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ABSTRACT: In stroke rehabilitation intelligent robots 

are required that can interpret walking intention 

accurately. This systematic review, guided by PRISMA 

and registered with PROSPERO (CRD42018112252), 

identifies current state-of-the-art in brain-computer 

interface (BCI) robotic walking in stroke using 

electroencephalogram (EEG). A detailed search strategy 

was applied across the following databases: PubMed 

(1949-2018), EMBASE (1947-2018), Web of Science 

(1945-2018), COMPENDEX (1967-2018), CINAHL 

(1982-2018), SPORTDiscus (1985-2018), ScienceDirect 

(1997-2018), Cochrane Library (1974-2018). Eligibility 

for inclusion was considered independently by two 

reviewers. From a total of 38895 publications, 2 studies 

comprising N=48 chronic stroke patients met inclusion 

criteria and rated moderate to strong in quality.  Different 

exoskeleton devices were employed in studies (EksoTM; 

H2 exoskeleton). No study closed the BCI loop.  

Longitudinal training was noted to increase classification 

accuracy. Improved frontoparietal connectivity in the 

affected side was observed during robotic gait training. 

BCI robotic gait training after stroke is not reported in 

the literature to date but shows promise with adequate 

training for classification.  

 

INTRODUCTION 

 

Many patients with stroke experience a restriction in their 

mobility. Impairment of gait effects the functional 

ambulation capacity, balance, walking velocity, cadence, 

stride length and muscle activation pattern[1]. 

With conventional rehabilitation and gait training, 22% 

of all stroke patients do not regain the ability to walk[2]. 

Intensive gait training with or without body weight 

support (BWS), while associated with short term gains in 

walking speed and endurance does not increase the 

likelihood of walking independently [3]–[6]. Moreover, 

only patients with stroke who are able to walk benefit 

from such an intervention [3]–[6]. There is growing 

effort to increase the efficacy of gait rehabilitation for 

stroke patients using advanced technical devices. In the 

last decade, advances in robotic technologies, actuators 

& sensors, new materials, control algorithms and 

miniaturization of computers have led to the 

development of wearable lower-body exoskeleton 

robotic orthoses. There is also evidence that robotic-

assisted gait training has an additional beneficial effect 

on functional ambulation outcomes[7], [8] and increases 

the likelihood of walking independently[9].  

Brain-Computer Interface (BCI) technology is also a 

growing field in  stroke rehabilitation with promising 

results  as a therapeutic intervention in  upper limb 

training. [10], [11].  Gains in BCI based gait training in 

stroke lag behind and there is a critical need for reliable 

BCIs that interpret user intent directly from brain signals 

for making context-based decisions with respect to 

stepping.  

EEG recording in stroke, where the pathology is at brain 

level has been problematic when compared to other 

neurological pathologies such as spinal cord injury. 

Uncertainty exists in the literature on the best choice of 

EEG metric [12]–[14] and in inherent difficulties in 

identifying the precise role of the motor cortex during 

phases of the gait cycle due to difficulty capturing low 

artefact EEG in an ambulatory context and the proximity 

of both motor cortices to each other [15]. 

Our overarching goal in this review is to summarize 

existing studies employing BCI robotic walking in stroke 

using EEG. Thereby providing a current state-of-the art 

summary of this research field. Current BCI robotic 

walking devices, algorithms, signal processing methods 

and classification methods described in the literature are 

presented.  

 
MATERIALS AND METHODS 

 

Study identification and selection 

 

A systematic literature search was conducted. As this 

review is related to engineering and physiotherapy / 

rehabilitation, an automated search in the following main 

databases available were undertaken to identify relevant 

publications: PubMed (1949-2018), EMBASE (1947-

2018), Web of Science (1945-2018), COMPENDEX 

(1967-2018), CINAHL (1982-2018), SPORTDiscus 

(1985-2018), ScienceDirect (1997-2018), Cochrane 

Library (1974-2018). The search terms and Boolean  
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ID Stroke 

patients 

RGD EMP BLC  

1 40 EksoTM 

FPEC 

CSE 

SMI 

N 

   

2 8 H2 
Neural 

Decoding 
N 

   

Table 1 | Table of studies. In the first row the three selected 

studies are shown. (1) Calabrò et al., (2) Contreras Vidal et 

al. 2018. RGD: Robotic gait device; EMP: EEG Measurement 

Protocol; BLC: BCI loop closure achieved; FPEC: 

Frontoparietal effective connectivity; CSE: Cortico-spinal 

excitability; SMI: Sensory-motor integration 

 

operators employed are summarised in figure 1. Only 

publications in English were considered. The following 

types of study were included: Randomized control trials, 

cross-over or quasi randomized control studies, case-

control studies, cohort studies, cross-sectional studies, 

case series and case reports. Reviews, opinion pieces, 

editorials and conference abstracts were excluded. 

 

Data extraction 

 

Two independent researchers reviewed the literature at 

title, abstract and paper stages and performed the data 

extraction and the results were compared afterwards. 

Disagreements were resolved by broad discussion and 

observance of the set criteria. Data extraction fields 

focused on the following topics: Fields relating to 

achievement of BCI, description of bio-signal capture, 

description of hardware/software devices employed, 

description of bio-signal recording, description of 

processing methodologies employed and description of 

bio-feedback mechanisms.  

 

Quality assessment 

 

Risk of bias was assessed using the effective public 

health practice project tool (EPHPP). Two reviewers 

independently rated the studies under headings of 

selection bias, study design, con-founders, blinding, data 

collection methods and withdrawal and drop-outs, a final 

rating of strong, moderate or weak quality.  

 

RESULTS 

 

The search was completed across the databases in 

November 2018. Figure 1 summarizes the studies 

identified from the search and those included at each 

stage of the review process. A total of 2 studies were 

identified following full manuscript review that met the 

inclusion criteria. These were rated by the EPHPP 

quality assessment as moderate to strong in quality. 

Table 1 provides a summary of the key characteristics of 

these studies. Results are then synthesized narratively 

under headings of interest. 

 

Feasibility of decoding walking from brain activity in 

stroke survivors 

 

Contreras-Vidal et al. (2018)[16] investigated the 

feasibility of decoding walking from brain activity in 

stroke survivors during therapy by using a powered 

exoskeleton integrated with an EEG-based BCI in five 

chronic stroke patients. Classification accuracies of 

predicting joint angles improved with multiple training 

sessions and gait speed, suggesting improved neural 

representation for gait and the feasibility of designing an 

EEG-based BCI to monitor brain activity or control a 

rehabilitative robotic exoskeleton. EEG was recorded 

using a high-input impedance amplifier (referential input 

noise < 0.5μVrms @ 1÷20,000 Hz, referential input 

signal range 150-1000mVPP, input impedance >1GΩ, 

CMRR > 100 dB, 22bit ADC) of Brain Quick System 

PLUS (Micromed; Mogliano Veneto, Italy), wired to an 

EEG cap equipped with 21 Ag tin disk electrodes, 

positioned according to the international 10-20 system. 

The cortical activations induced by gait training were 

identified from EEG recordings by using Low-

Resolution Brain Electromagnetic Tomography 

(LORETA). The brain compartment of the three-shell 

spherical head model used in LORETA was thereby 

restricted to the cortical gray matter using a resolution of 

7 mm, thus obtaining 2394 voxels. The voxels were 

collapsed into 7 regions of interest (prefrontal, PF, 

supplementary motor, SMA, centroparietal, CP, and 

occipital, O, areas of both hemispheres) determined 

according to the brain model coded into Talairach space, 

by using MATLAB. Then, structural equation modeling 

technique (or path analysis) was employed to measure 

the effective 

connectivity (that assesses the causal influence that one 

brain area, i.e., electrode-group, exerts over another, 

under the assumption of a given mechanistic model) 

among the cortical activations induced by gait 

trainings.  

 

This works builds from a previous publication (not 

included in this review) outlining a possible roadmap for 

EEG-based BCIs in lower body robotic exoskeletons 

using the NeuroRex System [Contreras-Vidal et al. 

(2013).  

 

The second study identified for inclusion was an RCT by 

Calabrò et al.[17]. This study with 40 sub-acute and 

chronic stroke patients employed EEG to evaluate 

frontoparietal effective connectivity (FPEC) as a metric 

of neuroplasticity to identify if additional gains were 

made from Robotic gait training in addition to 

conventional rehabilitation and overground walking 

when compared with same duration therapy and 

overground training alone. The 

strengthening effect of robotic gait training on FPEC 

when compared with the control group (r = 0.601, p < 

0.001) was observed. and were the most important 

factors that correlated with the clinical improvement 

following robotic gait training.  
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EEG was recorded in this study using a high-input 

impedance amplifier (referential input noise < 0.5 μVrms 

@ 1÷20,000 Hz) of Brain Quick SystemPLUS 

(Micromed; Mogliano Veneto, Italy), wired to an EEG 

cap equipped with 21 Ag tin disk electrodes, positioned 

according to the international 10-20 system. An 

electrooculogram (EOG) was also recorded for blinking 

artefact detection. The recording occurred in the morning 

(about 11am) and lasted at least 10 min, with the eyes 

open (fixing a point in front of the patient). The EEG end 

EOG were sampled at 512 Hz, filtered at 0.3-70 Hz, and 

referenced to linked earlobes. the cortical activations 

induced by gait training from the EEG recordings were 

identified by using Low-Resolution Brain 

Electromagnetic Tomography (LORETA; LORETA-

KEY alpha-software) 

 

DISCUSSION 

 

This systematic review describes the current state of the 

art in robotic gait training with BCI integration in stroke. 

Following a scientifically rigorous systematic review 

identifying over 38,000 potentially relevant publications, 

only two studies met the criteria for inclusion by 

describing a clinical population of stroke, having a 

robotic gait training intervention and having registered 

EEG signals during gait training in the device. No study 

was identified that closed the BCI loop in robotic walking 

after stroke.  

 

Many papers reviewed presented data from healthy 

norms during robotic gait and identified utility for 

populations such as stroke. However, these foundational 

works have not yet translated into the next phase of 

testing in the clinical population of interest, suggesting 

barriers to implementation. Inclusion of study 

participants with physical disability requires 

interdisciplinary expertise beyond engineering and 

barriers to EEG in clinical practice have been identified 

including the length of time needed to mount traditional 

AgCl EEG electrodes [12] and uncertainty regarding 

choice of EEG metric [12]–[14]. Advances in EEG 

hardware, recording electrodes, and software analysis 

methods may now overcome many of these barriers with 

dense--array systems with up to 256 electrodes showing 

improved spatial resolution [18] and newer 

computational methods for example, using partial least 

squares (PLS) regression has outperformed traditional 

EEG methods in capturing behavioral variation in stroke 

populations [19]. Renewed, interdisciplinary focus is 

now required in this field. 

 

Of the two studies identified addressing robotic walking 

and EEG biosignals; data collection and processing were 

dealt with differently, limiting synthesis and future 

projections. Agreed standards in EEG capture and 

processing are required in this field to allow future meta-

synthesis. 

 

 

Contreras-Vidal et al. showed in their publication/s a 

foundation step towards EEG-based BCI controlled 

lower-limb rehabilitation using the NeuroRex system 

after stroke. They identified the feasibility of accurately 

decoding lower limb movements during robotic gait 

training after stroke, an important first step and presented 

a clinical neural interface roadmap for EEG-based BCIs 

in lower body robotic exoskeletons, identifying 

requirements that include: a reliable BCI system with an 

option of shared control between the user and the robotic 

device; appropriate risk assessment and a better 

understanding of the neural representation for the action 

and perception of bipedal locomotion at cortical 

level.fMRI-EEG. 

 

Calabrò et al. showed utility of EEG as an outcome 

measure for neuroplasticity, identifying a strengthening 

in the frontoparietal effective connectivity and 

demonstrating promise for robotic gait training as an 

intervention after stroke to driving positive brain 

plasticity over and above usual physiotherapy and 

overground gait training.  

 

CONCLUSION 

The small number of studies available in robotic gait in 

stroke and EEG limit conclusions that can be drawn 

about BCI integration in the future. A lack of 

standardization around EEG data capture and processing 

was evident that limited data synthesis. However, the 

current review revealed encouraging preliminary results 

in the road to BCI integration in robotic gait training after 

stroke.  
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Figure 1 | Scheme of systematic review search process. 
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