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Abstract

This study aims to explore modulation of the connectivity pattern when people per-
form left hand versus right hand motor imagery and probe the feasibility of adopting
connectivity information to discriminate these tasks. Nine subjects were recorded with
16-channel EEG system, covering sensorimotor cortex. Non-normalized directed transfer
function (DTF) is used to obtain the brain connectivity between EEG electrodes. The
results demonstrate that the modulations of intrahemispheric and interhemispheric infor-
mation flows are not identical during left and right hand motor imageries. Particularly, the
mu rhythm is highly modulated in intrahemispheric brain interactions, whereas the high
frequency bands are more related with distant interhemispheric brain interactions. Fur-
thermore, classification results suggest that the DTF features bring additional informative
features for the classification between two tasks.

1 Introduction

Brain-computer interface (BCI) has been developed as a possible solution for enabling commu-
nication capabilities to people who lose motor functions [9]. The use of motor imagery (MI)
is a common approach for BCI systems to send mental command by imagining the movement
of limbs [9]. Currently, most motor imagery BCI systems adopt power spectral density (PSD)
or common spatial filter as discriminative features between tasks [7]. Recently, some studies
have explored the possibility of using the brain interaction patterns between EEG channels as
classification features, e.g. phase difference or directed transfer function (DTF) [8] [2]. The
objective of the present work is to study the use of DTF features for BCI, as well as the mod-
ulations of brain connectivity during MI. We compare the performance of features extracted
by DTF and the PSD features, as well as their combination for decoding BCI commands.
Moreover, we assess the modulations of brain connectivity to evaluate the interhemispheric and
intrahemispheric interaction patterns.

2 Methods

2.1 Experimental protocol

In this study, we focus on a two-class motor imagery task, left hand versus right hand [6].
Subjects were instructed to move a horizontal bar by imaging the movement of their hands.
We analyzed offline experiments, involving nine subjects that perform two runs of BCI training.
Each run comprised 30 trials of motor imagery for each class. Before each trial, a visual cue was
presented to show the target, and the bar started moving after one second, as shown in Figure
1.A. During each trial a feedback bar that moved to the target continuously for 4 seconds was
shown to the subject. EEG signals were recorded using a 16-channel g.USBamp amplifier (g.tec
medical engineering, Schiedelberg) with a sampling rate of 512 Hz. The signal was band-pass
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Figure 1: Experimental protocol of motor imagery and the montage of the EEG cap. Each trial
includes fixation (1000 ms), cue (1000 ms) before the bar starts moving.

filtered between 0.1 Hz and 100 Hz and notch filtered at 50 Hz. The 16 EEG channels were
placed over the sensorimotor cortex as shown in Figure 1.B.

2.2 Signal processing and classification

To compare the performance between PSD and DTF, features were computed 16 times per
second. The PSD of each channel was computed using the Welch method for the past one
second, with the window (Hanning) size 500 ms and overlapping 50%. PSD features were
collected between 2-50 Hz with the step size 2 Hz. DTF was also computed in the same period
of one second, by estimating the coefficients of multivariate autoregressive (MVAR) model
based on Yule-Walker equation, which included all 16 EEG channels with order 8. The system
transfer matrix in frequency domain was obtained by applying fast Fourier transform on the
MVAR coefficients, as the so-called non-normalized directed transfer function [5]. The step size
of DTF was 2 Hz, resulting in a three dimensional matrix 16×16×25 (channel × channel ×
frequency) for each time step of 1/16 s. The log values of either PSD or DTFS were then used
for classification.

We compare the performance with three types of features: (1) PSD features; (2) DTF
features; (3) Combination of both PSD and DTF. We computed the Fisher score on the offline
runs to select the most informative features, defined by fs = |m1 −m2|/(s21 + s22), where mk

and s2k represent the mean and variance of class k. In the combined case we used the features
that are selected in PSD and DTF separately. Linear discriminant analysis (LDA) was used
for classification (left vs right MI), assuming Gaussian distribution of the data samples. The
classification performance was evaluated by 10-fold cross validation and the area under the
curve (AUC) of the testing sets.

3 Results

3.1 Brain connectivity patterns

We compute the interaction between and within hemispheres to explore the modulation during
motor imagery. The left hemisphere is defined as the channels FC3, FC1, C3, C1, CP3 and
CP1, and the right hemisphere corresponds to FC2, FC4, C2, C4, CP2 and CP4. The brain
interaction from left to right hemisphere is defined as the mean DTF value from the channels
in the left hemisphere to the channels in the right, and vice versa for right to left interactions.

Figure 2.A shows the difference of DTF between left and right hand motor imagery
(DTFleft − DTFright) for four brain interaction patterns: Interhemispheric (left to right and
right to left) and intra hemispheric (left and right) connectivity. The curves illustrate the mean
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value across all subjects. As shown in the figure, the connectivity levels within hemispheres are
highly modulated in the mu rhythm (blue and red curves), around 10-14 Hz, indicating evident
disassociation between the two motor imagery tasks. In particular, the connectivity within left
hemisphere is much higher in the condition of left hand motor imagery, cf., the positive peak
in red curve, and vice versa (negative peak in the blue curve). This might be due to the higher
mu rhythm desynchronization in contralateral than in ipsilateral areas, which causes the lower
interaction level in the left hemisphere when people are perform right hand motor imagery. The
modulation of intrahemispheric connectivity disappear in the high frequency bands, i.e. above
35 Hz.

The green and black curves represent the interhemispheric connectivity patterns, which are
almost zero in the low frequency bands, indicating no difference between two motor imagery
tasks. Differences are noticeable in high frequency bands, particularly 26-32 Hz, in which the
information flow from left to right hemisphere is higher when subjects are performing left hand
motor imagery (green curve), and vice versa (black curve).

Figure 2.B and C represent the mean values of the curve in Figure 2.A in two selected
frequency bands, 10-14 Hz and 26-32 Hz. Significant differences (Wilcoxon signed-rank test)
could be found between within left and within right hemisphere interactions in the mu band.
The modulation in higher frequency bands is not as obvious as the low band, however. It
is also significant between two interhemispheric interactions. These results indicate that the
interhemispheric, or distant, brain interactions are more modulated in high frequency bands
than local connections, and motor related brain signals are originated from the contralateral
brain regions.

3.2 Classification performance

10-fold cross validation was used to evaluate the offline training performance. We tested the
effect of feature quantity by varying the number of selected features, from 1 to 50. Results of
each subject were averaged for all testing folds. Rapid increase of AUC can be observed when
the feature number is very low, i.e. below 10 features for all the feature sets, after which the
increasing trend stops and keep constant with more features, shown in Figure 2.D. This is caused
by the level of redundancy between features, i.e. no more novel information is contributed by
new features. In average, the PSD features show higher AUC (0.58) than the DTF method
(0.57). However, the combined feature set (BOTH) yields the highest performance, which
is around 0.6 after using more than 12 features. Wilcoxon signed-rank test (uncorrected) was
applied and found that below 20 features, the performance of combination is significantly better
(p < 0.05) than PSD, except using 8 features, Figure 2.D.

4 Discussion & Future works

The present study verified the potential application of using DTF to decode motor imagery
tasks, as well as the the modulation patterns of brain connectivity between the two tasks.
Results of offline anaylsis of 9 subjects, show modulation of EEG rhythms that are consistent
with previously reported results. In particular activity in higher frequency bands related to the
interhemispheric interactions [4], as well as the reduced mu band in intrahemispheric patterns
with contralateral sites. Further experiments will be performed to confirm the current results
including online evaluation.

One should notice that an essential issue of the online DTF method is the computational
consumption, since heavy computation is required to obtain the coefficient matrix of the MVAR
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Figure 2: A: The modulation of DTF during left and right hand motor imagery. B and C: Mean
and variance of brain interaction patterns in two frequency ranges across subjects (B: 10-14 Hz;
C: 26-32 Hz). D: Offline performance of classifying two motor imagery tasks with three types
of features. Gray area show the results of statistical tests between PSD and BOTH.

model [3], for our case 16× 16× 8 (8 is the order of MVAR model, determined by AIC criteria)
parameters are estimated with 1 s EEG data, and the computation should be shorter than 1/16
second, since we update the DTF feature with 16 Hz to obtain BCI control. The use of higher
order models or more EEG channels will increase the time consumption. In our experiment, it
took around 0.01 s to do the computation of DTF and PSD, short than 1/16 s. Furthermore,
future work may try to improve the stability of DTF features by averaging MVAR coefficients
in a sliding window within past 1 s EEG signal with certain overlap, as the Hanning window
in Welch’s method. For online implementation, the other option could be applying dynamic
updating of MVAR coefficients other than re-compute for each 1 s, as adaptive MVAR model,
which might be helpful to decrease the computation [1].
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