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Abstract

Echo state networks are good candidates for use as classifiers in brain computer inter-
faces. They can also be used to explore the data to some extent by manipulating their
training. In this paper similar results were achieved to those in the Brain Computer Inter-
face Competition IV in classifying four-class movements from magnetoencephalography.

1 Introduction

Artificial neural networks consist of a series of many neurons which are connected to each other
in a network. Data is fed into the network and propagates from neuron to neuron. Each neuron
generates an output from all the combined inputs according to an activation function built into
it. How much influence each input to the neuron has is determined by a weight placed on each
connection. The internal values of a number of special output neurons are the final result of the
network. Most neural networks are feed-forward, meaning the propagation is in one direction
(no feedback). A recurrent neural network (RNN) has a memory because the inputs propagate
in all directions, blending with earlier inputs and being slowly drowned out by new inputs.

In a RNN the weights of all the connections between the neurons are modified. This creates
a very complex non-linear optimization problem which can be very difficult to solve. RNNs
and echo state networks (ESNs) are very similar architecturally, but differ in training. In an
ESN the weights of all the connections between the neurons are randomly generated at the
start of training and set permanently. This creates a large reservoir (i.e. reservoir computing)
of randomly connected neurons with random weights. Only the weights leading to the output
neurons are modified in training, turning a complex non-linear optimization problem into a
simple one solvable with linear regression [4].

ESNs are good candidates for brain computer interfaces (BCIs). They perform well in tasks
such as speech and handwriting recognition where there is high variability in the input, and a
noisy signal. Their memory allows recognition of events over time (e.g. slow rise and fall in
electrical potential), and events in sequence (e.g. propagation of brain activity). ESNs naturally
produce a time series output, allowing continuous BCI output such as arm velocity over time.
Crucially, they are easy to train; a dataset can be plugged into an ESN classifier with little
pre-processing, and produce a classification level above chance. ESNs have performed well when
compared to more commonly used classification techniques in several BCI studies [2, 1, 5].

ESNs are black box classifiers i.e. it is difficult or impossible to determine how the input
signal is manipulated to produce the output. This is not much of a problem in practical
applications, but can make it difficult to optimise the BCI in research. The classifier can also
cheat. For example, the classifier could exploit irregularities in the data, instead of recorded
signals. Non-brain signals could also be exploited e.g. blinking, or bumping EEG cables.
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We propose that with careful manipulation of the training these problems can mostly be
avoided. For example, if the classification accuracy is low when trained only on non-brain
signals and high when trained on signals from anatomically relevant brain areas, we can infer
that cheating is not occurring. The characteristics of the signal the classifier is using can also be
approximated by removing parts of the dataset and evaluating the classification accuracy. The
purpose of this paper is to determine the effectiveness of ESNs in a 4-class BCI classification
problem, also to investigate this manipulation of the training.

2 Methods

2.1 Training Dataset

Recordings from participants were extracted from one of the datasets distributed as part of the
BCI Competition IV [6]. To generate this dataset two right handed subjects moved a joystick
4.5 cm from the centre position in self-chosen cardinal directions. Trial onset was cued with
a grey circle. After a variable delay the grey circle would disappear signalling the subject to
move. During the trial the subjects were instructed to fixate on a red cross and not to blink.

Magnetoencephalography (MEG) was recorded at 625 Hz, using ten channels (LC21, LC22,
LC23, LC31, LC32, LC41, LC42, RC41, ZC01, ZC02) located above the motor areas. The MEG
signals were band-pass filtered 0.5 Hz to 100 Hz and re-sampled at 400 Hz. The recordings
were then cut into 1 s second trials, with movement onset at 200 ms. The training data set
contained 40 trials for each of the four classes per subject, the testing dataset contained 73
trials (true classification unknown during the BCI Competition). As the BCI Competition is
over, true labels are available for the testing dataset, and so the training and testing datasets
were combined to enlarge the training dataset. The trial order was randomised before training.

2.2 Classifier Training

MEG data was processed with the open-source OrGanic Environment for Reservoir computing
(Oger) toolbox that provides a robust implementation of ESNs. To prevent saturation of the
network the mean was shifted to zero for each channel. It was then normalised to ±1, to keep
it in the range of the neuron activation function. Data before movement onset was cut because
Waldert et al. [6] found that classification was at chance level until then.

ESNs cannot be used directly for classification as the output neurons produce fluctuating
values. By representing the movement direction in the training data as four outputs from the
ESN (1.0 for the desired class), the channel with the highest output became the classification.
Standard deviation was reported to reflect the varying performance of the randomly generated
reservoirs. The accuracy of the trained ESN was determined by ten-fold cross validation.

The time taken to train a network increases exponentially with the reservoir size (Figure 1).
To achieve sufficient accuracy with a reasonable training time, a reservoir size of 500 neurons
was chosen. The remaining parameters of the ESN were optimised by sweeping through a range
of values and choosing those with the highest classification accuracy. This gave final values of
0.2 for the leaking rate, 0.1 for the input scaling, and 0.9 for the spectral radius.

3 Results

Figures 1 to 3 show results generated during the optimisation of the classifier, and the final
results in 4. Figure 2 shows the accuracy when the network is trained on each electrode indi-
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Figure 1: Size of echo state reservoir and its
influence on accuracy and training time.

Figure 2: Accuracy for each electrode, all elec-
trodes, and left hemisphere only.

Figure 3: Accuracy of unfiltered data com-
pared to filtering with a 3rd order Butterworth
filter at different thresholds.

Figure 4: Final accuracy for subjects individ-
ually and combined, compared to shuffled and
randomised classifiers.

vidually, all the electrodes, and only the electrodes on the left hemisphere. The left electrodes
all perform similarly at around 35 % accuracy. The electrodes located along the mid-line, and
the right hemisphere (RC41, ZC01, ZC02) perform at close to chance level, suggesting that the
classification is not due to EMG from the right wrist. This difference in accuracy also indicates
that the classifier is not using EOG artefacts, as these artefacts would effect both hemispheres
equally. An accuracy of 57 % is achieved when all electrodes are combined, and with only the
electrodes of the left hemisphere accuracy increases to 61 %. A different subset of the electrodes
may perform better, but there are too many combinations to test exhaustively.

When the MEG signal is high-pass filtered at 10 Hz the classification accuracy drops off to
chance level (Figure 3). When low-pass filtered the accuracy remains the same until it drops
off at 2 Hz to 3 Hz. From these drops in accuracy we can infer that the signal being used by the
ESN for classification is in the range 1 Hz to 3 Hz. However, this may be because the ESN used
is most sensitive to frequencies in this range, and using different parameters when creating the
ESN may yield different results.

Using the results described in Figures 1 to 3, only the subjects’ left hemisphere electrodes
were used, and then bandpass filtered (1 Hz to 3 Hz). The final classification accuracy was
compared to shuffled and random classifiers (Figure 4). Shuffling the inputs so they do not
match the outputs should make it impossible for the ESN to produce the correct output, and
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it should function like a random classifier with a mean accuracy of 25 %. In this case the
average accuracy for shuffled data is 27 % - indicating that there are some irregularities in the
dataset which can be exploited by the ESN. Therefore this is a better benchmark for chance
level accuracy, which the reported results still exceed.

4 Discussion

Using the methods described, a classification accuracy of 65 % was achieved for subject 1,
and for subject 2 a lower classification accuracy of 36 % (Figure 4). This is higher than, but
consistent with, the winning BCI Competition IV entrant who achieved 59.5 % accuracy for
subject 1, and 34.3 % for subject 2, with a smaller training dataset and without the benefit of
checking their results [3]. The other entrants did not achieve results above chance level.

Manipulating the training dataset showed that brain activity related to the task was localised
to the left hemisphere. More training rounds, and a higher electrode density could potentially
be used to localise it more precisely. The approximate frequency of the activity was also
determined, which shows the potential for using an ESN as a crude way to investigate brain
activity with unknown characteristics, or find activity in new frequency bands.

When the ESN was trained with both subjects data combined it achieved an accuracy of
47 %. This is unusual as typically BCIs must be trained for each individual due to variation in
brain activity. This may suggest that a single ESN BCI can be trained to work with multiple
subjects, or be generalised to work with any subject. However it is impossible to tell without
data from more subjects. A result of 47 % is comparable to the accuracy from simply com-
bining the results from both subjects. This means the ESN may simply have been trained to
differentiate between subjects and classify them accordingly (this in itself would be interesting).
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