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ABSTRACT: In brain-computer interfaces (BCI), the de-
tection of different mental states is a key element. In
Motor Imagery (MI)-based BCIs, the considered features
typically rely on the power spectral density (PSD) of
brain signals, but alternative features can be explored
looking for better performance. One possibility is the
integration of functional connectivity (FC). These fea-
tures quantify the interactions between different brain ar-
eas and they could represent a valuable tool to detect dif-
ferences between two mental conditions. Here, we in-
vestigated the behavior of coherence-based FC features
and PSD features, alone and in combination. For a better
comparison, we characterized the network centrality of
each brain area by computing the weighted node degrees
from the estimated FC networks. Our findings show that
in both alpha and beta frequency bands, and for almost all
the subjects, the fusion of FC network indices and PSD
features give better performance. This preliminary results
open the way to the use for network-based approaches in
BCIs.

INTRODUCTION

A brain-computer interface is a system that enables the
interaction subject-external world without peripheral
nerve or muscles [26]. It allows communication [17] and
the control of real or virtual objects [4]. Nowadays, the
performance of BCI appears to be inconsistent across
subjects. Indeed, there is an non-negligible percentage of
users who cannot use the interface [3], [24].
To face this problem, investigators historically searched
for better brain decoders [18]. To do so, one possibility
consists of working on the features extraction and

selection and more specifically of looking for alternative
features that could better discriminate the subjects’
mental state.
Recently, a great interest was born in connectivity
applied in brain-computer interfaces and in particular
in motor imagery, giving promising results [22], [2].
The reason behind this choice is that brain mechanisms
involved in BCI are complex and they could be better
described by functional interactions changes. Indeed,
connectivity describes the interaction between different
brain areas that can reflect specific mechanisms such
as synchronization in time-others in phase domain, or
the causal interactions for instance [11]. Notably, a
variation of inter hemispheric connections has been
found using phase-locking value, but in other case the
prominent mechanisms was the increase of information
flow regarding the contralateral motor area [15]. The
frequency band that appears involved in the task differs
being alpha, beta or gamma and a completely changing
behavior can be found in the different bands. These
contradictory results motivated us to investigate more the
subject.
Here, we hypothesized that features based on con-
nectivity can provide relevant information to better
discriminate the subjects’ mental state. For this purpose,
we first tested the feasibility of the use of connectivity-
based features already identified as a feature with high
discriminating potential in motor imagery task [7]. Then,
we tested the combination of features based on power
spectra and on connectivity to take advantage of their
complementarity.

MATERIALS AND METHODS
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1. Experimental Protocol: Fifteen healthy subjects (aged
27.73 ± 4.45 years, 7 women) all right handed partici-
pated to our motor imagery-based BCI protocol. The
users were seated in front of a screen. When the target
was up, the subjects had to image to move the right hand
(e.g. grasping) [27]. When the target was down they had
to remain at rest. During the tasks, we recorded the elec-
troencephalography (EEG) activity with 74 electrodes in
a 10-10 standard configuration. We collected 64 trials for
motor imagery and 64 for resting state. Each trial lasted
5s. EEG signals were recorded with frequency sampling
of 1 kHz and then downsampled to 250 Hz. To remove
those related to eye and cardiac artifacts in the sensor
space, a pre-processing step consisted in an Independent
Component Analysis (ICA) [10] with Infomax algorithm
[1] performed with Fieldtrip toolbox [19]. The selection
of the components was performed by a visual inspection
of the signals.
2. Analysis: We can schematize our recording systems
in the following way. N signal samples were acquired at
frequency Fs in two different mental states, S1 and S2.
EEG samples were recorded from M electrodes for each
state, obtaining TS1 trials in S1 and TS2 trials in S2; the
same procedure was replicated for I subjects.
The signal Acquisition Stage (AS) in the two mental
states S1 and S2 for the i-th user, t-th trial, m-th channel,
n-th signal sample yields the real measurements’ sets:

X (S1) = {x(i,t)m [n]}, S1 AS} (1)

X (S2) = {x(i,t)m [n]}, S2 AS} (2)

We reported the framework of this study (Fig. 1). The
first step consisted of recording brain signals from a given
subject i followed by the features extraction. Here, we
considered two types of features: PSD, that reflects the
local activation of the cortex, and connectivity, describing
interactions of brain areas. The last step is the evaluation
of compact metric (node degree) that synthetically quan-
tifies the connectivity of each node. In the next sections,
a detailed description of each step is given.
2.1 Features estimations: For both the ASs, the following
power spectral estimates are computed:
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where wl [n], with l = 0, · · ·LW −1 and n = 0, · · ·N−1 are
real windows LW , depending on the estimation method.
In the case of Welch method, a set of time orthogonal
functions are used [25].
For each subject i, each trial t, each frequency bin we
evaluated the two features. Specifically, Welch method

Figure 1: Schematic representation of different steps of our
analysis. EEG signals are recorded from each channels. Sig-
nals vary in time and frequency domain. Since we collected all
the signals, we can extract features, which can be local features
(as PSD) or connectivity (as coherence). We can use compact
measures based on graph theory (as weighted node degree).

is used for the evaluation of the auto and cross-spectrum.
Hanning time windows characterized by a length of 1s
and an overlap of 50% are used. To this aim,we narrowed
the frequency set, to select features from 4 to 40 Hz in
steps of 1 Hz.
The connectivity estimator that we use in this work, is the
spectral coherence [6], defined as:
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This quantity reflects in the frequency domain the
synchronization in amplitude between two signals. The
advantage compared to the simpler cross-correlation is
that it is possible to separate different frequency bands.
This aspect is important in EEG applications where, the
response changes in different frequency bands.

We defined a graph as a set of vertices (or nodes) and
edges (or links)[5]. In our case, nodes represents the
EEG-electrodes and the edges are the connectivity esti-
mate, without thresholding or binarizing [11].
To extract information about the connectivity of each
electrode and following the approach in [7], we defined
the Coherence-based Node Degree (CND), as follows:

CND(i,t)
m [k] =

M−1

∑
c=0

C(i,t)
m c [k] (6)
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This measure describes in compact way the connectivity
of each node. In fact, it is evaluated for each node and
it represents how much one node is connected to all the
others [11].
To take into account the neurophysiology aspects under-
lying the task used here [21],[20], we decided to restrict
our study on the set of electrodes located in the controlat-
eral motor area (Fig.2). Nevertheless, the CND is evalu-
ated taking into consideration all the possible connections
including the selected nodes.

Figure 2: Representation of 74 electrodes in 10-10 standard
configuration as used in our experiments. Electrodes in left cen-
tral are circled in green

2.2. Features fusion: To understand if a combination of
different information would better discriminate between
two conditions, different approaches have been proposed
in the literature [23]. Notably, the fusion of features from
different modalities in motor imagery BCI has already
been studied, with promising findings [9]. In particular,
the fusion can be performed at the classifier level,
by attributing a specific weight to the output of each
classifier, or at features level. Here we used the latter
with a concatenation of the trials of different features.

2.3 Classification: To classify the subjects’ mental state,
we used the linear discriminant analysis (LDA) method
[12]. Our classifier operates on single subject, single fre-
quency bin and single channel. More specifically, for a
given subject, for the k -frequency bin and the m-channel
we randomly chose the 80% of the trials for the train-
ing set. The total number of trials for the training set is
103. The remaining 25 trials, related to the other 20%,
are used for the testing part. Performances of the clas-
sification were evaluated during the testing part. We re-
peated this operation 50 times and the performances re-
ported here corresponds to the average in all the repeti-
tions. For i -subject, k -bin, m -channel, we measured
classification performances, in terms of accuracy, sensi-
tivity, specificity, and area under curve (AUC). For a ne-
cessity of representation, we only reported here the most
significative results in terms of accuracy, defined as fol-

lows:

ACC =
T P+T N

P+N
(7)

Where TP are the true positives, TN the true negatives
and P and N are positives and negatives respectively.

RESULTS

We performed the classification test as explained before
and we repeated the operation for each subject, each
frequency bin and each channel. For each subject,
we selected the best value in terms of classification
performances (e.g. accuracy) comprised in the central
left area. The best accuracy value is associated with a
given (electrode; frequency bin) couple. In the Fig 3,
we represented the maximum accuracy obtained for each
subject and each modality. In particular, we reported in
a bar plot the maximum value of accuracy. In order to
make the results clearer, we associated to each frequency
bin, the related frequency band.
To be more precise, the frequency band that we use are:
Btheta = 4− 7Hz, Bal pha = 8− 13Hz, Bbeta = 14− 29Hz
and Bgamma = 30−40Hz.

In Fig. 3, when we compare the PSD with coherence,
we can notice that 9 on 15 subjects reached higher accu-
racy with PSD, while for the remaining 6, the coherence
is better. If we compare coherence with the fusion, the
latter is better in 9 over 15 subjects. The last comparison
is between fusion and PSD. The fusion of the two fea-
tures is better in 13 over 15 subjects. The mean values
of accuracy with the associated standard deviations are:
0.66± 0.03 for PSD, 0.66± 0.02 for coherence and 0.68
±0.02 for the fusion. The frequency bands associated
with the reported results vary according to the subject,
but the most selected bands are alpha and beta.
We reported a set of figures to represent the most fre-
quently chosen channels (Fig.4) The associated plots rep-
resent the occurrences on the scalp for each explored
mode, Coherence-based Node degree, PSD and fusion
and for each frequency band. In each picture, the di-
mension of the circle is proportional to the occurrence
of each electrode as the one related with the highest ac-
curacy. C5 and C3 channels are usually the most involved
in the task, have a high representation, especially in alpha
and beta band. Interestingly, the occurrences associated
with these two channels, in the case of coherence feature,
are also high in gamma band. For sake of completeness,
in Fig.5, for each subject and each feature we report the
standard deviation related to the cross validation. Specif-
ically, we evaluated the standard deviation of the accu-
racy across the 50 random repetitions for the best couple
channel-frequency bin.

DISCUSSION AND CONCLUSION

Functional connectivity is a valuable tool to describe and
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Figure 3: Bar plot with the best accuracy level for each subject. Each value is related to a specific couple frequency bin-electrode. For
each subject we have three bars that refer to the three modes: PSD (in pink), Node Coherence (in green) and Fusion (in blue). On the
top of each bar we report the frequency band associated to the selected bin.

Figure 4: Table with occurrences of electrodes related to the
highest accuracy. The size of the circles is proportional to the
number of subjects for which that channel was the best. Each
frequency band and each mode is considered separately: PSD
in pink, coherence-based node degree in green and the fusion in
blue

explain the organization and functionality of the brain
during the tasks. For these reasons, we believe that it can
be an important feature for brain computer interface ap-
plications, in which the user has to perform difficult tasks,
involving different portions of the brain. In this work, we
presented a mental state classifier based on connectivity
features and we compared its performances with those
achieved using local spectral features. Most importantly,
we considered the classification results with the combi-
nation of the two features.
Our findings demonstrated that alpha and beta frequency
bands are usually more involved during the task. In fact,
the accuracy obtained in those bands are higher.Another
interesting result is that the fusion between connectivity
feature and a local one gives higher accuracy than PSD
alone for the majority of the subject, for 13 over 15. This
means that the integration of features reflecting different
brain mechanisms can be useful for the discrimination of
different mental states.
We notice that in general our accuracy values are higher
than the actual chance level that in this configuration cor-
responds to 63% [8]. In addition, we reported a relatively
high variance in the accuracy across the cross-validation
that is explained by the high inter-trial variability.
From our findings, we can notice that there is a high
variability between subjects concerning the best feature
to use. This is reflected by the high standard devia-
tion, 0.02 for coherence and fusion and 0.03 PSD. The
inter-subjects variability is also evident in terms of fre-
quency band of interest [16]. However, the most selected
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Figure 5: Table with values of standard deviation of the accuracy associated to cross validation folds. For each subject and each feature,
for the best couple channel-frequency bin, we evaluated the standard deviation related to the 50 random repetitions

bands are alpha and beta as expected because they are
usually related to motor tasks. Interestingly, in the case
of coherence, the gamma frequency band is intensively
involved. One possible explanation is that connectivity
mechanisms during motor imagery tasks happens also in
high frequencies [13].
In this preliminary work, we did not put a constraint on
the frequency band in the fusion case. Indeed, for each
case, we selected the best frequency bin independently
from all the other cases. For instance, it could be interest-
ing to put a constraint on the frequency band associated
to the fusion on the basis of the selected frequency band
for the other two ways. Alternatively, it could be possible
to select the same frequency for all the features. These
changes could help in the interpretation of the results.
For the fusion between two different features, another
possibility is to perform a fusion of the classifiers out-
put. In this case, the advantage will be a better control of
features contribution and it can be helpful for the inter-
pretation. Indeed, for each subject it will be possible to
determine which feature contributed the more to the fu-
sion [9]
Another possible improvement would be to increase the
number of selected features. Indeed, in this work, we
only considered the single feature case, or the combina-
tion of one of each class to obtain the fusion. One option
to integrate more features could be the ranking of the fea-
tures on the training set, based for instance of statistical
tests performed between conditions [14].
This preliminary work confirmed our hypothesis that con-
nectivity features bring relevant information on brain
functionality. Notably, the integration of these features
with standard one could increase BCI performances and
be a valuable tool to reduce the inter-subject variability.
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