Ty,

- Design Patterns
448. 058 (VO)

https://creativecommons.org/licenses/by/4.0/

Michael Krisper

(Revision)

TU

Grazm

Revision from last time...

* OBSERVER
Subjects notify registered observers.

* FACTORY METHOD
Delegate the creation of objects.

e STRATEGY
Substitute a function/behaviour later.

« COMMAND
Encapsulate a request
In its executing context.

Subject

Observer

+ Attach(o: Observer)
+ Detach(o: Observer)

+ Notify()

_for o in observers:
o.Update()

% .

+ Update()

T

Concr
+ subjectState

+ GetState()

+ SetState()

---return subjectState

subject | ¢

+ observerState

+ Update()

b- . -observerstate =
subject.GetState()

Creator
+ FactoryMethod()
Product “es
+ Operation() D-----product = FactoryMethod()
ConcreteCreator
ConcreteProduct [«
+ FactoryMethod() @ ----<return new ConcreteProduct()
strategy
Context Strategy
+ Contextinterface() + Algorithminterface()
ConcreteStrategyA ConcreteStrategyB

+ Algorithminterface()

+ Algorithminterface()

+ Algorithminterface()

Client

Command

+ Execute()

i

ConcreteCommand

Receiver

A 4

+ Execute()

A 4

+ Action()

Learning Goals ﬂ-lG-laJl

Michael Krisper

Learning Goals for Today

Understanding and describing some wrapper design patterns:
e ADAPTER

« WRAPPER FACADE

e DECORATOR

e PROXY

Understanding and describing Architecture Patterns:
* LAYERS (RECAP)

e PIPES & FILTERS

* BROKER

e MASTER-SLAVE

e CLIENT-SERVER

e LEADER-FOLLOWER

e MODEL-VIEW-CONTROLLER

e MODEL-VIEW-PRESENTER

e MODEL-VIEW-VIEWMODEL

* PRESENTATION-ABSTRACTION-CONTROL

Goal: Adapter Pattern

Michael Krisper

TU

Grazm

Adapter

Wrap around a class to make it compatible to another

Interface.

Client

target

Target

~
4
1

target.Request()

+ Request()

JAN

adaptee

Adaptee

Adapter

+ Request())

>

+ SpecificRequest()

) ---- adaptee.SpecificRequest()

|9 I34| Michael Krisper

=2 Goal: Adapter Pattern

Mlchael Knsper

TU

Grazm

H Adapter

Context: Working with multiple
different frameworks or
libraries.

Problem: How to make
incompatible classes work
together?

Forces:

 Existing class interface does
not match the one you need.

* You want to reuse the
functionality (not just copy it).

» Source code of used class
may not be available (copying
or changing it is not possible)

» Class may be sealed
(inheritance is not possible)

Solution:

» Create an Adapter class which wraps around the Adaptee.
Variant: Class Adapter (inherits from Adaptee)
Variant: Object Adapter (contains Adaptee member)

* Implement the desired new interface using the methods of the
Adaptee as underlying basis.

Consequences: (Class Adapter)

+ Allows to use override mechanisms (e.g. protected methods, V-
table, access to protected members).

+ No additional indirection.

Inheritance approach (all methods of adaptee are inherited
automatically, only changes have to be implemented)

- Won't work when we want to adapt a class and all its subclasses
(liskov substitution!), because it is on a different branch of
subclasses.

Consequences: (Object Adapter)

+ Works with base Adaptees and all subclasses (allows liskov
substitution).

+ Adapter hides underlying type of Adaptee (breaks inheritance
hierarchy, composition over inheritance!).

Explicit implementation approach (no methods inherited
automatically, all needed methods have to be implemented
explicitly)

- Adds additional layer of indirection.

Goal: Wrapper Facade Pattern

Michael Krisper

TU

Grazm

H Wrapper Facade

Encapsulate functions and data in a combined interface.

Subsystem

Client

v

Facade

=

]

i

|<9OX| Michael Krisper

Goal: Wrapper Facade Pattern

Michael Krisper

TU

Grazm

Wrapper Facade

Context: Working with a complex structure having

many functions, maybe even with different
programming paradigms (e.g. object-oriented vs.
structured).

Problem:

How to make it easier to use a complex system of
functions, or to use functions of different
programming paradigms in a more intuitive way?

Forces:

Different programming paradigms have different
ways of decomposition, approaches, and calling
conventions.

Developers are used to their own environments
and conventions.

Developing heterogenous paradigms makes
programs more difficult to maintain.

Concise and coherent code is more robust, easier
to learn and maintain.

Changing dependent software is often not
possible (source code not available)

Platform specific details should be hidden away.

Solution:

» Hide the complexities (implementation
details) of the larger system and
provide a simpler interface to the
client.

* Encapsulate no-OO API data &
functions within concise, robust,
portable, maintainable, cohesive OO
class interface.

Consequences:

+ Provides concise, cohesive and
robust higher-level object-oriented
programming interfaces.

+ Easier usability and maintainability.

- May diminish functionality and lose
benefits of underlying paradigm

- Performance degradation by adding
an additional layer of abstraction

Goal: Describe Decorator Pattern

Michael Krisper

TU

Grazm

H Decorator

Extend the functionality of an object, while maintaining the

same Interface.

Component

+ Operation()

4& ZF component
ConcreteComponent Decorator
+ Operation() + Operation() ¢--------- component.Operation()

T

ConcreteDecorator1

T

+ addedState: *

ConcreteDecorator2

+ Operation()

+ Operation()

+ AddedBehaviour()

Decorator.Operation();
AddedBehaviour();

Michael Krisper

Goal: Describe Decorator Pattern

Michael Krisper

TU

Grazm

H Decorator

Context: Functional extension of objects.

Problem: No arrangement last for long,

we need to support adding or extending

of functionalities.
There is nothing so stable as change — Bob Dylan

Forces:

« We want to add responsibilities to
individual objects dynamically and
transparently, without affecting other
objects.

« We want to be able to withdraw
responsibilities.

« The extension by subclassing is
impractical:

large number of independent possible
extensions.

hidden class definition or otherwise
unavailable for subclassing

Solution:

» Define a Decorator which forwards
requests to its Component object.

» The decorator may optionally perform
additional operations before and after
forwarding the request.

Consequences:

+ More flexibility by adding responsibilities

+ Flexibility responsibilities can be added
and removed also at runtime

+ Decorators also make it easy to add a
property twice

+ Avoids feature-laden classes high up in
the hierarchy

+ Avoids the class explosion issue

- Decorator and its component are not
identically

- Can be hard to learn and debug(lots of
little objects only different in the way of
their interconnection)

Goal: Describe Proxy Pattern

Michael Krisper

TU

Grazm

Proxy

Forward requests to a concrete subject.

Client — >

Subject

+ Request()

L

ConcreteSubject

L

<'subject'

Proxy

+ Request()

+ Request() (

D---subject.Request()

Michael Krisper

Goal: Describe Proxy Pattern

Michael Krisper

TU

Grazm

Proxy

Context: Need for versatile references

to objects.

Problem: How to provide means for

access control for another object?

Forces:

An object is in a different address
space (remote proxy).

An expensive object needs to be
created on demand (virtual proxy).

The access to the original object
must be supervised (access rights!
— protection proxy).

A smart reference is needed as a
replacement for a bare pointer that

Solution:

« Maintain a reference that lets the proxy
access the real subject and provide
interface identical to Subject

» Control access to the real subject
(may also include creating and deleting)
and act like the real subject.

Consequences:

+ Introduces a level of indirection when
accessing an object (separation of
housekeeping and functionality)

+ Remote Proxy decouples client and
server

+ Virtual Proxy can perform hidden
optimizations

+ Caching Proxy could reuse subjects
+ Security Proxy can control access

performs additional actions when an - Overkill via sophisticated strategies

object is accessed.

- Less efficiency due to indirection

Learning Goals ﬂ-lG-laJl

Michael Krisper

Learning Goals for Today

Understanding and describing some wrapper design patterns:
e ADAPTER

« WRAPPER FACADE

e DECORATOR

e PROXY

Understanding and describing Architecture Patterns:
* LAYERS (RECAP)

e PIPES & FILTERS

* BROKER

e MASTER-SLAVE

e CLIENT-SERVER

e LEADER-FOLLOWER

e MODEL-VIEW-CONTROLLER

e MODEL-VIEW-PRESENTER

e MODEL-VIEW-VIEWMODEL

* PRESENTATION-ABSTRACTION-CONTROL

Learning Goals

Learning Goals for Today

« Understanding and describing Architecture Patterns:
* LAYERS (RECAP)
e PIPES & FILTERS
* BROKER
* MASTER-SLAVE
e CLIENT-SERVER
e LEADER-FOLLOWER
e MODEL-VIEW-CONTROLLER
e MODEL-VIEW-PRESENTER
e MODEL-VIEW-VIEWMODEL
e PRESENTATION-ABSTRACTION-CONTROL

e

Michael Krisper

Architectural Patterns

 How are responsibilities distributed in a system?
 Who communicates with whom?
« Relations & Dependencies between Objects

©d (Revision) Goal: Describe Layers Pattern ﬂ raze

H Layers

Split your system into layers based on abstraction levels

L Layer n
| A A A
9 ? ?
L Layer 2 -
| S P P
A
—1 Layer 1 =

(9| Michael Krisper

Goal: Describe Pipes & Filters Pattern 1Y,

Michael Krisper

Pipes & Filters

Form a sequence of processing steps using a common interface.

. m» Filter 1 4@—; Filter 2 J

buffer process buffer process
Client
Pi
t Filter n Jq—m J
n
process buffer

Michael Krisper

Goal: Describe Pipes & Filters Pattern

Michael Krisper

TU

Grazm

Pipes & Filters

Context: Processing of data streams.

Problem: How to can data streams be
decomposed into several processing
stages.

Forces:

 Exchanging or reordering of
processing steps shall be possible
(future system enhancements).

« Small processing steps are easier to
reuse than larger.

« Probably different sources of input
data exist (file, network, sensor,..)

* Results shall be storable in different
ways.

Solution:

» Divide System task into a sequence of
processing steps (dependent only on
output of predecessor and connected by the
dataflow)

Define a data format to be passed along
each pipe.

Implement each pipe connection either
push or pull

Filter design and implementation

Design Error handling (min. error
detection)

» Setup processing pipeline
Consequences:

+ Intermediate files possible

+ Flexible via filter exchange

+ Flexible via recombination

+ Efficient for parallel processing

« Explicit storage of interim steps shall - Sharing state infos is expensive

be possible.
« Multiprocessing shall be enabled.

- Data transformation overhead
- Error handling is crucial

Michael Krisper

18

Goal: Describe Broker Pattern

TU

Grazm

Broker

Manage dynamic communication between clients and
servers in distributed systems.

Client Proxy

)

Client

y

»| + SendRequest() % N

Broker

+ ForwardRequest()
+ ForwardResponse()

+ RegisterService()

E@ I

Server Proxy

- + CallService()
@ + SendResponse()

i “'Ei Server
L -
,..;‘;Jocess process, + RunService()
" boundary boundary"-.,__

BrokerA BrokerB
‘“ """ ». ForwardRequest() ~—»| + ForwardRequest() [ZI—@- --p
] @Df_ g
+ ForwardResponse() + ForwardResponse() :

i + Registerservice() + RegisterService()

BridgeA

BridgeB

!

+ ForwardMessage [~}

+ TransmitMessage

@

+ ForwardMessage

' + TransmitMessage
!

q process

boundary

®

Michael Krisper

MhIKp

Context: Distributed / heterogeneous

Problem: You want to build complex

Goal: Describe Broker Pattern

TU

Grazm

Broker

systems with independent
cooperating components.

SW systems as a set of decoupled
and interoperating components

Forces:

Remote method invocation shall
be supported

The architecture shall support
location transparency

The addition, exchange, or
removal of services shall be
supported dynamically

Solution:

« Define an object model, or use an existing
model (use e.g. CORBA, OLE/COM/.NET...)

» Decide upon component operability
« Specify broker API (client side and server side)
» Use proxy object to hide implementation details

» Design the broker component (protocol between
client & server-side proxies, between brokers,
consider failures in comp and communication)

Consequences:

+ Broker is responsible for locating a server
(location transparency)

+ Changeability & extensibility of components
(due proxies & bridges)

+ Broker hides OS& network details (portability)
+ Interoperability between different broker

+ Reusabilitiy of components

- Restricted efficiency (communication overhead)

- Lower fault tolerance (server/client may fail
independently)

SyStem deta”S Sha” be Om|tted fOI’ - Hard to test & debug (many Components

developer

involved)

Goal: Describe Client - Server Pattern ﬁ'!:y_

Michael Krisper

Client-Server

Clients send requests to central server which answers with
responses.

‘Response

Goal: Describe Client - Server Pattern TU

Michael Krisper Grazm

Client-Server solution

« Service-Interface: Define a protocol for serving a
request/response communication.

Context: Distributed application. , _ _
« Server-Side Implementation: Implement a Listener

which waits for requests from potentially multiple

Problem: You want to cooperate clients and individually answers with responses.
(share resources, content or service

function) with multiple distributed
clients.

+ Client-Side Implementation: Implement a Client
which sends requests and waits for responses.

Consequences:
Forces:
« Availability of services (resources,
functions,..) is limited, but required
by multiple requesters.

« Service might be provided by only
one dedicated provider
(centralized system).

« Simpler clients might be required

« Number of possible service-
requester might be unknown.

+ Encourages Service-Oriented Architectures

+ Centralization of specific services

+ Services get available for many clients

+ Doesn’t need to know exact number of clients

+ Workload gets moved to server. Clients are free to
do something else

+ Exchangeability and extensibility
- Server could get overloaded

- Single-Point-Of-Failure, Denial-Of-Service Attacks
are possible

- Communication overhead

Goal: Describe Master - Slave Pattern TU

Michael Krisper Grazm

Master-Slave

A master distributes work amongst some helpers.

...
8 .

Master Slave =
async call |- :
¢ +GetResult) || |

1) Map: Delegate to Slaves (async)

2) Reduce: Combine Resulis Multiple Instances of Slave

[<9Xx| Michael Krisper

Michael Krisper

Goal: Describe Master - Slave Pattern

TU

Grazm

Master - Slave

Context: Partitioning of work into

Problem: You want to solve instances of

semantically-identical sub-tasks.

the same problem, partition identical
work and separate concerns.

Forces:

Processing of sub-tasks should not
depend on algorithms for partitioning
work and assembling the result

Sub-tasks might need coordination

Many instances of the same
problem must be solved

Different algorithm implementation
may be required

Multi-threaded applications may be
wanted

Solution:

* |Introduce a coordination instance
between clients of the service and the
processing of individual sub-tasks

* The master component divides work into
equal sub-tasks, distributes these sub-tasks
to Slave components & combines results
(maintaining slaves)

* Provide all slaves with a common interface.
The clients will only communicate with the
Master

Consequences:
+ Exchangeability and extensibility
+ Separation of concerns

+ Fault tolerance — several replicated
implementations can detect and handle
failures

+ Efficiency (support of parallel computation)
- Not always feasible
- Partitioning & control can be tricky

Ty

Michael Krisper

Leader-Follower

Multiple executors take turns in processing tasks,
always switching the leader role.

Thread 1 ‘
Leader <~

-- - + WaitForEvent(): event @ ®l T@
@ swap
Thread 2

‘ roles
]

EventQueue

4
Follower <€~
Michael Krisper

Examples: ThreadPool, Background Workers

Model-View-Controller (MVC) /
Model-View-Presenter (MVP) /
Model-View-Viewmodel (MVVM)

Separate the responsibilities of visualizing, processing and data
— management for GUI applications.

Processing

Controller]

Visualization

|||||||||||||

H Summary of Today

Wrapper design patterns:
« ADAPTER

« WRAPPER FACADE

« DECORATOR

« PROXY

Architecture Patterns:
 LAYERS (RECAP)

e PIPES & FILTERS

e BROKER

e CLIENT-SERVER

e MASTER-SLAVE

* LEADER/FOLLOWER

« MVC/MVP/MVVM/PAC

