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ABSTRACT: Electroencephalography (EEG)-based 
brain-computer interface (BCI) system is useful for 
rehabilitation and external device control. In this study, 
we analyzed the decoding of five different grasping tasks 
in actual movement and motor imagery (MI) paradigms. 
Eight healthy subjects participated in this experiment. 
They executed and imagined five sustained grasping 
tasks. In this actual movement and MI experiment, we 
proposed a muscle-related temporal segmentation 
method by detecting the electromyograph (EMG) signals. 
At the same time, we used common spatial patterns 
(CSP) and the regularized linear discriminant analysis 
(RLDA) for the EEG analysis. As a result, we classified 
the five different grasping tasks in the offline experiment 
and obtained average classification accuracies of 60.85±

7.71% for actual movement and 37.95±7.86% for MI, 
respectively. This result is encouraging, and the 
proposed method could potentially be used in future 
applications, such as a BCI-driven robot hand control for 
handling various daily use objects such as cup, ball, 
pencil, bolt, and card. 
 
INTRODUCTION 
 
Brain-computer interfaces (BCIs) are promising tools for 
detecting user intention and controlling robotic devices 
such as upper limb prosthesis [1]. Many research groups 
use electroencephalography (EEG) based BCI because of 
its cost-effectiveness and convenience. The EEG signals 
which are generated by brain activities can be separated 
from different paradigms or physiological phenomena 
such as visually evoked potentials, slow cortical 
potentials, and sensorimotor rhythms. In particular, 
sensorimotor rhythms include two kinds of amplitude 
modulations known as event-related desynchronization 
(ERD) and event-related synchronization (ERS) that are 
generated by sensory stimulation, motor behavior, and 
mental imagery [2, 3]. ERD and ERS are often used in 
such movement-related BCI studies and detected in the 
mu band [8-13] Hz. In this study, we used common 
spatial patterns (CSP) to avoid using the mu band only 
and extracted features from the extended frequency 
bands. The CSP method shows clear patterns and spatial 
features of brain activities so that it is effective in 
classifying motor imagery (MI) and actual movement 
[3].  
Three related kinds of research inspired our study. 

Schwarz et al. [4] tried to decode natural reach and grasp 
actions from human EEG. They attempted to identify 
three different executed reach and grasp actions, namely 
lateral, pincer, and palmar grasp, utilizing EEG neural 
correlates. Throughout the experiment, they achieved 
binary classification accuracies of 74.2% between grasp 
types and 65.9% for the multi-class grasp types 
classification at the offline actual movement experiment.  
In the other case, Ofner et al. [7] had encoded single 
upper limb movements in the time-domain of 
low-frequency EEG signals. The primary goal of the 
experiment was to classify six different movements, and 
those are elbow flexion, extension, hand grasp, spread, 
wrist twist left, and twist right. They achieved the final 
classification accuracies of 55% in actual movement and 
27% in MI. 
Agashe et al. [8] had decoded hand motions with a 
different approach. They demonstrated that global 
cortical activity predicts the shape of the hand during 
grasping. It was an offline study, and they inferred from 
EEG hand joint angular velocities as well as synergistic 
trajectories as subjects perform natural reach-to-grasp 
movements. Classification accuracy between the 
predicted and the actual movement kinematics was 49%. 
They showed real-time closed-loop neuro-prosthetic 
control of grasping by an amputee and the feasibility of 
decoding brain signals of a variety of hand motions. 
However, these three related studies could not achieve 
robust decoding performance in MI paradigm due to its 
complex characteristic of the brain signal data. We tried 
to solve the problem with a new approach and 
perspective. 
In this paper, we present the classification of grasping 
tasks within EEG signals for non-invasive BCI. The 
objective of this study is to confirm whether the method 
of muscle-related temporal segment selection by 
detecting the change of signals from each 
electromyograph (EMG) channel improves the BCI 
performance of each subject or not. At the same time, we 
proved the feasibility of classifying various grasping 
tasks in the right hand from EEG signals with the 
proposed method in the MI paradigm. The EEG signals 
from different participants were acquired, and we only 
selected muscle-related temporal segments from a 
whole-time domain. With the running of sufficient 
experiment trials and data analyses, we were able to 
construct a robust decoding model using our proposed 
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Figure 1: Description of the five grasping tasks and the experimental setup. (left) Five different reach-and-grasp tasks 
and the starting position. Five different grasping actions are matching to specific objects. (right) Experimental 
environment for EEG and EMG signals acquisition.  

method to classify five different grasping tasks, which 
can be contributed to developing a robot hand control 
system driven by EEG signals and based on MI in the 
future. 
 
MATERIALS AND METHODS 
 
     Participants: Eight healthy subjects with no history of 
neurological disease were recruited for the experiment 
(right-handed males aged 24-33 years). At the same time, 
we purposely chose every subject who already 
experienced the BCI experiment in order to maintain the 
stability of EEG and EMG signals as musch as possible. 
For the best results and to verify the feasibility of 
decoding complex grasping tasks, we only acquired data 
from trained subjects.  
This study was reviewed and approved by the 
International Review Board, at Korea University 
[1040548-KU-IRB-17-172-A-2], and written informed 
consent was obtained from all participants before the 
experiements. 

     Experimental Setup: During a session of the 
experimental protocol, the subjects sat in front of a 
32-inch LCD monitor screen, in a comfortable chair. The 
screen was installed horizontally on the table to make 
subjects can see the objects and visual cue (flashing 
yellow circle around the targeted object) without moving 
their head. Figure 1 indicates the experimental setup and 
the environment during the entire session. The subjects 
were asked to perform or imagine a specific grasping 
task following each auditory and visual cue. The subject 
imitated the designated grasping tasks, including a 
half-opened hand shape that indicates muscle relaxation 
during the rest period (in the starting position). During 
the experiment, the subjects were asked to perform five 
different grasping tasks, which are illustrated in Figure 1.  
     Data Acquisition: EEG and EMG signals were 
collected using maximum possible channels for data 
collection for future analysis. During the experiment, the 
EEG data were collected at 1000 Hz using 64 Ag/AgCl 
electrodes in 10/20 international system via BrainAmp 
(BrainProduct GmbH). At the same time, a 50 Hz notch 
filter was used to remove power frequency interference. 
The FCz and FPz were used as reference and ground 
electrodes, respectively. All impedances were 
maintained below 10 kΩ. From the entire 64 EEG 
channels, only 20 channels (FC5, FC3, FC1, FC2, FC4, 
FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, 
CP2, CP4, and CP5) were used for data processing, 
because we expected to suppress the artefacts such as 
signals from eye movements by removing peripheral 
channels except on the motor cortex. The 20 channels 
were located only on the motor cortex to make sure that 
the recorded EEG signals are highly related to the 
motor-related potentials, which are from the actual 
movement and MI, as shown in Figure 3.  
In the case of EMG data acquisition, we used 5 Ag/AgCl 
electrodes (CH1: extensor pollicis brevis, CH2: extensor 
digitorum, CH3: flexor digitorum profundus, CH4: 
flexor digitorum superficialis, CH5: reference) from the 
same equipment during EEG data recording. The EMG 
channels were attached on the right arm to detect signal 

 

Figure 2: Illustration of experimental protocol to 
decode five class reach-and-grasp actions in actual 
movements and motor imagery paradigm. 
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Figure 2: Illustration of experimental protocol to 
decode five class reach-and-grasp actions in actual 
movements and motor imagery paradigm. 
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Figure 3: (left) EEG location of selected 20 channels that minimize the artefacts. (right) Proposed method to select 
subject-specific time segments during the classification. Measuring EMG signals to find the optimized time segments 
for feature selection on a trial. Select a specific 2.5-second length of time segment from 0 to 4s total length of a single 
trial. 

change while the subject performed grasping tasks [7]. 
The one channel on extensor digitorum (CH2) was 
selected, and the EMG signals were first processed by 50 
Hz notch and filtered by a 5-500 Hz band-pass filter [8, 
9].    
Every subject performed 75 trials per each grasping task 
(375 trials: 5 classes x 75 trials).  They were also asked to 
perform or imagine a specific grasping task once but not 
repetitively in the actual movement/motor imagery 
period of 4 sec, shown in Figure 2.      
     Data Analysis: Filtering the EEG signals was a 
significant process in the experiment. We grouped the 
three most used motor-related EEG bands mu [8-13], 
beta [13-30], and delta [0.1-3] in Hz using a 2nd order of 
Butterworth filter [5, 10]  and tested for the best 
performance. In particular, we chose [0.1-3] Hz to 
decode our EEG data because it showed the best 
classification result compared to using the other bands in 

this experiment. EMG signals were analyzed to detect 
muscle-related temporal segments by measuring the 
activation of muscles when the subject performed the 
actual movement. We calculated the mean integrated 
EMG (IEMG) as the indicator of the muscle activity 
during each grasping task. IEMG is capable of reflecting 
the contraction property of muslces [8-10].  
It is defined as:  

𝐼𝐸𝑀𝐺 = Σ𝑖=1𝑛 |𝑥𝑖|
 (1) 

Here, xi represents the ith sample of EMG signal and n 
represents the length of time segment. 
We separated one trial of 4 seconds in eight (0.5 seconds 
for each segment) and selected only muscle activation 
point when performing grasp. We excluded the 
segmented EEG signals when the proposed model 

 

S1 S2 S3 S4 S5 S6 S7 S8 AVG
0

20

40

60

80

100

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (%

)

Actual-conventional

Actual-proposed
MI-conventional

MI-proposed
Chance rate(23.7%)

 

Figure 4: Classification accuracies for decoding 5-class grasping tasks in [0.1-3] Hz. Average MI decoding accuracy 
was 37.95% and average actual movement accuracy was 60.85%, respectively. 10 by 10 cross-validation was applied. 
*Conventional: using fixed 4-second temporal segmentation to extract CSP features  
*Proposed : using subject-specific temporal segmentation of 2.5-second based on muscle-related signals  
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estimates the stages are in progress of rest, reach, and 
return. This temporal segment indicates when the 
subjects actually move their hand to grasp the designated 
object. These temporal segments are subject specific so 
that if a subject has the temporal segment in between 1 
second to 3.5 seconds (2.5-second length), we can apply 
this segment to analyze training and test data. However, 
we need to find differernt temporal segments for the 
other subjects.     
After selecting these temporal segments, we applied the 
segment to cut the original EEG data in limited length so 
that eventually we could pick the data at the 
movement-related time point. Common spatial patterns 
(CSP) and regularized linear discriminant analysis  
(RLDA) were applied for further feature extraction and 
classification.  

Of course, we could not measure any distinguishing 
characteristic in EMG data during the MI paradigm [10, 
11]. However, applying the trained temporal segment 
using the data from the actual movement experiment was 
effective to most of our subjects when classifying MI.  
 
RESULTS 
 
Through the experiment, we confirmed the feasibility of 
classifying five different grasping tasks in the right hand. 
Figure 4 presents the classification accuracy results in 
actual movement and MI with bar graphs. In the actual 
movement session, in the red bars of Figure 4, every 
subject excluding S4 ans S6 showed increasing trends of 
accuracies approximately 3 to 12% compared to the 
conventional method. Classification accuracies of S3 and 

Table 1: Classification accuracies of 5-class grasping task according to motor-related frequency bands 

 
Actual movement 

(Cylindrical / Spherical / Pincer / Tripod / Lateral) 
Movement imagery 

(Cylindrical / Spherical / Pincer / Tripod / Lateral) 

[0.1-3] Hz [8-13] Hz [13-30] Hz [0.1-3] Hz [8-13] Hz [13-30] Hz 

Sub 1 73.38 % 65.80 % 57.70 %  45.52 % 41.25 % 43.55 % 

Sub 2 67.87 % 33.60 % 41.40 % 31.17 % 36.01 % 27.53 % 

Sub 3 52.27 % 37.93 % 43.80 % 29.33 % 24.75 % 28.65 % 

Sub 4 58.73 % 45.60 % 38.75 % 39.30 % 25.25 % 33.82 % 

Sub 5 62.50 % 53.73 % 45.58 % 36.55 % 37.09 % 55.48 % 

Sub 6 59.12% 69.06% 57.40% 28.45% 22.54% 21.99% 

Sub 7 63.12% 51.43% 58.32% 44.39% 30.03% 29.32% 

Sub 8 49.85% 43.44% 35.93% 48.90% 34.94% 44.33% 

Avg. 60.85 % 50.07 %  47.36 %  37.95 % 31.48 % 35.58 % 
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Figure 5:  Confusion matrices of (left) actual movement classification and (right) MI classification results. Showing 
significant differences among each class especially on the power grasping tasks (cylindrical and spherical) and 
precision grasping tasks (pinch, tripod and lateral). The classification result of MI shows a similar tendency to the 
result from the actual movement.    

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-40



S7 when using 2.5-second length of time segmentation 
were dramatically improved and finally peaked at 
63.12% while the other subjects showed little increase 
compared to the conventional method. On the other hand, 
during the MI session, the classification accuracies 
continuously increased, while some of the subjects 
showed a decrease. Most of them reached the higher 
classification accuracies when we applied our proposed 
decoding method. In the case of the S2 and S5, the 
classification accuracy started to decrease, but the 
subjects showed little decrease, while the other subjects 
showed a more significant increase in accuracy. For 
example, S4 and S8 achieved dramatic improvements of 
7.42% and 8.81%, respectively.  
According to the results, each subject showed the highest 
actual movement or MI performance  at a different point 
in time, but most of them showed increase in 
performance with applying muscle-related temporal 
segment selection method.  
The different results in five class multi-classification 
accuracies between actual movement and MI are 
strongly affected by the muscle-related time segment 
selections. For some subjects, such as S4 and S8, more 
improvement was shown in the classification accuracy 
when adopting the proposed method that was trained 
with actual movement data and applied in the MI 
paradigm than when using the same method with the 
actual movement paradigm. For instance, during the MI 
classification, the average accuracies of the proposed 
method increased by almost 2 to 9%. These were higher 
than the accuracies of the conventional model, using an 
ordinary fixed 4-second temporal segment.  
Table 1 presents entire classification results of all 
subjects in three different motor-related frequency bands. 
First, we analyzed classification accuracies in delta band 
[0.1-3] Hz. Several related researches already showed 
the feasibility of decoding upper limb or hand 
movements in low frequency EEG [4, 5]. In the delta 
band most of subjects showed the best classification 
accuracy compared to the other bands. Traditionally the 
beta and mu bands are widely used to decode actual 
movement and MI from EEG signals. The classification 
results in the both two motor-related frequency bands are 
similar. Some of subjects showed the best results at the 
[8-13] or [13-30] Hz but most of them are performed the 
best in low frequency.  
 
DISCUSSION 
 
In this study, we confirmed the effectiveness of using our 
proposed muscle-related temporal segment selection to 
improve classification accuracy in both of actual 
movement and MI paradigms. As we can see in Figure 4, 
the results showed the feasibility of the proposed method 
as a temporal segment selection strategy feature to 
increase multi-class classification accuracy on set 
purpose, especially in actual movement paradigm. 
Although the visual cue-based synchronous system 
executed the experiment in an offline scenario, the 
subjects completed MI with different speed, trajectory, 

and force. We could see that the muslce-related temporal 
segment selection is working and adaptive in the MI 
paradigm even though it was trained with actual 
movement data. We suppose it is because the subjects 
imagine in a similar way and rhythm to actual movement. 
During each of the trials, the subjects only used intuitive 
motor imagery when they were asked to perform the 
specific grasping task. Hence, selecting the 
muscle-related temporal segment length to extract the 
apparent movement-related EEG features at the exact 
time interval for each particular individual during MI 
paradigm is useful when the situation in which the 
subjects perform is unobservable and there are variable 
motor-related brain activities.  
 
CONCLUSION  
 
Classifying five different grasping tasks from EEG 
signals within a hand is very challenging, but fortunately, 
we confirmed the feasibility. The results showed 
improvements to the overall classification accuracies 
with our proposed method. In the future work, we will 
focus on increases in reliability and efficiency to develop 
a robust MI decoding method based on muscle-related 
signal data with advanced machine learning and deep 
learning approaches. We will also modify our offline 
experimental protocol to be asynchronous and 
online-oriented for the development of practical BCI 
based robot hand control. 
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