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ABSTRACT: Brain-computer interface (BCI)
applications are characterized by real-time feature
extraction and classification. Thus, brain activity
reconstruction is not generally performed due to the long
computation times required to estimate brain activity.
Here, we present a method for applying brain mapping
solutions to BCI applications, based on a reduced
model of the brain covering the occipital region using
only four local electrodes (P3, P4, O1, and O2) for
the classification of red, green, and blue (RGB) visual
stimuli. We obtained a classification accuracy of 100%
within feasible estimation times for BCI applications
using an event-related potential (ERP) dataset. We first
validated the occipital-zone model with a test using
synthetic EEG data to evaluate its performance for local
brain mapping with a small number of electrodes. In
a second test, we used the validated partial model to
map the occipital and part of the parietal lobes for RGB
classification with outstanding results.

INTRODUCTION

Brain-computer interface systems (BCI) use brain
activity to control external devices, improving the
capacity of the interaction of people with disabilities
or allowing a user to generate a command to actuate a
device directly from the brain. BCI systems based on
electroencephalograms (EEGs), use the electrical signals
from electrodes in the scalp as a non-invasive technique
to obtain neural activity information corresponding to
human activity or external stimuli. Then, a feature
extraction process from the data allows the classification
of several human activities to generate a command that
can actuate devices. Thus, the time between data
acquisition and generation of the command is critical for
developing real-time applications. The brain-mapping
approach has not been considered for BCI applications
due to the computational time required to process large
head models and estimate a solution.

Brain mapping solutions provide an estimation of the
cortical activity from the information measured with
electrodes in the scalp. Such an estimation is known as
the inverse problem solution from EEG. It has, however,
the characteristics of being ill-posed and ill-conditioned,

due to the reduced number of electrodes (hundreds),
limited available information, and the high quantity of
points of activity or distributed sources (thousands) to
be estimated. Several methods have been presented in
the literature to overcome such conditions, but brain
mapping is a time-consuming technique and the quality
of the solutions is highly dependent on the number
of electrodes. Thus, BCI systems are rare and have
not been widely studied. However, in [1] the authors
present a simplified EEG inverse solution through the
use of a small quantity of dipoles in the Broadmann
areas, where the dimension of the inverse problem
is reduced, opening the possibility to use this type
of representation in BCI systems due to the reduced
computational time. In [2] the feasibility of combining
the source of information and electrode information was
studied using a right-hand imaginary task. This study
paved the way to the possibility of improving BCI
solutions with brain mapping. However, in both studies,
a full-brain model was considered and the solutions were
not focused on specific areas of the brain, as we are
proposing.

Here, we investigated a method for estimating brain
activity using a partial brain model, based on a specific
zone of the brain, the occipital zone and part of the
parietal region, and fewer electrodes around this zone.
Moreover, we present a BCI application for classifying
RGB colors, obtaining a remarkable improvement over
the classification results shown in [3], using the same
database for classifying the three colors in real-time.
This method paves the way for online BCI applications
involving brain mapping techniques.

MATERIALS AND METHODS

EEG Forward model:
The equation which relates the signals measured in the
scalp with the activity inside the brain is known as the
EEG forward equation, and can be represented as shown
below in 1

yk = Mxk + εk (1)

with yyyk ∈ Rd×N being the observed EEG measurements
and containing the signals of d electrodes and N the total
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number of samples, where the subscript k is the sample
associated with the time instant tk = kh which represents
the k−th sample of the EEG recording, where k = 1, ...,N
and h the sample time. The term xk ∈ Rn×N represents
the source activity inside the brain that produces the
measured electrical impulses. In a head model based on
distributed sources, n is the number of sources considered
in the brain. The matrix M ∈ Rd×n is the lead field
matrix or sensor matrix, which relates the measured EEG
yk to the neural activity xk; and represents the current
flow from each source to each electrode. In addition,
white noise is considered in the measurements and is
represented by εk with a mean of zero and Cε covariance.

EEG Inverse problem solutions:
The EEG inverse problem has several characteristics that
are difficult to manage -the neural activity reconstruction
is an ill-conditioned and ill-posed problem- where the
solution is highly noise dependent and an infinite
number of estimations of the activity x̂k can explain
the same measurement in the EEG yk. These issues
can be overcome by several potential solutions found
in the state-of-the-art, based on constrained minimum
norm regularization, such as minimum norm estimation
(MNE) [4], low-resolution tomography (LORETA) [5]
and and the iterative regularization algorithm based on
the L2 norm (IRA L2) [6],and probabilistic frameworks,
such as the dynamic multi-model source localization
method (DYNAMO) [7] and multiple sparse priors
(MSP) [8]. We selected two methods to estimate the
underlying neural activity, MSP and IRA L2, of which the
approaches are briefly presented below. The MSP method
assumes a priori that the activity xk follows a normal
distribution with zero mean and covariance Cx. Based
on this assumption, the expected operator is applied to
estimate the activity.

x̂k = E[p(xk|yk)] (2)

After applying the Bayes theorem and further
mathematical manipulations, the estimation is performed
by:

x̂k =CxMT (Cε +MCxMT )−1yk (3)

where the problem is centered on estimating the
covariance matrices Cε and Cx. On the other hand, the
IRA L2 method is based on a constrained minimum norm
solution adding spatial and temporal constraints, such as
the following cost function:

J = ||Mxk− yk||22 +ρ
2
k ||xk||22 +λ

2
k ||xk− xk−1||22 (4)

where the solution involves the temporal behavior of
the sources and their location, involving the terms
ρk and λk, which are the regularization parameters
related to the spatial distribution of the sources and the
temporal evolution of the activity. The estimation can be
performed using the equation below:

x̂k = (MT M+ρ
2
k I +λ

2
k I)−1(MT yk +λ

2
k xk−1) (5)

Zone-Based Partial Brain Model:
The lead field matrix M represents the current flow
from each of n sources to each of d electrodes. This
matrix usually involves the conductivity of the skull, skin
and grey matter as in [9], which is obtained to relate
the neural activity xk to the measurements in the scalp
yk as well as possible. The formation of the matrix
is developed by numerical methods, such as the finite
element method (FEM) and the head model considers
the position of the electrodes and establishes the position
of the distributed sources. For the proposed zone-based
partial brain model, the model for a specific zone is
created by applying a spatial filter for evaluating which
sources belong to the target zone. Then, the columns
corresponding to the sources in the target zone are
selected from the gain matrix M and appended in a new
temporal matrix Mrs ∈ Rd×rs, with rs being the number
of reduced sources. At this point of the reduction, we
work under the first assumption that all the measured
activity in the electrodes can be found in the target zone,
an assumption that is not true, because the activity can be
generated in another zone of the brain and projected in the
target zone. However, a second assumption is considered,
in which the activity registered in an electrode mostly
represents activity in the neighbor spaces around it.
Under this assumption, the rows corresponding to the
nearest electrodes in the zone can be selected from the
matrix Mrs, and appended to form a lead field matrix of
the target zone Mrz ∈Rrd×rs with rd being the number of
reduced electrodes. This assumption reduces the effects
of the first and allows us to create a hypothesis in which
the activity in a reduced zone, can be mapped with a
reduced number of electrodes around such a zone. Here,
the forward reduced problem can be represented by the
following equation:

yrzk = Mrzxrzk + εk (6)

where yrzk represents the measurements in the reduced
set of electrodes and xrzk the activity in the sources that
belong to the target zone.

EXPERIMENTAL SETUP

We performed two experiments to evaluate the presented
hypothesis and explore the use of the zone-based partial
model in a BCI application. We used a database presented
and used in [3] for RGB color classification, which
contains the information of the electrodes P3, P4, O1, and
O2. The tests are described below:

Test 1: Mapping the Occipital region:
We evaluate the hypothesis by simulating the activity
of one random source in the aforementioned region and
calculating the EEG with 60 electrodes (Fpz, AF7, AF3,
AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8,
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Figure 1: Simulated activity in the occipital region using the full
brain model.

FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7,
C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1,
CPz, CP2, CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, P4,
P6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz, O2, and Iz)
according to the standard 10-10 layout, using equation
1 involving the standard head model presented in [9], in
which a mean head model from a 152 participant MRI
study was computed using the FEM method, considering
the position of 231 electrodes. The zone model was
computed for the occipital and part of the parietal regions.
Fig.1 shows an example of simulated activity in the
target zone using the full brain forward equation. The
simulated activity corresponds to normal activity based
on a continuum brain model of the neuronal activity
presented in [10], which was used in [6] and [11]
performing a sampling using the model in Eq.7, in which
the activity is represented in discrete time.

1
γ2

d2xxx(t)
dt2 + 2

γ

dxxx(t)
dt = c1xxx(t)+ c2xxx(t− t0)+ c3xxx2(t)+ c4xxx3(t)+η

(7)
where the constants Ci with i = 1,2,3,4 represent
the instantaneous feedback due to nearby neurons and
delayed feedback via an extra-cortical loop, t0 is a time
delay, and γ is a characteristic decay rate of the field
activity xxx(t). η is random white noise and considered
to be an external stimulus that perturbs the brain states.
With the activity xk equation 1 was computed to obtain
an EEG. Then, noise was added in the electrodes using a
signal-noise-ratio (SNR) of 50db, after which, the brain
mapping was performed in two ways: the first, using
the full head model with 2000 distributed sources and 60
electrodes, and the second, using the set with the occipital
model with 622 distributed sources, and the P3, P4, O1,
and O2 electrodes as the EEG dataset in [3]. In both
cases, the MSP and IRA L2 methods were applied to
estimate neural activity. The overall process followed is
summarized in the Fig.2
Five thousand trials of random activity were generated.
The error measurements to evaluate the performance of
the algorithms with the zone-based partial brain model
and full brain model were: the localization error of
the estimated source and the relative error between the
simulated and estimated activity, using the following
expressions:

RelE =
||x̂k− xk||22
||xk||22

(8)

Figure 2: Test 1: Flowchart explaining the zone-based partial
brain model and its validation procedure.

LocE = ||P̂x−Px̂||2 (9)

where Px represents the 3D position in a coordinated
space of the simulated activity and Px̂ the position of the
maximum amplitude source in the estimated activity.

Test 2: RGB ERP classification using the occipital
region-based partial brain model:
A dataset of seven subjects exposed to red, green, and
blue visual stimuli was used in this experiment, as
presented in [3]. The event-related potentials (ERP) were
taken with a g.tec g.MOBIlab+ portable device sampled
at 256 Hz, for which each color was randomly presented
60 times, resulting in 60 trials of each color for each
subject. These data were used to perform brain mapping
using an occipital lobe and part of parietal lobe partial
brain model with 622 distributed sources, involving the
four aforementioned electrodes. The inverse solutions
were performed using the MSP and IRA L2 methods to
obtain the source space. The mapped source space was
divided into 64 and 81 sub-regions, using the mean of
the sources involved in each one of the sub-regions as
features for classification. The data were normalized and
then classified using the naive Bayes and decision tree
classifiers techniques with 10-fold cross-validation.
The procedure followed for the test, feature extraction
and classification of the activity are summarized in Fig. 3
and how the division was performed for the 81 features is
depicted in Fig. 4 depicts . As shown in the images, there
were no sources involved in the upper corners. Thus,
these features were removed and not considered for the
classification process.
An evaluation of computational time performing brain
mapping, feature extraction, and classification are part of
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Figure 3: Test 2: Flowchart explaining the RGB ERP
classification procedure.

Figure 4: Occipital Zone division for feature extraction.

the study. To measure the execution times and run the
algorithms, a computer with the following characteristics
was used: 16GB RAM, Core i7-4790 processor, OS
windows 10 64-bit, and Matlab® 2016b.

RESULTS AND DISCUSSION

Test 1 Results: The results from the first test are shown
in Figs. 5, 6 and 7, in which the Fig. 5 shows the mean
of the localization error and the relative error, measured
between the simulated and estimated sources with the two
applied methods for the reconstruction with 60 electrodes
using the full brain model and four electrodes using the
occipital model. As expected, the localization errors
were higher if the zone model was used. The the error
using the zone model was approximately 23mm, whereas
the mean separation between was approximately 13 mm.
This can be explained by the loss of information due to
the reduction in the number of electrodes.
The localization error can be reduced by increasing the
number of sources in the brain model. Nonetheless,
the activity was clearly identifiable in all the cases (6).

Figure 5: Mean localization error (Top) and mean relative rrror
(Bottom) across the 5000 trials with the proposed zone-based
partial brain model and MSP and IRA L2 methods.

MSP with the full brain model achieved the lowest
relative error, because MSP gives the best results in
experiments with one source estimation, as explained in
[12]. However, the partial model with MSP obtained
a lower error value than IRA L2 method with the full
brain model. In addition, the activity with the partial and
full brain models showed a highly similar pattern, with
similar amplitude, using MSP (Fig. 7). The activity with
IRA L2 showed a simmilar pattern but the amplitude was
attenuated, explainning why the relative error with IRA
L2 was higher in the two cases (Fig. 7).
A reconstruction between the simulated activity and the
solutions with the full brain and partial occipital brain
model for visual comparison, performed with the MSP
method, showed the simulated and reconstructed activity
to be highly similar with a only small error in source
localization (Fig. 6). The simulated activity and each
of the reconstructions results obtained using MSP and
IRA L2 are shown in Fig. 7. The MSP reconstruction
with the brain model overlapped the simulated activity.
The other reconstructions followed a pattern similar to
the original, with the MSP reconstruction using the zone
model showing a smaller difderence in amplitude than for
the other reconstructions.
The differences in amplitude between IRA L2
reconstruction and the simulated source can be explained
by the fact that the IRA L2 solutions are smooth, which
means that the source amplitude of the true source is
represented by a combination of amplitudes of several
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Figure 6: Simulated activity (A), estimated activity using the
full brain model with MSP (B) and estimated activity using the
zone model with MSP (C).

neighbors sources in the reconstruction and the source
with the maximum mean activity in time is used for
calculating the relative error.

Figure 7: Simulated activity (blue dots), MSP (orange) and
IRA L2 (purple) reconstructions using the full brain model and
MSP (yellow) and IRA L2 (green) reconstruction using the zone
model.

Test 2: RGB Classification Results: The classification
results of the second test are summarized in 1, in which
the naive Bayes classifier achieved and accuracy of
99.6% and 100% with 64 and 81 features, respectively.
The decision tree classifier achieved a 100% for both
number of features. These results shown that each of the
RGB colors can be uniquely represented as a combination
of activity in terms of localization and intensity as shown
in Fig. 8 in which the mean of the 64 features for the
seven subjects and 420 trials is presented for each color.

Table 1: Classification accuracy with the two classifiers, and
feature numbers for RGB visual stimuli.

Feature Numbers Naive Bayes Decision Tree
64 99,6% ± 0,3 100% ± 0
81 100% ± 0 100% ± 0

The computational time for brain mapping, feature

Figure 8: Mean of 64 features for the seven subjects for red (A),
green (B) and blue (C).

extraction, and classification using the two inverse
solutions for a three-second window of the trial is shown
in Table 2. In summary, a solution that includes the
aforementioned steps can be performed in approximately
150 ms for the longest combination, using MSP for
brain mapping and naive Bayes for classification, and
45 ms for the shortest combination, using IRA L2 and
the decision-tree for classification. These results show
that the methodology proposed here is feasible for BCI
implementation and general online applications.

Table 2: Computational times for brain mapping, feature
extraction, and classification steps in the RGB classification.

Time (ms)
Process /Methods MSP zone IRA L2 zone
Brain Mapping 101,8 ±5,2 27,3 ±3,2

Feature Extraction 12,1 ±0,2
Naive Bayes Classification 35,1 ±0,2
Decision Tree Classification 4,9 ±0,1

CONCLUSIONS AND FUTURE WORK

We performed experiments with the zone-based partial
brain model methodology using synthetic EEG and visual
ERP. We studied the behavior of the estimations using
a reduced number of local electrodes. Based on the
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accuracy of the results presented herein, activity can be
mapped using a zone-model and electrodes around this
area for the given stimuli.
Our classification results showed high accuracy in
relatively short computational times, suitable for BCI
applications. These encouraging results show promise
for the extension of the same methodology to other brain
zones, depending on the neuro-paradigm studied. Some
immediate applications could be the classification of
motor cortex activity in motor or imaginary motor tasks,
diverse visual and auditory stimuli, and emotions.
The signature of the RGB colors can be represented as
a combination of intensities of activities in the sources
located around the visual cortex in the occipital lobe.
This test can be extended for the evaluation of more
colors and their differentiation in the cortical space.
The next step in this research will be the experimental
demonstration of the uniqueness of the RGB signatures
in device actuation. An ON/OFF actuation command
will be sent to actuate a device using the signatures
obtained from RGB stimuli on-line with the proposed
method. The partial brain model approach will be
further evaluated for various neural activities to assess
the real-time capabilities of the method for a wider set
of human activities and external stimuli.
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