
Michael Krisper

u www.iti.tugraz.at

16.10.2019

Michael Krisper

Georg Macher

Design Patterns

448.058 (VO)

1

This file is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

(CC BY 4.0) Michael Krisper

https://creativecommons.org/licenses/by/4.0/

Michael Krisper

Revision from last time…
• SOLID Principles

• Single Responsibility

• Open Closed

• Liskov Substitution

• Interface Segregation

• Dependency Inversion

• Principles of Good Programming:
• Decomposition

• Abstraction

• Decoupling

• Usability & Simplicity

• Design Pattern
• Layers

• Iterator

• Observer

(Revision)

2

Michael Krisper

Iterator
Retrieve items of a collection element by element.

Goal: Describe Iterator Pattern

3

Michael Krisper

Michael Krisper

Learning Goals for Today

• Understand and describe some design patterns:

• OBSERVER

• FACTORY METHOD

• STRATEGY

• COMMAND

• Explain the core ideas of these patterns in own

words

• Derive the Problem, Forces, Solution, and

Consequences of these patterns

Learning Goals

4

Michael Krisper

Observer
Inform registered observers about changes.

Goal: Describe Observer Pattern

5

Michael Krisper

Michael Krisper

Observer

Context: data is distributed over

multiple related objects.

Problem: Maintain consistency

between related objects.

Forces:

• When one object changes, others

should be held consistent.

• Polling is very costly or not possible.

• The other objects are not known at

compile-time and should not be

tightly coupled.

• Reuse even in isolation should be

possible.

Solution:

• Define means to manage observers for
a subject (register, unregister).

• On changes: notify all observers that a
change happened.

• Give the observers the possibility to
access the changed data.

Consequences:

+ Decouple subjects and observers.

+ Reuse subjects and observers.

+ Polling is not needed anymore.

+ Support for m:n communication.

- Unexpected updates / Frequent
updates / Cascading updates.

~ Synchronous vs. Asynchronous
updates!

~ Who initiates the update?

Goal: Describe Observer Pattern

6

Michael Krisper

Observer - Example

Goal: Describe Observer Pattern

7

abstract class Subject {

private readonly List<Observer> _observers = new List<Observer>();

public void Attach(Observer observer) => _observers.Add(observer);

public void Detach(Observer observer) => _observers.Remove(observer);

public void Notify() => _observers.ForEach(o => o.Update());

}

class ConcreteSubject : Subject {

private string _state;

public string State {

get { _state; }

set {

_state = value;

Notify();

}

}

}

abstract class Observer {

public abstract void Update();

}

class ConcreteObserver : Observer {

public ConcreteSubject Subject;

private readonly string _name;

public ConcreteObserver(ConcreteSubject subject, string name) {

Subject = subject;

subject.Attach(this);

_name = name;

}

public override void Update() {

Console.WriteLine($"Observer {_name} was informed

that subject changed: {Subject.State}");

}

}

void Main() {

var s = new ConcreteSubject();

var o1 = new ConcreteObserver(s, "O1");

s.State = "Change 1";

}

Michael Krisper

Factory Method
Delegate the creation of objects to someone else.

Goal: Describe Factory Method Pattern

8

Michael Krisper

Michael Krisper

Factory Method

Context: Creation of an object, whose

class is not known until runtime.

Problem: How to create an object for

which the concrete class is not

known.

Forces:

• We don’t care which object is

created, as long as it provides the

same functionality.

• We can’t anticipate the class we

want to create at coding time.

• We want to shift the decision to

someone else.

Solution:

• Define an interface of capabilities your

objects must implement.

• Define some means (method or own

class) to create the actual object

somewhere else.

• Let the actual object implement the

needed interface.

Consequences:

+ Isolates Framework and Application code

+ Flexibility (Compiletime/Runtime)

+ Lesser Dependencies

+ Connects parallel class hierarchies

+ Decoupling of Implementation and Usage

+ Abstraction of actual instances

~ Hides constructors

- Needs an interface/abstraction layer!

Goal: Describe Factory Method Pattern

9

Michael Krisper

Factory Method – Implementation Issues

• Naming Convention (e.g. XyzFactory)

• Constructor Parameters?

• Universal-God-Interface vs. Duck Typing

• How to avoid direct constructions?

(Private Constructor?)

• Abstract Creator (subclasses must implement)

vs.

Concrete Creator (default implementation, but

subclasses can override)

Goal: Describe Factory Method Pattern

10

Michael Krisper

Strategy
Substitute behaviour later.

Goal: Describe Strategy Pattern

11

Michael Krisper

Michael Krisper

Strategy

Context:

• Many related classes which differ

only in their behaviour.

• Methods with complex behaviour

based on many conditionals.

Problem:

How to manage the different behaviours

and simplify the architecture?

Forces:

• You need different variants for an

algorithm.

• The behaviour should be

exchangeable at runtime.

• You want to split up behaviour of

classes to simplify it.

Solution:

• Define interfaces for algorithms

• Encapsulate the algorithms to make
them interchangeable.

• Let the algorithm vary independently
from the clients.

Consequences:

+ Split up behaviour and decision logic.

+ Elimination of Subclasses just for
different behaviour (composition over
inheritance!)

+ Reuse: Behaviour of one class can be
reused for others.

- Communication overhead

- Access to private fields?

- Increased number of objects (every
behaviour is an own object)

~ Who assembles the concrete strategies
at runtime?

Goal: Describe Strategy Pattern

12

Michael Krisper

Command
Encapsulate a request. Decouple invocation from execution.

Goal: Describe Command Pattern

13

Michael Krisper

Michael Krisper

Command

Context:

Invoking some behaviour of an object

Problem:

We just want to invoke an operation,

regardless of its concrete implementation

and executing context.

Forces:

• Avoid coupling of the invoker and the

context of the request.

• We do not know the exact implementation

of a request

• A request should be undoable

Solution:

• Define an interface for commands with a

very simple interface (just Execute()).

• Encapsulate the behaviour in concrete

commands implementing this interface

and containing all needed parameters as

members.

• Implement means to let the client initialise

the parameters.

Consequences:

+ A request does not depend upon the

creating class anymore.

+ A request can be executed in isolation.

+ Undo/Redo-Operations become possible

+ Switching the receiver at runtime becomes

possible

+ Behaviour can be reused for multiple

receivers.

- Increased number of objects

- References to all needed parameters must

be stored

Goal: Describe Command Pattern

14

Michael Krisper

Summary

Patterns:

• OBSERVER

• FACTORY METHOD

• STRATEGY

• COMMAND

Summary

15

