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ABSTRACT: Interacting with the environment using a
brain-computer interface involves mapping a decoded
user command to a desired real-world action, which is
typically achieved using screen-based user interfaces.
This indirection can increase cognitive workload of the
user. Recently, we have proposed a screen-free interac-
tion approach utilizing visual in-the-scene stimuli. The
sequential highlighting of object surfaces in the user’s en-
vironment using a laser allows to, e.g., select these object
to be fetched by an assistive robot.
In this paper, we investigate the influence of stimulus
subclasses—differing surfaces between objects as well as
stimulus position within a sequence—on the electrophys-
iological response and the decodability of visual event-
related responses. We find that evoked responses differ
depending on the subclasses. Additionally, we show that
in the presence of ample data subclass-specific classifiers
can be a feasible approach to address the heterogeneity of
responses.

INTRODUCTION

In the context of assistive robotics, brain-computer inter-
faces (BCIs) can offer impaired users means to supervise
or control the robot. Brain signals can be used to di-
rectly move the robot [1] or for high-level commands in
a shared-control setting [2]. While user goals in robotic
applications mostly correspond to objects or positions in
the environment (e.g., which object to fetch and deliver
to the user), most existing BCI setups require an auxil-
iary interface for stimulus presentation.

This interface is typically implemented using a graphical
user interface on a screen, but auditory or haptic inter-
faces are also possible [3–5]. Actions in the world cannot
be executed directly using the BCI but need to have a
representation in this interface. In BCI paradigms based
on visual event-related potentials (ERPs) [6], on visual
steady-state evoked potentials [7], motion-onset visual
evoked potentials [8] or visual noise codes [9], the screen
has been considered an enabling, indispensable building
block of the experimental paradigms. But even in BCI
paradigms based on mental imagery tasks, the translation
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Figure 1: Overview of the experimental setup. In each con-
dition, four objects were highlighted repeatedly with a laser
pointer. Annotated objects and average responses correspond
to condition C250, the remaining objects correspond to condi-
tion C500.

of these tasks into actions requires a supporting interface.
The indirection step introduced by the interface, however,
comes at a price. First, the user is required to switch
attention between the screen representation and the real
world in order to deliver commands. Second, the inter-
face creates additional mental workload, as the user has
to carefully plan a mapping from a desired real-world ac-
tion into a sequence of potentially unrelated tasks.
To address both issues, we recently proposed to select
objects based on visual ERPs in a novel screen-free in-
teraction [10]. We use a robotic arm to highlight ob-
jects in the scene. We attach a laser pointer to the arm
to generate the visual stimuli. This novel screen-free ap-
proach circumvents the aforementioned indirection step,
avoids frequent attention switches and may therefore re-
duce cognitive workload. In short, it allows for a more
“intuitive” BCI usage.
While we could show the feasibility of the novel ap-
proach [10], the screen-free paradigm introduces other
challenges. First, we found that decoding performance
requires improvement specifically in the presence of het-
erogeneous candidate objects and surfaces (see Figure 1).
Second, as the novel paradigm interacts with the real
world, it entails different experimental constraints than
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Figure 2: Structure of a single experiment block. Trials were
alternated between two conditions (C250 and C500) (row 1) in a
pseudo-randomized manner. Each trial consisted of three repe-
titions (row 2) in which each object (row 3) was highlighted for
a single sequence of 6 or 12 stimuli (row 4).

traditional screen-based ERP paradigms. Most impor-
tantly, the repositioning of the robotic arm between high-
lighting different objects as well as differing optical prop-
erties of stimulus objects necessitates a careful consider-
ation of non-i.i.d. effects in the obtained ERP data.
Previously, the class-wise distributions of auditory ERPs
with regard to individual stimuli within a sequence have
been found to differ based on the position in the sequence,
duration as well as target-to-target intervals [11]. Inves-
tigating the influence of subclasses (e.g., stimulus iden-
tity), Höhne and colleagues have proposed to incorpo-
rate subclass information into the decoding approach by
selecting different shrinkage targets for Linear Discrimi-
nant Analysis (LDA) [12].
In the following sections, we characterize the influence
of within-sequence stimulus position and object surface
properties on the resulting evoked responses using data
from six subjects who participated in an in-the-scene ob-
ject selection paradigm. We present corresponding re-
sults in the form of decoding performances using a classi-
fication pipeline utilizing Riemannian geometry in differ-
ing data size regimes and discuss implications for usage
in a BCI.

MATERIALS AND METHODS

Experimental Paradigm and Data Collection:
We recorded the electroencephalogram (EEG) data from
six healthy subjects (aged 26±3 years), who each par-
ticipated in a single session of an experiment. None of
the participants had previously used a BCI. Following the
declaration of Helsinki, we received approval by the lo-
cal ethics committee for this study and obtained written
informed consent from participants prior to the session.
Subjects were seated in front of a table on which eight
objects, denoted O1 to O8, were placed. A Kuka iiwa
robotic arm outfitted with a laser pointer next to the end
effector was positioned in front of the table and used to
highlight objects (c.f., Figure 1). Each object was high-
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Figure 3: Number of target epochs per subclass based on con-
dition (C250 and C500) and data sizes (100 % to 33 %).

lighted either six or twelve times before the robotic arm
was repositioned to highlight the next object. Switch-
ing the arm position after each single highlighting event
was prohibitive considering the delay introduced by the
movement time of the robotic arm.
The surface types—and therefore, optical properties—of
objects O1 to O4 differ from each other, while objects
O5 to O8 are made of the same material (see Figure 1).
Highlighting O1 resulted in a diffuse and partly specular
reflection (away from the subject), whereas highlighting
the other objects resulted in diffuse reflections only. Sub-
jectively, O2 showed the strongest reflection among these
three objects, the reflection intensity of O3 was reduced
and the reflection intensity of O4 was weakest.
We acquired the brain signals using a cap holding ns = 31
Ag/AgCl gel-based passive EEG electrodes positioned
according to the extended 10-20 system with a nose ref-
erence. We kept channel impedances below 20 kΩ. The
amplifier sampled the EEG signals at 1 kHz.
The experiment consisted of six blocks, each containing
eight trials. Within a trial, we defined one out of four
candidate objects as the target object. As depicted in Fig-
ure 2, in each of three repetitions per trial all four can-
didate objects were highlighted with a stimulus sequence
that lasted 3 s per object. For each highlighting, the laser
pointer was activated for 100 ms.
Trials were divided into two conditions: In condition
C250, the candidate objects consisted of O1 to O4 (i.e.,
they are heterogeneous) and highlighting stimuli were
presented with a stimulus-onset asynchrony (SOA) of
250 ms (i.e., 12 stimuli per sequence). In the condition
C500, O5 to O8 were the (homogeneous) candidate ob-
jects and stimuli were presented with an SOA of 500 ms
(i.e., 6 stimuli per sequence). The latter condition directly
corresponds to the experiments performed in [10].
Target objects were balanced, i.e., each object was a tar-
get once per block. To assure this, a cue denoting the
target object was presented to the user before each trial.
We instructed users to attend the target object for the du-
ration of the trial without mandating visual focus. After
each trial, feedback on the decoded object was given (c.f.,
[10]). In a post-experiment questionnaire, subjects gave
feedback on the experiment task using visual analogue
scales.
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Figure 4: Evoked responses in condition C250 by object type (O1–O4) and stimulus position, i.e., first in sequence or additional (stimuli
2–12). The thin lines represent the class-wise average for each subject and the thick lines the grand average over all six subjects. Note
the differing y-axis limits between rows. In the top row, each response is averaged based on 108 target and 324 non-target epochs,
respectively. In the bottom row, averages correspond to 1,188 and 3,564 epochs. Stimulation intervals are marked with green bars.

Data Analysis:
We analyzed the data separately for each subject and each
condition (SOA) in an offline manner. We filtered data
to a band of 0.50 Hz to 16 Hz using a FIR filter before
downsampling to 100 Hz.
We extracted epochs from −0.20 s to 1.00 s relative
to each stimulus onset (leading to ns = 121 samples
per epoch) and subsequently corrected them separately
for signal drifts using the first 0.20 s as a baseline.
Hence, each epoch Xi can be associated with a class
y(i)∈{target,non-target}, SOA s(i)∈{250,500}, object
o(i) ∈ {1, . . .8} as well as the position within the stimu-
lus sequence p(i) ∈ 1, . . .12. Since we expect most vari-
ation between the first and subsequent stimuli [11], stim-
ulus positions can be aggregated to p̃ with p̃(i) = first
if p(i) = 1 and p̃(i) = additional for p(i) > 1. We re-
jected epochs in which the peak-to-peak amplitude ex-
ceeded 100 µV in any channel.
For the epoch-wise decoding of the target/non-target
response, we used a covariance-based feature repre-
sentation [13, 14]. On training data, we extracted
nx xDAWN-filters [15] for both target and non-target
epochs. Epoch data was projected using these filters
and subsequently augmented with prototype responses
based on the xDAWN-projected class means in the train-
ing data. We calculated the Ledoit-Wolf-regularized co-
variance of each 4nx× ns-dimensional augmented epoch
separately. These covariances are projected into the Rie-
mannian tangent space at the mean of the training data
and subsequently classified using Logistic Regression.
We investigate three different subclass-specific regimes
per condition: pooled, obj and stim. In all regimes we

performed a chronological 5-fold cross-validation. For
pooled, we train a single classifier per cross-validation
fold. For obj, we trained four separate classifiers in
each fold based on a partition of the data into ob-
jects {Xi|o(i) = k},k ∈ {1, . . . ,4} and classified each
test epoch with its object-specific classifier. Similarly,
for stim, we partitioned the data into {Xi|p̃(i) = l}, l ∈
{first,additional} and trained two different classifiers per
fold.
We used nx = 3 components per class for the pooled clas-
sification and nx = 2 components per class and subclass
for stim and obj classification, resulting in 6 total compo-
nents for pooled, 8 total components for stim and 16 total
components for obj.
Note that this implies different amounts of training
epochs per classifier in the three settings. To investi-
gate the general performance degradation based on re-
duced training data, we performed the above analysis
also with 67 % and 33 % of the data by only keeping the
first two or only the first repetition of each trial, respec-
tively. The size of the resulting data sets is depicted in
Figure 3. We evaluate classification performance on an
epoch level (i.e., keeping proportions between data parti-
tions) using the area under the receiver-operating charac-
teristic (AUC).

RESULTS

User Feedback:
All of the subjects were able to attend the stimuli and
none reported difficulties perceiving the laser highlight-
ing. On visual analogue scales (“easy” to “demanding”),
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Figure 5: Evoked responses in condition C500 by object (O5–O8) and stimulus position, i.e., first in sequence or additional (stimuli
2–6). The thin lines represent the class-wise average for each of subject and the thick lines the grand average over all six subjects.
Note the differing y-axis limits between rows. In the top row, each response is averaged based on 108 target and 324 non-target epochs,
respectively. In the bottom row, averages correspond to 540 and 1,620 epochs. Stimulation intervals are marked with green bars.

users rated the task’s mental demand with 26±26 %, the
physical demand with 52±28 % and the temporal de-
mand with 21±21 %. The required effort was rated with
56±31 % on a scale from “low” to “high”.

Electrophysiology of Responses:
In both conditions, we observed strong visual evoked po-
tentials which differ between target and non-target stim-
uli, most prominently approximately 200 ms after stimu-
lus onset (see Figure 4 and Figure 5). The first stimulus
in each sequence on average evoked higher amplitudes
than subsequent ones, with initial amplitudes surpassing
10 µV compared to the preceding baseline for some ob-
jects.
The evoked responses for condition C250 with heteroge-
neous objects are shown as thick lines in Figure 4. Differ-
ent objects resulted in differing grand average ERP wave-
forms. Specifically object O4—having a black surface—
resulted in a much smaller amplitude, with target re-
sponses for later stimuli having similar amplitudes as
non-target responses for the other objects. Looking at
individual subjects (shown as thin lines in Figure 4), ERP
latencies are similar for objects O1 to O3 yet appear to
vary substantially between subjects for O4.
In condition C500 with homogeneous object surfaces, ini-
tial stimuli similarly evoked higher potentials than subse-
quent ones, yet the difference is smaller than in condition
C250 (see Figure 5). The grand average responses to the
four different but homogeneous objects O5–O8 have a
higher similarity than the ones in C250.

Decoding results:
The classification of single epochs into targets and non-
targets is possible with a mean AUC of 0.81 for C250 and
0.86 for C500, as determined by cross-validation on the

pooled data sets of the respective conditions. Analyzing
the classification performance in this setting on all epochs
corresponding to a single object, we found that it is simi-
lar for all (homogeneous) objects in C500, while it differed
substantially between (heterogeneous) objects in C250 (in
decreasing order of performance: O1, O2, O3, O4).
As the ERP responses differed for object surface types
(O1–O4) and sequence positions, we investigated parti-
tioning the data into different subclasses. As this involved
a reduction of training data per sub-classifier (c.f., Fig-
ure 3), we also examined the influence of data set sizes.
Partitioning based on sequence position: We found that
treating stimulus position (“first” vs “additional”) with
specialized classifiers did not yield a clear performance
improvement or decrease for any of the three data set
sizes (100 %, 67 % and 33 %, see Figure 6).
Partitioning based on object: Training separate classifiers
for each object in condition C250, as shown in the first col-
umn of Figure 6, increased the AUC from 0.81 to 0.84,
whereas we observed a performance decrease in the C500
setting with homogeneous objects (from 0.86 to 0.81).
We found that the improvements obtained with object-
specific classifiers for heterogeneous objects (C250) de-
pend on the availability of sufficient training data. As
shown in the top row of Figure 6, a reduction of data size
to 67 % reduced performance of the obj classifier to 0.83,
and on 33 % the obj classifier performed worse than the
pooled one (0.78 compared to 0.79). Looking at classi-
fication performance for individual epochs on full data,
we observed gains for all objects, with greatest gains for
O1. In condition C500 with homogeneous objects, the per-
formance differences between classifiers did not change
with the different data sizes evaluated.
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Figure 6: Classification performances of subclass-specific clas-
sifiers for different training data sizes (column) as well as SOA
and object heterogeneity (rows). In the pooled case, data is not
partitioned and a single classifier is trained. The means and
standard deviations over the six subjects are reported.

DISCUSSION

Highlighting candidate objects directly reduces the lev-
els of indirection of BCIs and can therefore entail greater
usability. Yet it comes at the price of reduced con-
trol over stimulus presentation compared to traditional
screen-based paradigms. This manifests itself in hetero-
geneous ERPs when object surfaces differ and similarly
in distinct responses to initial stimuli (compared to sub-
sequent ones). Whereas stimulus presentation is easily
modifiable in screen-based solutions, it is neither desir-
able nor feasible to adapt properties of objects in the
scene—leaving the question of how to handle the hetero-
geneity.
If maximal performance is not required, the non-i.i.d.
characteristics of the data can be ignored, since using a
single classifier based on the pooled data (i.e., ignoring
the subclass information) still allows an effective decod-
ing on average (however, performance on difficult sub-
classes suffers). The higher performance for C500 com-
pared to C250 in the pooled setting can be attributed partly
to the homogeneous object surfaces and partly to the
larger SOA, which implies a larger fraction of (stronger)
responses to initial stimuli in this condition.
Addressing the differing surfaces in the condition C250,
object-specific classifiers yield an improvement in AUC.
This improvement by specialization is particularly inter-
esting considering the reduced amount of training sam-
ples available for each classifier (c.f., Figure 3). The lack
of heterogeneity in surfaces is the likely reason for the
subpar performance of object-specific classifiers in con-
dition C500, since in condition C250 even reduced data al-

lows for improvement compared to the pooled one.
Contrasting the improvement using object-wise classi-
fiers to the lack thereof for sequence-specific ones, two
observations can be made: First, the aforementioned re-
duced data size and therefore higher variance of subclas-
sifiers can offer an explanation for the lack of improve-
ment since the minority class (first stimulus) makes up
only 17 % (C500) or 8 % (C250) of the data. Second, the
(pooled) covariance-based features (as opposed to utiliz-
ing mean potentials) might be more robust to variations
in amplitude (as observed between sequence positions)
compared to variations in waveforms (for heterogeneous
objects), avoiding the need for specialization in the for-
mer case.
Hence, subclass-specific classification of heterogeneous
responses is feasible and can offer improved performance
in the presence of highly differing ERPs and sufficient
data. They are, however, not a “silver bullet” solu-
tion to this problem, and—without automatic relevance
selection—inspecting the subclass data is necessary to
identify suitable subclass partitions.

CONCLUSION

Utilizing in-the-scene stimuli for a brain-computer inter-
face implies an influence of scene properties on observed
brain responses. In this paper, we find that heterogeneous
object surfaces as well as stimulus position within a se-
quence result in differing ERPs. Addressing this with
subclass-specific classifiers can offer improved decoding
performance, with the caveat of increased data require-
ments as well as unfavorable performance in the absence
of subclass differences. For future work it would be in-
teresting to automatically infer relevant subclasses and to
investigate approaches capable of handling low-data sce-
narios [12].

ACKNOWLEDGMENTS

This work was (partly) supported by BrainLinks- Brain-
Tools, Cluster of Excellence funded by the German Re-
search Foundation (DFG, grant number EXC 1086). Ad-
ditional support was received from the German Research
Foundation through grant INST 39/963-1 FUGG and
from the Ministry of Science, Research and the Arts of
Baden-Württemberg for bwHPC.

REFERENCES

[1] Millan J., Galan F., Vanhooydonck D., Lew E.,
Philips J., Nuttin M. Asynchronous non-invasive brain-
actuated control of an intelligent wheelchair. In: An-
nual International Conference of the IEEE Engineering in
Medicine and Biology Society, 2009. EMBC 2009. Sep.
2009, 3361–3364.
[2] Burget F., Fiederer L. D. J., Kuhner D., et al. Acting
thoughts: Towards a mobile robotic service assistant for
users with limited communication skills. In: 2017 Euro-

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-42



pean Conference on Mobile Robots (ECMR). Sep. 2017,
1–6.
[3] Höhne J., Schreuder M., Blankertz B., Tangermann
M. A Novel 9-Class Auditory ERP Paradigm Driving a
Predictive Text Entry System. Front. Neurosci.. 2011;5.
[4] Schreuder M., Blankertz B., Tangermann M. A
New Auditory Multi-Class Brain-Computer Interface
Paradigm: Spatial Hearing as an Informative Cue. PLoS
ONE. 2010;5(4):e9813.
[5] Waal M. van der, Severens M., Geuze J., De-
sain P. Introducing the tactile speller: An ERP-based
brain–computer interface for communication. J. Neural
Eng.. 2012;9(4):045002.
[6] Bin G., Gao X., Wang Y., Hong B., Gao S. VEP-
based brain-computer interfaces: Time, frequency, and
code modulations [Research Frontier]. IEEE Computa-
tional Intelligence Magazine. 2009;4(4):22–26.
[7] Chen X., Wang Y., Nakanishi M., Gao X., Jung
T.-P., Gao S. High-speed spelling with a noninvasive
brain–computer interface. PNAS. 2015;112(44):E6058–
E6067.
[8] Guo F., Hong B., Gao X., Gao S. A brain–computer
interface using motion-onset visual evoked potential. J.
Neural Eng.. 2008;5(4):477–485.
[9] Thielen J., Broek P. van den, Farquhar J., De-
sain P. Broad-Band Visually Evoked Potentials:
Re(con)volution in Brain-Computer Interfacing. PLOS
ONE. 2015;10(7):e0133797.

[10] Kolkhorst H., Tangermann M., Burgard W. Guess
What I Attend: Interface-Free Object Selection Using
Brain Signals. In: 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). Oct.
2018, 7111–7116.
[11] Hübner D., Tangermann M. Challenging the as-
sumption that auditory event-related potentials are inde-
pendent and identically distributed. In: Proceedings of
the 7th Graz Brain-Computer Interface Conference 2017.
Verlag der Technischen Universität Graz, 2017, 192–197.
[12] Höhne J., Bartz D., Hebart M. N., Müller
K.-R., Blankertz B. Analyzing neuroimaging data
with subclasses: A shrinkage approach. NeuroImage.
2016;124:740–751.
[13] Barachant A., Bonnet S., Congedo M., Jutten C.
Multiclass Brain-Computer Interface Classification by
Riemannian Geometry. IEEE Transactions on Biomedi-
cal Engineering. 2012;59(4):920–928.
[14] Barachant A., Congedo M. A Plug&Play P300 BCI
Using Information Geometry. ArXiv:1409.0107 [cs, stat].
2014.
[15] Rivet B., Souloumiac A., Attina V., Gibert G.
xDAWN Algorithm to Enhance Evoked Potentials: Ap-
plication to Brain-Computer Interface. IEEE Trans-
actions on Biomedical Engineering. 2009;56(8):2035–
2043.

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-42




