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Revision from last time…

• Organisation of the Courses: VO, UE
• VO: Exam on 29.01.2020

• UE: Projects + Presentations in groups á 2-3 students

• Learning Theory
• 20 Minutes Attention Span

• Repeat and Exercise for Long Term Memory

• Learning Goals: Imitate, Apply, Derive, Develop

• Design Patterns Theory
• What is a Design Pattern?

• Pattern Form: 
Name, Context, Problem, Forces, Solution, Consequences

• Pattern Languages

• Layers

(Revision)
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Design Patterns

“A proven solution template for a recurring problem.”

Purpose:

• Easier knowledge transfer

• Resuing existing ideas

• Better communication / Common vocabulary

• Generalizing the solution

Software Design Patterns:

• Architectural Patterns

• Design Patterns

• Idioms

(Revision)
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Pattern format

• Name: A catchy name for the pattern

• Context: The situation where the problem occurs

• Problem: General Problem Description

• Forces: Requirements and Constraints - Why does the problem 

hurt in this context? 

• Solution: Generic Description of a proven solution.

Static Structures, Dynamic Behaviour, Actionable Steps

• Consequences:
• What are the benefits and drawbacks? Pro and Contra?

• What are the liabilities, limitations and tradeoffs?

• How are the forces resolved?

• Known-Uses: Real Life Examples

(Revision)
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(Revision) Goal: How to Describe Design Patterns

55

Context

Problem

Solution

Forces

Consequences

Known Uses

Name

The Design Pattern House
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Layers
Split your system into layers based on abstraction levels

      

      

      

         

(Revision) Goal: Describe Layers Pattern
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Layers

Context: Large systems that require 

decomposition

Problem:

• Many functions and responsibilities

• Hard to understand structure, many 

dependencies

Forces:

• Changes should be limited to one 

component

• Clear boundaries of responsibility

• Interfaces should be stable

• Parts should be exchangeable

• Parts should be reusable

• Smaller groups for easier 

understandability, maintainability

Solution:

• Structure the function into appropriate 

number of layers, based on their 

abstraction levels

• Every layer uses defined services of 

sublayer

• Every layer provides defined services 

to upper layer

Consequences:

+ Dependencies/Changes are kept 

local

+ Defined Interfaces between Layers

+ Layers are exchangeable & reusable

- Lower efficiency

- No fine grained control of sublayers

- Changes cascade and are costly

- Right granularity is difficult to find

(Revision) Goal: Describe Layers Pattern
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Layers – Example & Live Demo

Goal: Describe Layers Pattern
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Message

MessageTCP TCP

IP

MAC MAC

Segment

Datagram

Application Layer

Transport Layer

Internet Layer

Link Layer

Physical LayerBits & Bytes
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Layers – Example & Live Demo

Goal: Describe Layers Pattern

9

interface ITransportLayer

{

void SendMessage(string message);

string ReceiveMessage();

void SetLowerLayer(IInternetLayer layer);

}

interface IInternetLayer

{

void SendSegment(string segment);

string ReceiveSegment();

void SetLowerLayer(ILinkLayer layer);

}

interface ILinkLayer

{

void SendDatagram(string datagram);

string ReceiveDatagram();

}

class TCP : ITransportLayer

{

public void SetLowerLayer(IInternetLayer sublayer)

=> _sublayer = sublayer;

private IInternetLayer _sublayer;

public void SendMessage(string message)

{

var segment = "TCPHeader|" + message + "|TCPFooter";

_sublayer.SendSegment(segment);

}

public string ReceiveMessage()

{

var segment = _sublayer.ReceiveSegment();

var message = segment.Substring(10, segment.Length - 20);

return message;

}

}

static void Main(string[] args)

{

ITransportLayer transport = new TCP();

IInternetLayer internet = new IP();

ILinkLayer link = new MAC();

internet.SetLowerLayer(link);

transport.SetLowerLayer(internet);

var message = "Hello Design Patterns!";

transport.SendMessage(message);

var received = transport.ReceiveMessage();

Console.WriteLine("Application received: " + {received});

}

Interfaces

Usage

Implementation

Message

MessageTCP TCP

IP

MAC MAC

Segment

Datagram
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• Who composes the layers at runtime?

• How are the interfaces defined?

• Layers are Black Boxes

• Workarounds / Skip layers?

• Stateless / Stateful Implementations?

• Caches

• Split up Calls vs. Combine calls (Optimization?)

• Exception-Handling throughout layers?

Layers – Implementation Issues

Goal: Describe Layers Pattern
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Learning Goals for Today

• Understand and describe SOLID Principles:
• Single Responsibility

• Open Closed Principle

• Liskov Substitution

• Interface Segregation

• Dependency Inversion

• Understand and describe Principles of Good Programming:
• Decomposition

• Abstraction

• Decoupling

• Usability & Simplicity

• Understand and describe some design patterns:
• Layers

• Iterator

• Observer

• Derive the Problem, Forces, Solution, and Consequences of these patterns

Learning Goals
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SOLID Principles (in OOP)

• Single Responsibility: A class should have one, and 

only one, reason to change.

• Open Closed: You should be able to extend a class’s 

behavior, without modifying it.

• Liskov Substitution: Derived classes must be 

substitutable for their base classes.

• Interface Segregation: Make fine grained 

interfaces that are client specific.

• Dependency Inversion: Depend on abstractions, 

not on concrete implementations.

Goal: Purpose and Principles of Patterns

12
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Principles of Good Programming

• Decomposition

make a problem manageable

decompose it into sub-problems

• Abstraction

wrap around a problem

abstract away the details

• Decoupling

reduce dependencies, late binding

shift binding time to “later”

• Usability & Simplicity

make things easy to use right, hard to use wrong

adhere to expectations, make usage intuitive

(Revision) Goal: Explain Principles of Good Programming
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Principles of Good Programming

• Decomposition (make a problem manageable):

• Layers, Pipes and Filters, Model-View-Controller

• Abstraction (wrap around):

• Adapter, Decorator, Façade, Proxy

• Decoupling (reduce dependencies, late binding):

• Observer, Mediator, Broker, Factory Method

• Usability & Simplicity (easy to use right, hard to 
use wrong):

• Monitor, Thread-Specific Storage, Counted Pointer

Goal: Describe Principles of Good Programming

14
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Decomposition

• Split up a problem until it gets manageable

• Divide and Conquer

• Separation of Concerns

• Orthogonality (Separation of Concepts)

• Single responsibility

• Curly’s Law (do just one thing and stick to that)

Goal: Describe Principles of Good Programming
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Abstraction

• Hide implementation details

• Wrap another layer around a 

problem.

• Liskov substitution
Substitute Parent-Classes by Sub-

Classes

• Fundamental theorem of 

software engineering:
"We can solve any problem by 

introducing an extra level of indirection.“

(David Wheeler)

Goal: Describe Principles of Good Programming

16



Michael Krisper

Decoupling

• Minimise coupling / Maximize cohesion

• Separation of Concerns

• Shift Binding time to “later”

• Composition over inheritance

• Inversion of control

• Hollywood principle: 
“Don’t call us, we call you!”

• Open close - encapsulate what changes

• Embrace change

• Law of Demeter: Only use “direct” dependencies

Goal: Describe Principles of Good Programming
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Usability & Simplicity

• YAGNI – You ain’t gonna need it!

• DRY – Don’t repeat yourself!

• Principle of least astonishment

• Don’t make me think

• Easy to use right, hard to use wrong

• Code for the Maintainer

• Command / Query Separation

• Interface segregation

• Ockham’s razor

• Do the simplest thing possible

• KISS – Keep it simple, stupid!

• Avoid premature optimization (Knuth, 1974)

Goal: Describe Principles of Good Programming
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Iterator
Retrieve items of a collection element by element.

      
           

        

       

              

                

                                 

                          

         

                          

                               

Goal: Describe Iterator Pattern
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Iterator

Context: Access elements of a 

collection

Problem:

• Different collections have different 

means of retrieving its elements.

Forces:

• Access the elements without 

exposing its internal representation

• Provide uniform interface for 

traversing different structures

• Support multiple traversals modes

• Sometimes we want to “hide” 

traversal from the client (foreach)

Solution:

• Define an interface for repeatedly 

accessing the “next” element of an 

aggregate

• Implement a concrete iterator for each 

needed type of aggregate

Consequences:

+ Every collection can be accessed in a 

uniform way.

+ Multiple iterations are possible at the 

same time.

+ Traversal algorithm can vary

- Lower efficiency

- Robustness is not guaranteed 

(insertions, deletions)

- “Hides” underlying data structure

Goal: Describe Iterator Pattern
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Iterator – Known Uses

Goal: Describe Iterator Pattern

21

• Many programming languages use iterators for 

looping over collections

(C++, C#, Java, Python, …)

• Foreach Loop also uses iterator

• Enumerables & Generators are also variants of 

iterators

vector<int> ar = { 1, 2, 3, 4, 5 }; 

vector<int>::iterator ptr; 

for (ptr = ar.begin(); ptr < ar.end(); ptr++) 

cout << *ptr << std::endl; 

int myint[] = {1, 2, 3, 4, 5};
for (int i : myint)
std::cout << i << std::endl;

C++ uses “end”-pointer 

to test the end of iteration

foreach uses 

implicit iteration
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Iterator – Known Uses

Goal: Describe Iterator Pattern

22

Python uses Exception instead of “IsDone()” or “End”:

class Counter:

def __init__(self, limit):

self.current = 0

self.limit = limit

def __iter__(self):

return self

def __next__(self):

if self.current > self.limit:

raise StopIteration

else:

self.current += 1

return self.current-1

for c in Counter(2):

print c

it = Counter(2)

print(next(it))

print(next(it))

print(next(it))

print(next(it))

Definition: Usage:

Python uses 

StopIteration-Exception 

to signify the end of 

iteration
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Observer
Inform registered observers about changes.

       

                   

                   

         

               

             

           

           

        

         

                

              

                           

                
          

              
                  

         

       

Goal: Describe Observer Pattern
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• Events and Signals in many programming languages and operating systems

e.g. Events like OnClick, OnEnter, OnKeyDown in C#, Java, JavaScript, …

• Message Queue Systems: MQTT, Apache Kafka, RabbitMQ

Michael Krisper
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Observer

Context: data is distributed over 

multiple related objects.

Problem: Maintain consistency 

between related objects.

Forces:

• When one object changes, others 

should be held consistent.

• Polling is very costly or not possible.

• The other objects are not known at 

compile-time and should not be 

tightly coupled.

• Reuse even in isolation should be 

possible.

Solution:

• Define means to manage observers for a 

subject (register, unregister).

• On changes: notify all observers that a 

change happened.

• Give the observers the possibility to 

access the changed data.

Consequences:

+ Decouple subjects and observers.

+ Reuse subjects and observers.

+ Polling is not needed anymore.

+ Support for m:n communication.

- Unexpected updates / Frequent updates / 

Cascading updates.

~ Synchronous vs. Asynchronous updates!

~ Who initiates the update?

Goal: Describe Observer Pattern
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Summary

SOLID

• Single Responsibility

• Open Closed Principle

• Liskov Substitution

• Interface Segregation

• Dependency Inversion

Principles of Good Programming:

• Decomposition

• Abstraction

• Decoupling

• Usability & Simplicity

Patterns:

• Layers

• Iterator

• Observer

Summary
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