
Michael Krisper

u www.iti.tugraz.at

09.10.2019

Michael Krisper

Georg Macher

Design Patterns

448.058 (VO)

1

This file is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

(CC BY 4.0) Michael Krisper

https://creativecommons.org/licenses/by/4.0/

Michael Krisper

Revision from last time…

• Organisation of the Courses: VO, UE
• VO: Exam on 29.01.2020

• UE: Projects + Presentations in groups á 2-3 students

• Learning Theory
• 20 Minutes Attention Span

• Repeat and Exercise for Long Term Memory

• Learning Goals: Imitate, Apply, Derive, Develop

• Design Patterns Theory
• What is a Design Pattern?

• Pattern Form:
Name, Context, Problem, Forces, Solution, Consequences

• Pattern Languages

• Layers

(Revision)

2

Michael Krisper

Design Patterns

“A proven solution template for a recurring problem.”

Purpose:

• Easier knowledge transfer

• Resuing existing ideas

• Better communication / Common vocabulary

• Generalizing the solution

Software Design Patterns:

• Architectural Patterns

• Design Patterns

• Idioms

(Revision)

3

Michael Krisper

Pattern format

• Name: A catchy name for the pattern

• Context: The situation where the problem occurs

• Problem: General Problem Description

• Forces: Requirements and Constraints - Why does the problem

hurt in this context?

• Solution: Generic Description of a proven solution.

Static Structures, Dynamic Behaviour, Actionable Steps

• Consequences:
• What are the benefits and drawbacks? Pro and Contra?

• What are the liabilities, limitations and tradeoffs?

• How are the forces resolved?

• Known-Uses: Real Life Examples

(Revision)

4

Michael Krisper
(Revision) Goal: How to Describe Design Patterns

55

Context

Problem

Solution

Forces

Consequences

Known Uses

Name

The Design Pattern House

Michael Krisper

Michael Krisper

Layers
Split your system into layers based on abstraction levels

(Revision) Goal: Describe Layers Pattern

6

Michael Krisper

Michael Krisper

Layers

Context: Large systems that require

decomposition

Problem:

• Many functions and responsibilities

• Hard to understand structure, many

dependencies

Forces:

• Changes should be limited to one

component

• Clear boundaries of responsibility

• Interfaces should be stable

• Parts should be exchangeable

• Parts should be reusable

• Smaller groups for easier

understandability, maintainability

Solution:

• Structure the function into appropriate

number of layers, based on their

abstraction levels

• Every layer uses defined services of

sublayer

• Every layer provides defined services

to upper layer

Consequences:

+ Dependencies/Changes are kept

local

+ Defined Interfaces between Layers

+ Layers are exchangeable & reusable

- Lower efficiency

- No fine grained control of sublayers

- Changes cascade and are costly

- Right granularity is difficult to find

(Revision) Goal: Describe Layers Pattern

7

Michael Krisper

Layers – Example & Live Demo

Goal: Describe Layers Pattern

8

Message

MessageTCP TCP

IP

MAC MAC

Segment

Datagram

Application Layer

Transport Layer

Internet Layer

Link Layer

Physical LayerBits & Bytes

Michael Krisper

Layers – Example & Live Demo

Goal: Describe Layers Pattern

9

interface ITransportLayer

{

void SendMessage(string message);

string ReceiveMessage();

void SetLowerLayer(IInternetLayer layer);

}

interface IInternetLayer

{

void SendSegment(string segment);

string ReceiveSegment();

void SetLowerLayer(ILinkLayer layer);

}

interface ILinkLayer

{

void SendDatagram(string datagram);

string ReceiveDatagram();

}

class TCP : ITransportLayer

{

public void SetLowerLayer(IInternetLayer sublayer)

=> _sublayer = sublayer;

private IInternetLayer _sublayer;

public void SendMessage(string message)

{

var segment = "TCPHeader|" + message + "|TCPFooter";

_sublayer.SendSegment(segment);

}

public string ReceiveMessage()

{

var segment = _sublayer.ReceiveSegment();

var message = segment.Substring(10, segment.Length - 20);

return message;

}

}

static void Main(string[] args)

{

ITransportLayer transport = new TCP();

IInternetLayer internet = new IP();

ILinkLayer link = new MAC();

internet.SetLowerLayer(link);

transport.SetLowerLayer(internet);

var message = "Hello Design Patterns!";

transport.SendMessage(message);

var received = transport.ReceiveMessage();

Console.WriteLine("Application received: " + {received});

}

Interfaces

Usage

Implementation

Message

MessageTCP TCP

IP

MAC MAC

Segment

Datagram

Michael Krisper

• Who composes the layers at runtime?

• How are the interfaces defined?

• Layers are Black Boxes

• Workarounds / Skip layers?

• Stateless / Stateful Implementations?

• Caches

• Split up Calls vs. Combine calls (Optimization?)

• Exception-Handling throughout layers?

Layers – Implementation Issues

Goal: Describe Layers Pattern

10

Michael Krisper

Learning Goals for Today

• Understand and describe SOLID Principles:
• Single Responsibility

• Open Closed Principle

• Liskov Substitution

• Interface Segregation

• Dependency Inversion

• Understand and describe Principles of Good Programming:
• Decomposition

• Abstraction

• Decoupling

• Usability & Simplicity

• Understand and describe some design patterns:
• Layers

• Iterator

• Observer

• Derive the Problem, Forces, Solution, and Consequences of these patterns

Learning Goals

11

Michael Krisper

SOLID Principles (in OOP)

• Single Responsibility: A class should have one, and

only one, reason to change.

• Open Closed: You should be able to extend a class’s

behavior, without modifying it.

• Liskov Substitution: Derived classes must be

substitutable for their base classes.

• Interface Segregation: Make fine grained

interfaces that are client specific.

• Dependency Inversion: Depend on abstractions,

not on concrete implementations.

Goal: Purpose and Principles of Patterns

12

Michael Krisper

Principles of Good Programming

• Decomposition

make a problem manageable

decompose it into sub-problems

• Abstraction

wrap around a problem

abstract away the details

• Decoupling

reduce dependencies, late binding

shift binding time to “later”

• Usability & Simplicity

make things easy to use right, hard to use wrong

adhere to expectations, make usage intuitive

(Revision) Goal: Explain Principles of Good Programming

13

Michael Krisper

Principles of Good Programming

• Decomposition (make a problem manageable):

• Layers, Pipes and Filters, Model-View-Controller

• Abstraction (wrap around):

• Adapter, Decorator, Façade, Proxy

• Decoupling (reduce dependencies, late binding):

• Observer, Mediator, Broker, Factory Method

• Usability & Simplicity (easy to use right, hard to
use wrong):

• Monitor, Thread-Specific Storage, Counted Pointer

Goal: Describe Principles of Good Programming

14

Michael Krisper

Decomposition

• Split up a problem until it gets manageable

• Divide and Conquer

• Separation of Concerns

• Orthogonality (Separation of Concepts)

• Single responsibility

• Curly’s Law (do just one thing and stick to that)

Goal: Describe Principles of Good Programming

15

Problem

Subproblem

Solution to
Subproblem

Solution

Solution to
subproblem

Subproblem

Divide Divide

ConquerConquer

CombineCombine

Michael Krisper

Abstraction

• Hide implementation details

• Wrap another layer around a

problem.

• Liskov substitution
Substitute Parent-Classes by Sub-

Classes

• Fundamental theorem of

software engineering:
"We can solve any problem by

introducing an extra level of indirection.“

(David Wheeler)

Goal: Describe Principles of Good Programming

16

Michael Krisper

Decoupling

• Minimise coupling / Maximize cohesion

• Separation of Concerns

• Shift Binding time to “later”

• Composition over inheritance

• Inversion of control

• Hollywood principle:
“Don’t call us, we call you!”

• Open close - encapsulate what changes

• Embrace change

• Law of Demeter: Only use “direct” dependencies

Goal: Describe Principles of Good Programming

17

Michael Krisper

Usability & Simplicity

• YAGNI – You ain’t gonna need it!

• DRY – Don’t repeat yourself!

• Principle of least astonishment

• Don’t make me think

• Easy to use right, hard to use wrong

• Code for the Maintainer

• Command / Query Separation

• Interface segregation

• Ockham’s razor

• Do the simplest thing possible

• KISS – Keep it simple, stupid!

• Avoid premature optimization (Knuth, 1974)

Goal: Describe Principles of Good Programming

18

Michael Krisper

Iterator
Retrieve items of a collection element by element.

Goal: Describe Iterator Pattern

19

Michael Krisper

Michael Krisper

Iterator

Context: Access elements of a

collection

Problem:

• Different collections have different

means of retrieving its elements.

Forces:

• Access the elements without

exposing its internal representation

• Provide uniform interface for

traversing different structures

• Support multiple traversals modes

• Sometimes we want to “hide”

traversal from the client (foreach)

Solution:

• Define an interface for repeatedly

accessing the “next” element of an

aggregate

• Implement a concrete iterator for each

needed type of aggregate

Consequences:

+ Every collection can be accessed in a

uniform way.

+ Multiple iterations are possible at the

same time.

+ Traversal algorithm can vary

- Lower efficiency

- Robustness is not guaranteed

(insertions, deletions)

- “Hides” underlying data structure

Goal: Describe Iterator Pattern

20

Michael Krisper

Iterator – Known Uses

Goal: Describe Iterator Pattern

21

• Many programming languages use iterators for

looping over collections

(C++, C#, Java, Python, …)

• Foreach Loop also uses iterator

• Enumerables & Generators are also variants of

iterators

vector<int> ar = { 1, 2, 3, 4, 5 };

vector<int>::iterator ptr;

for (ptr = ar.begin(); ptr < ar.end(); ptr++)

cout << *ptr << std::endl;

int myint[] = {1, 2, 3, 4, 5};
for (int i : myint)
std::cout << i << std::endl;

C++ uses “end”-pointer

to test the end of iteration

foreach uses

implicit iteration

Michael Krisper

Iterator – Known Uses

Goal: Describe Iterator Pattern

22

Python uses Exception instead of “IsDone()” or “End”:

class Counter:

def __init__(self, limit):

self.current = 0

self.limit = limit

def __iter__(self):

return self

def __next__(self):

if self.current > self.limit:

raise StopIteration

else:

self.current += 1

return self.current-1

for c in Counter(2):

print c

it = Counter(2)

print(next(it))

print(next(it))

print(next(it))

print(next(it))

Definition: Usage:

Python uses

StopIteration-Exception

to signify the end of

iteration

Michael Krisper

Observer
Inform registered observers about changes.

Goal: Describe Observer Pattern

23

• Events and Signals in many programming languages and operating systems

e.g. Events like OnClick, OnEnter, OnKeyDown in C#, Java, JavaScript, …

• Message Queue Systems: MQTT, Apache Kafka, RabbitMQ

Michael Krisper

Michael Krisper

Observer

Context: data is distributed over

multiple related objects.

Problem: Maintain consistency

between related objects.

Forces:

• When one object changes, others

should be held consistent.

• Polling is very costly or not possible.

• The other objects are not known at

compile-time and should not be

tightly coupled.

• Reuse even in isolation should be

possible.

Solution:

• Define means to manage observers for a

subject (register, unregister).

• On changes: notify all observers that a

change happened.

• Give the observers the possibility to

access the changed data.

Consequences:

+ Decouple subjects and observers.

+ Reuse subjects and observers.

+ Polling is not needed anymore.

+ Support for m:n communication.

- Unexpected updates / Frequent updates /

Cascading updates.

~ Synchronous vs. Asynchronous updates!

~ Who initiates the update?

Goal: Describe Observer Pattern

24

Michael Krisper

Summary

SOLID

• Single Responsibility

• Open Closed Principle

• Liskov Substitution

• Interface Segregation

• Dependency Inversion

Principles of Good Programming:

• Decomposition

• Abstraction

• Decoupling

• Usability & Simplicity

Patterns:

• Layers

• Iterator

• Observer

Summary

25

