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Abstract

Signals measured during brain-computer interface (BCI) tasks are nonstationary, which
can lead to classification errors. The error-related potential (ErrP) has been proposed for
BCI error detection as well as partially-supervised classifier adaptation. We discuss how
the ErrP can be incorporated into several adaptive classification methods, and the unique
sensitivity that these methods have to misidentification of the ErrP. We find that the risk
associated with these methods varies as a function of false positive rate for a realistic ErrP
detector receiver operating characteristic and we recommend individualized biasing of the
ErrP detector to account for these effects.

1 Introduction

Adaptive classification of brain-computer interfaces (BCIs) can be used to address the inherent
non-stationarity of EEG data during mental tasks such as motor imagery. Class labels typically
used for classifier adaptation are not available in a true BCI session, thus unsupervised adapta-
tion has been employed as an alternative to supervised adaptation [9]. However, unsupervised
methods may not be suitable when the nonstationarity affects relative class positions.

A potential compromise is to use error-related potentials (ErrPs) to generate labels for
partially-supervised adaptation. Adaptation using such uncertain labels has been proposed by
[5, 10], and [7] adapted an SVM classifier in the context of a code-modulated visual evoked
potential speller, with benefits for participants. However, the validity of the labels depend
on the accuracy of the ErrP detector, with some correct trials inevitably being interpreted as
incorrect, and some incorrect trials being interpreted as correct. There is limited discussion on
the risk associated with adaptation using incorrect labels and what methods are most suitable
in this situation. To this end, we evaluate two adaptation methods across several ErrP detection
accuracies. We assume stationary performance of the ErrP detector after the results of [2], but
note that risks would increase with a nonstationary assumption.

The performance of motor imagery classifiers is dependent on choice of frequency band,
and the authors of [8] showed that the most discriminative frequency changes from session
to session. Therefore we build a classifier based on the filter bank common spatial pattern
(FBCSP) [1] framework that uses a majority weighted vote from linear discriminant analysis
(LDA)-based classifiers in each FBCSP band. This framework allows us to adapt both the
ensemble weights and the base LDA classifiers separately or concurrently to either re-weight
individual frequency components or change the decision boundaries in each band. In this study
we evaluate the consequences of incrementally adapting these two components of the classifier
at several accuracies of the ErrP detector.
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2 Methods

Data are taken from dataset IIb of the IVth BCI competition [4], which is comprised of 9
participants performing 5 sessions of left and right hand motor imagery, with 120-160 trials in
each session. EEG is recorded with three bipolar electrodes above C3, Cz, C4 at 250 Hz with
a 50 Hz notch filter. We epoch the data and apply a zero-phase filter bank of 4 Hz pass-band
non-overlapping filters from 4− 40 Hz. In each band we extract CSP features from a 2 s window
starting 1.5 s post cue. The first and last CSP features are used, which results in two features
from each filter band.

We train LDA classifiers on the features from each band and combine their decisions using
a weighted majority vote. Data from session 1 are used for training and the remaining sessions
are used for testing. Initial weights are determined using a 10-fold cross-validation evaluating
Cohen’s kappa from each base classifier and normalizing the results. Then, the base LDA
classifiers are retrained using all the data from session 1.

To simulate ErrPs with realistic detection accuracies, we estimated the values of the receiver
operating characteristic (ROC) curves from the online ErrP detectors found in [6] and evaluated
several points along the median curve, which appear in Table 1. Using these false positive rates
(α) and true positive rates, we simulated ErrPs for each trial in sessions 2-4 as in [10].

We adapt both the base LDA classifiers (denoted ‘BaseAdapt’) and the weights of the
ensemble (denoted ‘Reweight’) incrementally after every trial. Our estimate of the true class,
ŷ ∈ {0, 1}, is derived from the classifier’s output on the current trial, ỹ ∈ {0, 1}, and our belief
that an error occurred, Ẽ ∈ {0, 1} (i.e. we detect an ErrP). Thus, ŷ is incorrect whenever
Ẽ is incorrect. BaseAdapt updates the class means and global covariance according to the
supervised LDA classifier in [9]; the ‘Pmean-Gcov’ unsupervised adaptive classifier from this
group is included for comparison. The learning parameter, η, is set to 0.05. The Reweight
strategy uses Ẽ to implement a variant of the dynamic weighted majority of [3] that decrements
the weight of incorrect experts by a factor of 0.9 and increments correct experts by a factor of
1.1. No experts are removed or created. We simulate the performance of these two adaptation
strategies, as well as their combination (denoted ‘Hybrid’), 50 times with independent randomly
generated Ẽ on each repetition.

False Positive Rate (α) 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Positive Rate 0.70 0.79 0.87 0.93 0.93 0.95 0.95 0.98

Table 1: False positive and corresponding true positive rates of the ErrP detector.

3 Results

The average classification accuracies across all 4 evaluation sessions and all participants are
shown in Fig. 1a for each adaptation strategy. We see that across most values of α, on av-
erage the semi-supervised adaptation improved the accuracies over the case of no adaptation
(horizontal line). Errorbar length indicates 2 standard deviations (2σ) of all 50 simulation
repetitions averaged across participant and session. σ, shown as a function of α in Fig. 1b,
gives a quantitative measure of the risk associated with each adaptive method. With increasing
σ, there is increasing risk that the adaptation could be detrimental instead of beneficial. In
general, Fig. 1 indicates that the accuracy of the BaseAdapt method decreases with increasing
α, while σ increases. Even at low α, it performs no better than its unsupervised counterpart.
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The Reweight method has optimal accuracy and minimal σ at α ≈ 0.2. The Hybrid method
obtains the best optimal average classification accuracies, but it also has the highest σ across
most values of α; this is likely because it combines variability from both methods.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
55

60

65

70

75

False positive rate (α)

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (

%
)

 

 

A

Static
Pmean−Gcov
BaseAdapt
Reweight
Hybrid

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
1.5

2

2.5

3

3.5

False positive rate (α)
A

ve
ra

ge
 s

ta
nd

ar
d 

de
vi

at
io

n,
  σ

 (
%

)

 

 
BBaseAdapt

Reweight
Hybrid

Figure 1: a. Average classification accuracies (across session and participants) as a function
of false positive rate (jittered from true value for visibility). b. Standard deviation of 50
simulations as a function of false positive rate, averaged across sessions and participants.

Choosing an appropriate α for the ErrP detector involves maximizing average performance
while minimizing risk, or σ equivalently. The lower quartile of the 50 simulation repetitions
is a convenient measure for quantifying these two goals. The best α for each participant and
each adaptation type was chosen as the one that gave the optimum lower quartile of simulation
repetitions averaged across sessions. Fig. 2a compares the average classification accuracy and
σ at the best α for each adaptation type and for each participant. This figure indicates highly
variable performance of the adaptation strategies across participants. For some participants
adaptation is not beneficial, while for others one adaptation type clearly outperforms the other.
This participant dependency is also seen in the best α for each method (shown in Fig. 2b).
The BaseAdapt method tends to prescribe lower α than do the Reweight and Hybrid methods
where best α varies more with participant.
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Figure 2: a. Barplot of average classification accuracies (across session) at the best false positive
rate for each participant. Error bars indicate σ of 50 simulations averaged across session. b.
Best false positive rate chosen for each participant (refer to legend) for each adaptation method.
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4 Discussion

We find that the variance, and thus the risk associated with employing these adaptation methods
changes across α in a manner unique to each method. The adaptation of the LDA base classifiers
has lower risk at low α, while the re-weighting method has lower risk when α and true positive
rate are balanced. The hybrid method combines the risk from both methods such that, although
the average performance is the highest, it also has a high variance for most α.

LDA may be more sensitive to high α because when a false positive occurs, the error is due
to a sample more likely to be further from the adapted class mean than in the case of a false
negative. This drives classes closer together, which can lead to erratic movement of the class
boundary as discussed in [10]. The Reweight method may not favor a single error type as such.

We found that, averaged across all participants, re-weighting the ensemble had the lowest
risk. However, we find that the adaptation method with the best performance is unique to
individuals, so that participant specific adaptation methods may be required. A few partic-
ipants appear to benefit much more from the Reweight method compared to the BaseAdapt
method. This may be due to particularly strong shifts in the most discriminative frequency for
these participants. However, re-weighting may not be helpful for individuals with stationary
discriminative frequency. These findings also suggest that ErrP detectors should be biased to
particular α depending on the adaptation method chosen and the individual.

Future work should attempt to reduce the risk associated with adaptation using potentially
uncertain labels. This may be achieved by combining the detection of an ErrP with the con-
fidence of the BCI task classifier, or using a fuzzy classifier where weights of training samples
are determined by the ErrP strength on individual trials.
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