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Abstract

In this study, we extend the bigram language model to a higher order model in our
dynamic stopping algorithm for the ERP-based P300 speller, with additional consideration
to minimize erroneous character revisions. Prefix alternatives are generated to initialize
the language model based on the likelihoods of being the target character. On-line results
indicate there is potential to improve ERP speller performance with our proposed method,
as statistically significant improvements were observed in participant communication rates.

1 Introduction

Language models can optimize ERP-based BCI speller performance by incorporating the prob-
abilistic information about how letters are ordered in words when making character selection
decisions [1–3]. We developed a dynamic stopping algorithm for the ERP-based P300 speller
that uses a Bayesian approach to determine the amount of data collection based on a prob-
abilistic level of confidence that a character is the target. The dynamic stopping algorithm
with uniform initialization priors resulted in significant increase in bit rate from static data
collection [4], with additional improvements observed with the inclusion of a bigram language
model in the character initialization process [5]. In this study, we expand to a higher order
model that uses all of the user’s spelling history, not just the previous character selection, with
the hypothesis that it will improve the predictive capacity of the algorithm due to an increasing
number of selected characters reducing the set of possible intended characters. However, the
utility of a higher order model is dependent on the number of preceding characters that are
selected correctly as these are used to obtain the correct target word prefix for initializing sub-
sequent character probabilities. We consider a solution for misspellings by using information
about character likelihoods post-data collection [6] to weight possible prefixes.

2 Methods

Participants (n = 20) were recruited from the student and work population at Duke University,
who gave informed consent prior to participating in the study. Participants performed word
copy-spelling tasks online with a 9× 8 matrix speller grid using the Bayesian dynamic stopping
algorithm (detailed in [5]) with different language models, with order counter-balanced.

Prior to the Bayesian update process, the language model is used to initialize character
probabilities given a sequence of previously selected characters, AT−1

T−n+1 = aT−n+1, ..., aT−1:

P (Ci,T = C∗T ) = αP (Ci,T |AT−1
T−n+1)

(
1−

∑
NAC

1

N

)
+ (1− α)

1

N
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where P (Ci,T = C∗T ) is the initialization probability of character Ci being the T th charac-

ter in the target word, C∗T ; P (Ci,T |AT−1
T−n+1) is the probability that the next character is Ci
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given the previously selected characters AT−1
T−n+1, which is based on the order of the language

model; α denotes the weight of the language model; 1 − α denotes the weight of a uniform
distribution, which is an error factor to account for possible misspellings;

∑
NAC

1
N is the sum

of the non-alphabetic character (NAC) probabilities, which is subtracted from 1 to normalize
the probabilities. The language model probabilities were derived from a corpus compiled by
Norvig [7].

2.1 Bigram model

The conditional probability, P (Ci,T |AT−1
T−n+1), depends on the previously selected character,

AT−1
T−n+1 = aT−1 [5].

2.2 n-gram model with dictionary-assisted prefix search (DAPS)

In the n-gram model, the conditional probability, P (Ci,T |AT−1
T−n+1), depends on all the previ-

ously spelled characters, AT−1
T−n+1 = a1, ..., aT−1. However, when using the n-gram model, there

is the possibility of an erroneously selected character generating an invalid prefix (e.g. VIS2
for the word VISUAL), or an incorrect valid prefix which can lead to the wrong initialization
probabilities (e.g. ANC for the word INCOME), unless the erroneous character is revised.
ERP-based P300 classifier confidences post-data collection can provide some information about
the likelihood of being the target character [6]. We denote the P300 classifier confidences with
a QT = [Q1, Q2, ..., QT ] matrix, where Qt = [q1t , ..., q

N
t ]ᵀ is a column vector of P300 classifier

confidences post-data collection for all N grid characters for the tth selected character. An ex-
ample Q matrix is shown in Figure 1. The user intended to spell the word BEHIND but the
simulation yielded the word BLGIND. While the target character may not have the highest
probability post-data collection, one of the next most probable characters usually is the target.

The Q matrix can thus be used to select the k most likely prefixes from a dictionary to
calculate initialization probabilities prior to spelling the T th character. The set Dk

T consists of
valid prefixes in the dictionary with the top k values of the product of their character likelihoods(∏T−1

1 q
l(Dj

t )
t

)
, and the prefixes are retained from one character to the next to generate the

next k most likely prefixes. The conditional probability in the initialization step to select the
T th character thus also depends on the P300 classifier confidences via the QT−1 matrix:

w(Dj) =

∏T−1
1 q

l(Dj
t )

t∑
Dj∈Dk

T

(∏T−1
1 q

l(Dj
t )

t

) (2)

P (Ci,T |AT−1
1 ,QT−1) =

∑
Dj∈Dk

T

w(Dj)P (Ci,T |Dj) (3)

where w(Dj) is the weight of the prefix Dj ; l(Dj
t ) is the label for the tth character in prefix Dj ;

P (Ci,T |Dj) is the initialization probability that the T th character is Ci, given prefix Dj .

3 Results

Figure 2 shows each participant’s selection accuracy. For most participants, the accuracy from
the bigram to n-gram model was similar or noticeably improved, (p < 0.09). The Q matrix
tends to be sparse, meaning that only a few characters are considered likely to be the target.
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Figure 1: Example Q matrix post-data collec-
tion for the word BEHIND. The x-axis labels
show the characters selected by the ERP-based
P300 speller simulation, BLGIND, with the cor-
responding probabilities of alphabet characters at
each character position, Qt. Probability values are
clipped for visualization purposes (Pmax ≥ 0.9)

Figure 2: Participant performance comparison of
online dynamic stopping between different language
models showing accuracy of character selections

These characters typically have at some point been in the same flash group as the target, and
this is often the source of most character selection errors. We hypothesize that the strong priors
introduced by a higher order language model give the target character an added advantage to
prevent an erroneous character selection, thereby sometimes improving accuracy.

Figure 3: Participant performance comparison between on-line dynamic stopping with different lan-
guage models. (A) Average character selection time, with standard error bars, (B) Bit Rate.

.

Figure 3A shows the average amount of time per character selection for each participant.
A significant decrease was observed in character selection time with the n-gram DAPS model
(p < 0.002). In Mainsah et al. [5], off-line analysis of participant EEG data revealed that the
rate of convergence to the threshold probability in dynamic data collection increased with the
inclusion of the bigram language model. We hypothesize that the stronger priors introduced
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by the higher order model further causes the character probabilities to converge faster.
The accuracy and average character selection time were used to calculate bit rate, including

the time pauses between character selections [8]. Figure 3B shows participant bit rates with
both algorithms. Due to similar accuracy levels and a significant reduction in character selection
time, most participants observed significant improvement in their performance (p < 0.007),
with on average 26% increase in bit rate. Performance improvements with then-gram model
are consistent with off-line analysis performed on EEG data from [5].

4 Discussion

The relatively slow communication rates of ERP-based BCI speller systems can be improved
by exploiting the predictability of language. However, sometimes the manner of integration of
language information in the ERP speller can lead to a decrease in performance due to increased
task difficulty e.g. selecting from a drop-down menu in a predictive speller as in [2]. Our
online results indicate there is potential to improve performance with a higher order language
model in dynamic data collection, with additional consideration to minimize erroneous character
revisions when used in combination with a dictionary. Further development includes adapting
the algorithm for sentence spelling tasks, where word-space boundaries are important. There
is the potential to further enhance performance using natural language processing tools such as
word prediction and/or dictionary-based spelling correction. For example, the algorithm can be
adapted to include likely word alternatives generated from the prefixes which can be displayed
directly in the speller matrix [3], as this has been shown to not negatively affect performance.
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