during
4 seconds, approximately once every ten seconds. A low
frequency beep indicated when the subject had to execute
the KMI task. A high frequency beep indicated the end of
the task. Breaks of a few minutes were planned between
sessions to prevent fatigue of the subject. Before the ex-
periment, the KMI were previously described to the sub-
ject and the subject trained to master them without feed-
back. At the end of each session, participants completed
the same questionnaire based on a Lickert scale to assess
the possible impact of hypnosis on several criteria (esti-
mated time of the experiment, body perception, memory,
detachment, stress, fatigue and motivation).

Figure 1: Description of the induction of the hypnotic condi-
tion. The Kinesthetic motor imagery was performed after the
hypnotic induction composed by a (i) point of fixation, (ii) a
body awareness and (iii) a catalepsy with an arm levitation

Hypnotic procedure: The induction procedure was per-
formed by a professional hypnotist. For each subject, a
standard script based on Ericksonian hypnosis was used
[18]. The Ericksonian hypnosis is characterized by an
indirect suggestion by using metaphors. The hypnotic
condition was subdivided into several stages: (1) the in-
duction process, (2) the suggestion, (3) the progress of
the experiment (KMI executions) and (4) the awakening
(Fig. 1).

Physiological Recordings: EEG signals were recorded
through the OpenViBE platform with a commercial
REFA amplifier developed by TMS International. The
EEG cap was fitted with 32 electrodes re-referenced with
respect to the common average reference across all chan-
nels over the extended international 10-20 system posi-
tions. The selected electrodes ware FC5, FC3, FC1,FCz,
FC2, FC4, FC6, C5,C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1,
CPz, CP2, CP4, CP6, P3, P1, Pz, P2, P4, PO3, POz, PO4, O1,
Oz, O2. These sites ware localized around the primary
motor cortex, the motor cortex, the somatosensory cortex
and the occipital cortex, which allowed us to observe the
physiological changes due to the MI task. An external
electromyogram (EMG) electrode was added in order to
measure the muscle activity. Impedance was kept below
5 kΩ for all electrodes to ensure that background noise in
the acquired signal was low.

Time-Frequency Analysis: To analyze the differences
between both conditions (normal condition vs hypnotic
condition), we performed an event-related spectral per-
turbation (ERSP) between 8-35 Hz. We used a 256
point sliding fast Fourier transform (FFT) window with
a padratio of 4 and we computed the mean ERSP from 1
s before the task to 7 s after the task (Figure 2). ERSP
visualizes event-related changes in the averaged power
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Figure 2: event-related spectral grand average perturbation (ERSP) for MI during normal and hypnosis conditions for electrode C3.
Black lines indicate when the motor task started and finished. A red color corresponds to a strong ERS and a blue one to a strong ERD.
Significant difference (p<0.05) with a False Discovery Rate (FDR) correction are shown in the right part of the figure.

spectrum relative to a 2s-baseline interval took 1 s before
each trial. A permutation test for a significant level of
0.05 with a False Discovery Rate (FDR) correction using
the EEGLAB toolbox was done to validate differences in
terms of time-frequency of this ERSPs [26].

Figure 3: Boxplots showing the distribution of average classifi-
cation accuracies (N=19) for MI in normal and hypnosis condi-
tions.

Feature extraction: We used the efficient Common
Spatial Pattern (CSP) algorithm to extract motor imagery
features from EEG signals [27] via the MNE python libr-
ery [28]. Pairs of spatial filters have been generated and
applied to decompose multi-channel signals into a set of
uncorrelated components that simultaneously maximize
the variance of one class, while minimizing the variance
of the other class [29]. The CSP algorithm has been ap-
plied on the whole set of channels which includes elec-
trodes covering the sensorimotor cortex. The number of
resulting filters equals the number of EEG channels but
for dimensional reduction purpose only the first two pairs

(i.e., four filters) were selected.
Once selected filters W were obtained from band-pass
EEG signals X , a CSP feature vector f can be computed
as follows [30]:

f = log(WXX>W>) = log(WCW>) = log(var(WX))
(1)

Raw signals were filtered by a 4th order Butterworth
band-pass filter using three different frequency ranges (7-
13 Hz, 15-30 Hz and 8-30 Hz) to increase the ERD and
ERS observations. For each frequency range, trials were
cropped from the filtered signals to train two paired CSP
filters in time range from 0 till 3 s to maximize differ-
ences in variance between the two conditions. Finally
we aggregated each 4 features obtained separately for the
three frequency ranges into a 12-feature vector.

Figure 4: Individual accuracy for motor imagery in normal and
hypnosis conditions

Classification: A shrinkage linear discriminant analy-
sis (sLDA) [31] was performed using the Python library
scikit-learn [32]. A leave-one-out validation was used to
better estimate the accuracy on new trials. A leave-one-
out process is K-fold cross-validation with K equal to n,
the number of examples in the set. Thus the classifier
is trained on all examples except one and a prediction is
made for that example [33]. The final accuracy is the
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sum over all models of correct predictions divide by the
total number of examples. We chose to apply a paired
t-test (two-sided) to show the significant difference be-
tween accuracies obtained for each condition (Figure 3,
p-value < 0.05).

RESULTS

Time-frequency analysis: Time-frequency maps dis-
play the signal power evolution and are useful to establish
the frequency and time windows in which event-related
spectral perturbation (ERSP) appears (Figure 2).
During the KMI in normal condition, an ERD appears
400 ms after the first beep and is sustained for 3000 ms
in the mu + beta frequency band (8-30 Hz). Note in par-
ticular that this desynchronization is predominant in the
beta band (18-30 Hz). After the second beep, which rep-
resents the end of the KMI, an ERS appears to reach its
maximum at 6000 ms.
When a KMI is done in hypnotic condition, an ERD is
observable in the lower mu band (8-10 Hz) but not in the
high mu (10-13 Hz) neither in the beta frequency bands.
Interestingly, an ERS is present before the end of the KMI
(at 3500 ms) and is maintained up to 6000 ms.
Comparing both conditions, the ERD disappearance dur-
ing the hypnotic condition is statistically significant at
p<0.05 (with a FDR correction) in the beta band.

Figure 5: Correlogram representing correlations among esti-
mated time of the experiment, body perception, memory, de-
tachment, stress, fatigue and motivation for normal and hyp-
notic conditions and accuracy difference between the normal
and the hypnotic conditions. Correlations with a p-value > 0.05
are considered as not significant and are crossed out. Positive
correlations are displayed in purple and negative ones are in or-
ange. The intensity of the color and the size of the circles are
proportional to the correlation coefficients.

Classification:
In order to check if the hypnotic condition could be use-
ful to improve the BCI performance, we decided to com-
pare the accuracy for both conditions. The classification
between KMI vs Rest was performed under normal and

hypnotic conditions. For both conditions, each trial was
segmented into a motor task period and a resting period
lasting 3 seconds. Figure 3 shows that BCI performance
is significantly better under normal condition compared
to hypnotic condition (76.7±10.2% VS. 70.6±12.7%).
This result is statistically significant at p < 0.05. The in-
dividual results also show the same tendency, except for
5 subjects: 2, 8, 9, 13, 17 (Figure 4).

Correlogram:
Subjects completed a questionnaire with several items to
assess variations between both conditions: fatigue, mem-
ories of the experiment, warmness or freshness during the
experiment, motivation, time estimation of the task, de-
tachment, change in their body perception, heavyweight
or lightweight of their right hand. Figure 5 shows the cor-
relations between these items, to which we have added
the accuracy representing the BCI performance calcu-
lated above. There are some significant correlations (p <
0.05) between some items: Detachment and Time estima-
tion, Detachment and Lightweight of the right hand (RH),
Freshness and Warm, Heavyweight RH and Body percep-
tion, Heavyweight RH and Time estimation. However,
no correlation has been established between the variation
of the different feelings during hypnosis and BCI perfor-
mance.

DISCUSSION

In this discussion section, we consider (i) some study pa-
rameters, (ii) the hypotheses that could explain why hyp-
notic state may impact the ERD and (iii) the suggested
contribution of such information to the BCI domain.

Study design:
This study was initially conducted on 23 voluntary sub-
jects but only 19 of them were included in this article. In-
deed, 4 subjects had anomalously low classification rates
(less than 60%) and a time-frequency map without vis-
ible ERD and ERS. The subjects who participated were
previously selected by the hypnotist as being moderately
hypnotizable. We consider that the selection was well
carried out since we obtain significantly different results
in terms of time estimation, which has already been con-
firmed by another study [34]. The study was carried out
with 32 electrodes, placed only at the pre-frontal, central
and occipital area and it would be necessary to confirm
the results with a full-head montage. Finally, we reported
accuracies using aggregated features from three different
frequency ranges (7-13 Hz, 15-30 Hz and 8-30 Hz). In-
deed, although not statistically significant, from our expe-
rience this method overpass result obtained using features
from one frequency range only. Nevertheless, the results
between the normal condition and the hypnotic condition
were unchanged with a conventional method.

Absence of ERD during the hypnotic state:
Interestingly, the hypnotic suggestion allows to induce
multiple states (e.g. be relaxed while focusing on the feel-
ings usually perceived during a real movement), which
appears to be particularly relevant to the KMI task [17,
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34]. Moreover, after the experiment, a majority of sub-
jects report a more easy way of imagining movement
compared to the normal condition. Despite these posi-
tive feedbacks, our results showed that hypnosis involves
a disappearance of the ERD during the KMI task (Figure
2).
The absence of ERD during hypnosis raises questions.
Indeed, Neuper et al. interpret the ERD during the task
as being related to a motor cortex activation and the ERS
as a deactivation [35]. In this way, the absence of ERD
during the KMI task would be due to a weaker activa-
tion of the motor cortex, as a consequence of the hypnotic
state. This deactivation of the motor cortex could be due
to the increase in automation during hypnosis [36]. Fur-
ther studies had already shown that hypnotic suggestion
can modulate the motor cortex activity [37]. However,
Muller et al. highlighted that hypnosis could enhance the
motor control circuit engaged in motor imagery by mod-
ulating the gating function of the thalamus [22], which is
inconsistent with our results.

Use of hypnosis for BCIs:
ERD disappears with hypnosis can explain why BCI per-
formance has been impacted. Indeed, the BCI classifi-
cation is often based on the ERD phase because it is the
most robust pattern according to the experimental condi-
tions [8], but also to gain time to provide the end-users
with the necessary feedback. If BCI performance was
enhanced by the hypnotic state, as it was shown with the
MBAT [15], the improvement factors would have been
investigated and transferred to the BCI users. For exam-
ple, designing a self-hypnosis session for BCI illiteracy
might be possible. Unfortunately, our average (Figure
3) and individual (Figure 4) results indicate the opposite,
and this prompts us to not recommend using hypnosis for
BCI applications.

CONCLUSION

This work clearly showed that the hypnotic state has an
impact on the EEG through the motor cortex, especially
during a kinesthetic motor imagery task. Our results sug-
gest that this altered state tend to remove the ERD during
the mental task and implied a negative impact on BCI
performance. This prompts us to not recommend using
hypnosis for BCI applications.
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