Ty,

- Design Patterns
448. 058 (VO)

https://creativecommons.org/licenses/by/4.0/

|||||||||||||

H Revision from last time..

« Organisation of the Courses: VO, UE

 VO: Exam on 29.01.2020
« UE: Projects + Presentations in groups a 2-3 students

* Learning Theory
« 20 Minutes Attention Span
 Repeat and Exercise for Long Term Memory
* Learning Goals: Imitate, Apply, Derive, Develop

e Design Patterns Theory
 What is a Design Pattern?

« Pattern Form:
Name, Context, Problem, Forces, Solution, Consequences

« Pattern Languages

 Layers

|||||||||||||

H Design Patterns

“A proven solution template for a recurring problem.”

Purpose:

« Easier knowledge transfer

* Resuing existing ideas

« Better communication / Common vocabulary
« Generalizing the solution

Software Design Patterns:
* Architectural Patterns
« Design Patterns

* |ldioms

(Revision)

Michael Krisper

Pattern format

Name: A catchy name for the pattern
Context: The situation where the problem occurs
Problem: General Problem Description

. Requirements and Constraints - Why does the problem
hurt in this context?

Solution: Generic Description of a proven solution.
Static Structures, Dynamic Behaviour, Actionable Steps

Consequences:
* What are the benefits and drawbacks? Pro and Contra?
« What are the liabilities, limitations and tradeoffs?
 How are the forces resolved?

Known-Uses: Real Life Examples

The Design Pattern House
Name

P ey

Known uUses

Forces

Consequences

Michael Krisper

©d (Revision) Goal: Describe Layers Pattern ﬂ raze

H Layers

Split your system into layers based on abstraction levels

L Layer n
| A A A
9 ? ?
L Layer 2 -
| S P P
A
—1 Layer 1 =

Michael Krisper

(Revision) Goal: Describe Layers Pattern

Layers

Context: Large systems that require

decomposition

Problem:

« Many functions and responsibilities
» Hard to understand structure, many

dependencies

Forces:

Changes should be limited to one
component

Clear boundaries of responsibility
Interfaces should be stable

Parts should be exchangeable
Parts should be reusable

Smaller groups for easier
understandability, maintainability

Solution:

 Structure the function into appropriate
number of layers, based on their
abstraction levels

» Every layer uses defined services of
sublayer

» Every layer provides defined services
to upper layer

Consequences:

+ Dependencies/Changes are kept
local

+ Defined Interfaces between Layers
+ Layers are exchangeable & reusable
Lower efficiency

No fine grained control of sublayers
Changes cascade and are costly
Right granularity is difficult to find

Goal: Describe Layers Pattern ﬂTU

H Layers — Example & Live Demo

| - Application Layer
M Transport Layer
Bits & Bytes Physical Layer

Michael Krisper

Goal: Describe Layers Pattern

TU

Grazm

H Layers — Example & Live Demo

class TCP :

{

ITransportLayer |mp|ementati0n
public void SetLowerLayer(IInternetLayer sublayer)

=> _sublayer = sublayer;
private IInternetLayer _sublayer;

public void SendMessage(string message)

{
var segment = "TCPHeader|" + message + "|TCPFooter";
_sublayer.SendSegment (segment);

}

public string ReceiveMessage()

{
var segment = _sublayer.ReceiveSegment();
var message = segment.Substring(10@, segment.Length - 20);
return message;

}

static void Main(string[] args)

Usage

interface ITransportLayer |nterfaces
{
void SendMessage(string message);
string ReceiveMessage();
void SetlLowerlLayer(IInternetLayer layer);
}
interface IInternetlLayer
{
void SendSegment(string segment);
string ReceiveSegment();
void SetLowerLayer(ILinkLayer layer);
}
interface ILinkLayer
{
void SendDatagram(string datagram); }
string ReceiveDatagram();
}
VIF Jalalul o

{

ITransportLayer transport = new TCP();
IInternetLayer internet = new IP();
ILinkLayer link = new MAC();
internet.SetLowerLayer(link);
transport.SetLowerlLayer(internet);

var message = "Hello Design Patterns!";
transport.SendMessage(message);

var received = transport.ReceiveMessage();

Console.WritelLine("Application received: " + {received});

Layers — Implementation Issues

 Who composes the layers at runtime?

 How are the interfaces defined?

* Layers are Black Boxes

 Workarounds / Skip layers?

« Stateless / Stateful Implementations?
 Caches

« Split up Calls vs. Combine calls (Optimization?)
« EXxception-Handling throughout layers?

11

Learning Goals TU

=
(=}
=
Q
@
=
(=
w
©
5]
]

Learning Goals for Today

« Understand and describe SOLID Principles:
* Single Responsibility
« Open Closed Principle
. Liskov Substitution
. Interface Segregation
. Dependency Inversion

 Understand and describe Principles of Good Programming:
. Decomposition
« Abstraction
. Decoupling
« Usability & Simplicity

« Understand and describe some design patterns:
. Layers
. lterator
Observer

« Derive the Problem, Forces, Solution, and Consequences of these patterns

Goal: Purpose and Principles of Patterns ﬂ-lG-laJl

|||||||||||||

SOLID Principles (in OOP)

Single Responsibility: A class should have one, and
only one, reason to change.

Open Closed: You should be able to extend a class’s
behavior, without modifying it.

Liskov Substitution: Derived classes must be
substitutable for their base classes.

Interface Segregation: Make fine grained
Interfaces that are client specific.

Dependency Inversion: Depend on abstractions,
not on concrete implementations.

|||||||||||||

H Prmuples of Good Programming

« Decomposition
make a problem manageable
decompose it into sub-problems

« Abstraction
wrap around a problem
abstract away the details

 Decoupling
reduce dependencies, late binding
shift binding time to “later”

« Usability & Simplicity
make things easy to use right, hard to use wrong
adhere to expectations, make usage intuitive

Goal: Describe Principles of Good Programming ﬂ-lG-laJl

|||||||||||||

Principles of Good Programming

Decomposition (make a problem manageable):
« Layers, Pipes and Filters, Model-View-Controller

Abstraction (wrap around):
« Adapter, Decorator, Facade, Proxy

Decoupling (reduce dependencies, late binding):
* Observer, Mediator, Broker, Factory Method

Usability & Simplicity (easy to use right, hard to
use wrong):

« Monitor, Thread-Specific Storage, Counted Pointer

Goal: Describe Principles of Good Programming ﬁ-!:y.

Decomposition

« Split up a problem until it gets manageable

« Divide and Conquer

« Separation of Concerns

« Orthogonality (Separation of Concepts)

« Single responsibility

e Curly’s Law (do just one thing and stick to that)

Divide Divide
Subproblem Subproblem

Conquer Conquer

Solution to Solution to

subproblem Subproblem

Combine Combine

|||||||||||||

Abstraction

Hide implementation details

Wrap another layer around a
problem.

Liskov substitution

Substitute Parent-Classes by Sub-
Classes

Fundamental theorem of

software engineering:
"We can solve any problem by

iIntroducing an extra level of indirection.”
(David Wheeler)

« Minimise coupling / Maximize cohesion
e Separation of Concerns

« Shift Binding time to “later”

« Composition over inheritance

 |nversion of control

« Hollywood principle:
“Don’t call us, we call you!”

* Open close - encapsulate what changes
 Embrace change
« Law of Demeter: Only use “direct” dependencies

|||||||||||||

Usability & Simplicity

YAGNI — You ain’t gonna need it!
DRY — Don’t repeat yourself!

Principle of least astonishment
 Don’t make me think

« Easy to use right, hard to use wrong
« Code for the Maintainer

« Command / Query Separation

* Interface segregation

Ockham'’s razor

* Do the simplest thing possible

« KISS — Keep it simple, stupid!

Avoid premature optimization (Knuth, 1974)

Goal: Describe Iterator Pattern

Mlchael Krlsper

TU

Grazm

H lterator

Retrieve items of a collection element by element.

Client P

Iterator<T>

Aggregate

+ Createlterator(): Iterator

JAN

+ First()
+ Next()
+ IsDone(): bool

+ Currentltem(): T

ConcreteAggregate

P Concretelterator

T

+ Createlterator(): Iterator

(

return new Concretelterator(this)

Michael Krisper

Context: Access elements of a
collection

Problem:

 Different collections have different
means of retrieving its elements.

Forces:

» Access the elements without
exposing its internal representation

* Provide uniform interface for
traversing different structures

« Support multiple traversals modes

« Sometimes we want to “hide”
traversal from the client (foreach)

Solution:

» Define an interface for repeatedly
accessing the “next” element of an
aggregate

* Implement a concrete iterator for each
needed type of aggregate

Consequences:

+ Every collection can be accessed in a
uniform way.

+ Multiple iterations are possible at the
same time.

+ Traversal algorithm can vary
- Lower efficiency

- Robustness is not guaranteed
(insertions, deletions)

- “Hides” underlying data structure

Goal: Describe Iterator Pattern ﬁ'!:y_

Michael Krisper

lterator — Known Uses

« Many programming languages use iterators for
looping over collections
(C++, C#, Java, Python, ...)

* Foreach Loop also uses iterator

« Enumerables & Generators are also variants of
iterators

int myint[] = {1, 2, 3, 4, 5};
for (int 1 : myint)
std: :cout << 1 << std::endl;

C++ uses “end”-pointer

to test the end of iteration

vector<int> ar = { 1, 2, 3,
foreach uses vector<int>::iterator ptr;

Implicit iteration for (ptr = ar.begin(); ptr < ar.end(); ptr++)
cout << *ptr << std::endl;

By
Michael Krisper

Goal: Describe Iterator Pattern

Ty

lterator — Known Uses
Python uses Exception instead of “IsDone()” or "End":

Definition:

Usage:

class Counter:

def

def

def

__init (self,

self.current =
self.limit =

iter (self):

return self

__next (self):

if self.current > self.limit:
ralse Stoplteration

else:

self.current += 1
return self.current-1

limit) :
0

limit

for ¢ in Counter (2):

1t

print (
print (next
(
(

print c

Python uses

Stoplteration-Exception
to signify the end of

iteration

Goal: Describe Observer Pattern

Michael Krisper

TU

Grazm

Observer

Inform registered observers about changes.

Subject

observers

+ Attach(o: Observer)

+ Detach(o: Observer)
+ Notify()

for o in observers:

P--- o.Update()

i

ConcreteSubject

subject

> Observer

+ Update()

+ subjectState

+ GetState()
+ SetState()

®--+return subjectState

ConcreteObserver

+ observerState

+ Update()

0O--

_observerState =
subject.GetState()

Michael Krisper

« Events and Signals in many programming languages and operating systems
e.g. Events like OnClick, OnEnter, OnKeyDown in C#, Java, JavaScript, ...

« Message Queue Systems: MQTT, Apache Kafka, RabbitMQ

Goal: Describe Observer Pattern

Michael Krisper

TU

Grazm

Observer

Context: data is distributed over
multiple related objects.

Problem: Maintain consistency
between related objects.

Forces:

* When one object changes, others
should be held consistent.

» Polling is very costly or not possible.

« The other objects are not known at
compile-time and should not be
tightly coupled.

« Reuse even in isolation should be
possible.

Solution:

« Define means to manage observers for a
subject (register, unregister).

* On changes: notify all observers that a
change happened.

» Give the observers the possibility to
access the changed data.

Consequences:

+ Decouple subjects and observers.
+ Reuse subjects and observers.

+ Polling is not needed anymore.

+ Support for m:n communication.

- Unexpected updates / Frequent updates /
Cascading updates.

Synchronous vs. Asynchronous updates!
Who initiates the update?

Summary TU

Michael Krisper Grazm

Summary

SOLID

« Single Responsibility
Open Closed Principle
« Liskov Substitution

« Interface Segregation
Dependency Inversion

Principles of Good Programming:
« Decomposition

* Abstraction

Decoupling

« Usability & Simplicity

Patterns:
. Layers
. Iterator

. Observer

