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ABSTRACT: An evaluation of a hybrid Brain-Computer 
Interface that combines input modalities of Steady State 
Visual Evoked Potential (SSVEP) and eye gaze is 
provided. Thirty volunteers participated and all but one 
could use the BCI, eye-tracker and hybrid system. The 
hybrid BCI was compared with SSVEP alone for 
navigating to four domotic tasks issued via a graphical 
user interface. Mean performance metrics of Accuracy 
(Acc.), Efficiency (Eff.) and Information Transfer Rate 
(ITR) all improved (mean Acc. = 93.3% to 99.84%, mean 
Eff. = 89.56% to 99.74%, mean ITR = 23.78 to 24.41 
bpm). While the absolute improvements are small, better 
performance may contribute to user acceptability, as the 
eye-gaze component adds minimal additional user effort 
to the interaction yet provides control that is more robust.  
 

 
INTRODUCTION 
 
The electroencephalogram (EEG) provides a recording 
of electrical activity within the brain. As complex as this 
activity is there are methods to extract meaningful 
information from the brain waves. By developing certain 
paradigms intentional modulation of brain activity can be 
established and used as a mechanism for communication 
and control. Known as Brain-Computer Interfaces (BCI), 
this technology has been explored extensively for over 
two decades as a mechanism to provide an input modality 
to a computing system that does not require the 
involvement of peripheral nerves and muscles [1]. 
Recording normally takes place under controlled 
laboratory conditions; in more recent years there has 
been an objective to extend the technology to users in the 
community, placing more emphasis on reliability, 
robustness and ease of use. Reliance on EEG features 
only is one of the key attributes with BCI systems, 
particularly important for users who have lost peripheral 
movement including eye gaze. However, BCI is 
recognized as a difficult assistive technology to establish 
for a user as successful deployment requires substantial 
tailoring to the user’s needs and individuality within their 
EEG.  
In contrast, for potential users with residual eye 
movement, eye-gaze technology has been deployed as an 
effective assistive technology, albeit with its own 
challenges in terms of attaining robust decision making. 
In particular, eye trackers have been used to navigate on-
screen commands; when a decision or action needs 
confirmed, features such as ‘dwell-time’ may be used to 
activate the classification.  

Combining active eye-gaze technology with BCI can 
bridge the gap between the two systems [2][3][4], 
creating a hybrid BCI (hBCI) system. BCI paradigms 
lend themselves to performing this confirmation or 
‘switch’ operation [5][6], providing complementary 
intentional control for the user. In some cases, the 
searching activity, can be employed to items and 
locations within the user’s physical environment, and this 
information provides a context to the decision to be made 
by the BCI system [7]. Meena et al., 2015 [8], proposed 
a hBCI combining motor imagery (using the event 
related desynchronization component) with eye tracking, 
aspiring to increase the number of available command 
choices. The eye gaze is used to detect (search for) the 
spatially located device, while the BCI (motor imagery) 
is used to select.  
Additionally, eye tracking has been used to provide the 
selection of ‘on-screen’ icons, with a BCI component 
confirming a choice. Galway et al., presented eye 
tracking selection of directional arrows to gain 
navigation through a Graphical User Interface (GUI) for 
control of domestic appliances [9]. The arrow icons flash 
to initiate Steady State Visual Evoked Potential (SSVEP) 
responses and thus perform the switch operation to 
activate the desired movement through the GUI or to 
activate a command on an external device. 
Kalika et al. [10] combined a P300 speller with eye 
tracking. Instead of a sequential search and select 
protocol, complementary inputs were combined and a 
Bayesian classifier enhanced the accuracy of selecting a 
character in the speller. Dong et al. [11] used a similar 
approach to combine motor imagery with eye gaze. Évain 
et al., [12] combined eye gaze and SSVEP inputs to 
enhance classification accuracy and demonstrated a 
speed up in operation and performance over existing BCI 
systems.  
In this paper, we provide an evaluation of an hBCI, which 
combines input modalities of SSVEP and eye gaze, and 
uses a similar signal processing approach as [13]. The 
aim was to evaluate the performance and usability of 
SSVEP for healthy participants and indicate 
improvements, that hBCI offers. The SSVEP paradigm 
provides a natural and intuitive procedure to collaborate 
with an eye-tracking algorithm.  Users interacted with an 
existing menu system [9], which provided navigation of 
a virtual smart home, on a desktop computer. They were 
required to observe and fixate on the navigation icon they 
wished to select; as the icons were collocated with 
frequency-modulated stimuli, the technique for 
interaction does not change from a user perspective. 
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MATERALS AND METHODS 
 
Ethical approval was granted by the Ulster University 
Research Ethics Committee (UUREC ethics number 
REC/16/0053). Thirty healthy volunteers (16 males and 
14 females), from staff and students at Ulster University 
and members of the public over the age of 18 years 
participated. Participant age ranged from 21-73 years, 
average 37.6 (SD 14.73).   Exclusion criteria prevented 
volunteers from participating if they were sensitive to 
flickering lights, had substantial problems with left-right 
discrimination, and hearing or visual impairments, which 
could not be corrected. Prior to beginning, participants 
undertook a practice run to familiarize themselves with 
the control paradigm and the GUI of the menu system. 
The assessment required participants to complete tasks to 
initiate domotic control, multimedia playback, 
communication, and free control of a smart-home 
environment.  Participants completed a pre-questionnaire 
to indicate expertise and their perceived level of 
tiredness/arousal and a post-questionnaire to provide 
some qualitative feedback. 
Setup time ranged between 4-26 mins, (average 13m:53s, 
SD 5m:35s) and total experiment time ranged from 50 
mins to 2 hours and 29 mins, dependent on the number 
of sessions that the participant completed, (average 1 
hour and 25mins, SD 20m:07s). From the 30 participants, 
12 had prior experience with eye tracking technology, 
nine had prior experience with SSVEP BCI, and 28 were 
experienced computer users. Eight participants required 
vision correction; six of which removed their glasses for 
the duration of the experiment to account for reflections, 
which may have adversely affected eye tracking 
performance.   
The experimental setup comprised dual LCD displays 
(refresh rate 60 Hz), an EyeTribe eye tracker, g.USBamp, 
g.LADYbird passive electrodes, g.GAMMAcap, and a 
Raspberry Pi home-automation server (for interaction 
with external devices such as lights).  The experiment 
was controlled by monitor one and participants were 
required to interact with the GUI displayed on monitor 
two. Participants were seated approximately 70 cm from 
this monitor. The EyeTribe Tracker was utilized to record 
gaze at a sampling rate of 60Hz, with a latency of <20 
ms. The device was calibrated on 9 points and with an 
accuracy in the range 0.5 – 1 degree. On-screen gaze 
coordinates were derived from the EyeTribe application 
programming interface. 
For SSVEP generation, four unique flickering stimuli 
(6.67 Hz, 7.5 Hz, 8.57 Hz, 12 Hz) were presented by 
modulating pixels on screen (rather than through external 
LEDs, which was adopted in previous studies). The four 
stimulation areas were set at the default size of 150 x 150 
pixels and by focusing attention on flickering stimuli, 
users could traverse through the menu structure by 
issuing a succession of left, right, up, and down 
commands.  The down command selected an item or 
navigated to a lower level in the hierarchical structure, 
and the up command returned to the previous (higher) 
level.  In addition, spoken feedback was provided after 

each command to reinforce the user experience by 
confirming the command.   The four stimulators were 
surrounded by a 250 x 250-pixel border, representing the 
maximum size that each stimulator could increase to 
without classification occurring. As an additional method 
of feedback, the stimulators were designed to grow 
dynamically in relation to the SSVEP amplitude of the 
respective frequency. This design was for two reasons: 1) 
it provides user feedback allowing participants to know 
when they have issued a command; and 2) larger stimuli 
produce a greater SSVEP response.  In the second case, 
real-time SSVEP visualization relating to the power 
estimation of the relevant frequency, decreases the time 
to select, as the response becomes increasingly more 
prominent in the EEG due to the increasing size of the 
stimuli; it is a positive feedback loop.        
Feature detection and command translation were based 
on signal processing methods realized by Volosyak et al. 
[13]. The SSVEP signal detection and classification 
process utilized the Minimum Energy Combination 
(MEC) method to create a spatial filter and enhance the 
SSVEP response while reducing ambient signals and 
other interference [13].  The system was designed to 
automatically determine the best spatial filter for each 
participant at each frequency.  The manifestation of each 
frequency in the EEG was detected by spatial filtering, 
power estimation, and a statistical probability method, 
which enhanced the quality of signal and separated 
channel-specific features.  Furthermore, an adaptive 
windowing technique was employed in order to 
determine a suitable window length based on online 
performance. Stimuli induced frequencies and harmonics 
were estimated in the recorded EEG. When this 
estimation exceeded a predefined threshold, as 
determined during calibration, a directional vote (i.e. 
SSVEPE left, right, up, down or no-control state) was 
transmitted to the data fusion component of the menu 
system, as illustrated in Fig. 1.  
 

 
Figure 1: Conjunction-based collaborative decision 
making process data flow 

 
In collaboration with the directional vote, coordinates of 
the participant’s gaze (CoordinatesG) were used to 
ascertain an overall command and concurrently 
transmitted to the Data Fusion component. Employing 
the conjunction of the estimated location derived from 
the participant’s gaze point and the directional vote, 
agreement of the intended command would occur if the 
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conjunction was found to be true.  Figure 2 illustrates the 
partitioning scheme utilized by the   Data Fusion 
component, which partitioned the overall GUI along the 
horizontal, vertical and diagonal axes, centered on the 
origin of the GUI, such that gaze coordinates were easily 
mapped to specific quadrants surrounding the SSVEP 
navigation icons.  
 

Figure 2: hBCI user interface partitioning scheme 
showing partitioning of screen along x, y and diagonal 
axes, placement of SSVEP navigation icon stimuli and 
no control state 

 
In addition, a no-control state within a predefined area 
centered on the origin of the GUI was used in order to 
permit the participants to view the currently active menu 
icon, which would appear in the center of the bespoke 
menu system. Accordingly, gaze coordinates were not 
acquired when the participant’s gaze was within the 
bounds of this zone, thus preventing the possibility of 
erroneous commands being issued by the Data Fusion 
module whenever the participant was regarding the 
active menu icon.  Directional decisions were calculated 
as follows:   
Ϝ ,

	 	

∆	, 					 ∧ ∨ ∧ ∧ 	

∆	, 					 ∧ ∧ ∨ ∧ ∧

∆	, 					 ∧ 	∨ 	 ∧ ∧

∆	, 					 ∧ ∧ ∨ ∧ ∧

 

 

where	Ϝ is a function of x and y, α is the horizontal 
resolution divided by two, β is the vertical resolution 
divided by two, and ϕ1, ϕ2, ϕ3, and ϕ4 are quadrants one, 
two, three, and four, respectively, and , , ,	and 
	are the eye tracking vote for left, right, up, and down, 

respectively. Upon successful command determination, 
the resulting command is transmitted by the Data Fusion 
component to the GUI resulting in continued traversal of 
the menu structure. 
Participants were instructed to complete four tasks, 
controlling the GUI-based menu system, to traverse a 
hierarchal-menu structure and activate features and 
functions of a smart-home environment. The 
instructions, issued by trained-research staff, requested 
that participants navigate the menu structure executing 
four-way control, e.g. left, right, up, and down 
commands.  The first task required participants to interact  
with smart home lighting in the dining room.  The second 
task asked if they could select a specified video for 
playback on the television set and subsequently end 

playback when requested.  The third task required users 
to navigate to the talk menu and communicate using 
predefined iconography and auditory feedback to 
indicate hunger (e.g., to a potential companion).  The 
fourth task required users to freely navigate the interface 
to complete a predetermined goal (in this case to go to 
the kitchen, find the extractor fan, and turn it off), without 
receiving a predefined set of instructed commands and 
therefore permitting users to initiate different command 
sequences to reach the goal.  Fig. 3 gives a representative 
example of task one, whereby participants were 
instructed to issue a minimum of 13 commands to 
traverse the hierarchal-menu structure and control room 
lighting. For the particulars of the individual tasks, please 
see [9]. 

 
Figure 3: The minimum commands to successfully 
traverse the hierarchal-menu structure and complete 
tasks two. 

In the case of an erroneous command (due to user error 
or misclassification), participants were instructed to 
rectify the mistake by issuing an additional command 
when required, which for subsequent analysis was 
considered as a ‘correct’ selection.  In certain 
circumstances, however, rectifying commands were not 
required, e.g. when a false-positive ‘up’ command was 
issued at the highest level of the hierarchy.  Such 
commands did not initiate traversal of the menu structure 
and therefore did not require rectification.  Each task was 
associated with a critical path (i.e. the minimum number 
of compulsory commands for successful completion). 
When completing the tasks, the total time for task 
completion, and the number of correct, incorrect, and 
rectified commands were recorded. Performance metrics 
for accuracy of target detection (Acc.), efficiency of the 
interaction (Eff.) and Information Transfer Rate (ITR) 
were computed offline.   
In some situations, the accuracy value provides a 
misimpression of participant performance. Due to the 
structure of the tasks, false-positive commands are often 
succeeded by a command to rectify the mistake, which is 
defined as an additional correct command.  The result 
from specific participants who issued several false-
positive commands suggests performance is of a higher 
level than in reality.  For this reason, Efficiency, as 
defined by Volosyak et al. [15], is calculated as follows: 
 

	 ∗ 100 

where Cmin is the minimum number of compulsory 

+x-x

-y

+y

No Control State
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commands (13 for Task 1 in our interface layout) and 
Ctotal is the total number of detected commands.  ITR was 
calculated as defined by Wolpaw et al. in [1]  and 
formularized as follows: 
 

	 1
1

1
∗
60

 

 
where M is the number of choices, P is the accuracy of 
target detections, and T (in seconds/selection) is the 
average time for a selection. 
 
RESULTS 
 
The experimental results, summarized in Fig. 4, provide 
an analysis of the individual accuracies, efficiencies, and 
ITRs as well as the averages across all participants. 
Furthermore, these results contrast the performance of 
SSVEP alone with hBCI, conveying a mean accuracy 
increase from 93.3% to 99.84%, mean efficiency 
improvement of 89.56% to 99.7%, and indeed an ITR 
improvement of 23.78 bpm to 24.41 bpm. The latter may 
be surprising as the eye tracker may be expected to 
somewhat dampen the responsiveness of the interaction 
(whether correct or incorrect), and contrast with the 
findings of Vilimek et al. in [16].  A paired t-test 
indicated that participants performed better using hBCI 
than BCI alone in terms of accuracy and efficiency with 
a significance of p < .001.  This finding indicates that 
there is a statistical significant difference between the 
two conditions that is not attributable to chance, and 
likely due to the independent variable manipulation.   A 
further paired t-test provided an analysis of the bit rates 
contrasting BCI-only and hBCI indicating a significance 
of p > 0.10.  This finding suggests that there is no 
statistical significant difference between these two 
metrics, and hence the difference of the means, in this 
case, is likely owing to chance.    
To compare these results with eye tracking-only please 
see the previous study  in which the same tasks were 
employed to assess the performance of eye tracking alone 
on healthy volunteers (N=12), indicating an average 
accuracy, efficiency and ITR of 88.88%, 81.20% and 
41.16 bpm, respectively.   
 

DISCUSSION 
 
This research indicates that the hBCI outperforms 
SSVEP-based BCI alone across all considered metrics, 
Acc., Eff. and ITR. Hence we believe that the hBCI is 
potentially more robust. This could go some way to 
addressing BCI acceptability outside the laboratory and, 
therefore, the additional cost and complexity of eye 
tracking can be readily justified. Indeed, the hardware 
cost in this case (a couple of hundred Euro) is minimal 
when compared to the BCI component as high spatial 
accuracy is not needed. Eye tracking is limited by false-
positive selections, however, which is often referred to as 

the ‘Midas Touch’ problem [18] (i.e. selecting everything 
unintentionally), while SSVEP performance is not robust 
enough for critical applications, e.g. false-positive 
selections in smart environments are known to produce 
intolerable events in the local environment, such as lights 
flashing on and off, doors opening and closing, security 
alarms triggering etc.  Therefore, the integration of both 
modalities as an hBCI has been demonstrated to improve 
the performance up to a level unobtainable by either 
modality on its own. 
An analysis of the post-questionnaire responses from the 
30 participants, conveyed that five preferred BCI alone, 
19 preferred the hBCI, and six had no preference.  
Multiple participants stated the hBCI improved 
confidence during interaction and one user in particular 
stated “the hybrid demonstrates a potential for more 
complex tasks”.  Other users substantiated this claim by 
mentioning that the hBCI seemingly offered enhanced 
robustness. A small subset of the participants 
contradicted these findings, however, by suggesting that 
SSVEP was superior as a sole input modality.  In some 
exceptional circumstances, for example, when 
participant 28 achieved remarkable performance using 
BCI alone (Acc. 100%, Eff. 100%, ITR 36.37 bpm), the 
hBCI merely slowed the interaction (Acc. 100%, Eff. 
100%, ITR 33.31 bpm).  Likewise, participant 6 who also 
preferred SSVEP alone, achieved Acc. 95.54%, Eff. 
93.88%, and ITR 23.36 bpm utilising BCI-only.  Their 
qualitative feedback was somewhat surprising 
considering their performance improved for the hBCI 
(Acc. 100%, Eff. 100%, ITR 21.91 bpm) for both accuracy 
and efficacy, albeit with a slight reduction in ITR.  While 
such a finding is inherently subjective, this participant 
was apparently more tolerant to errors than to an increase 
in time per selection, even if it meant 100% accuracy of 
target detection.  Participant 8, who did not achieve 100% 
hBCI accuracy and efficacy, expressed that they found 
“the hBCI control restrictive due to the fixed nature of 
the hardware”. This participant highlights a known 
restriction of eye tracking technology whereby 
calibration enforces users to remain stationary; for 
example, adjusting the seated positioning is known to 
produce erratic screen-based coordinates.    
The only volunteer who failed to complete the tasks, 
Participant 11, suffered from macular degeneration, a 
medical condition affecting the central field of vision, 
and would have been screened out if they had informed 
research staff prior to running the experiment. The result 
was labelled ‘inconclusive’ and excluded from 
subsequent numerical calculations. However, it 
reinforces that there will always be people that the BCI 
will not work with. Our intention is to assess the 
performance of people with brain dysfunction in the 
future and this will obviously pose additional challenges. 
A quantitative analysis comparing SSVEP with hBCI is 
represented in Fig. 3 (A) and (B).  From 30 participants, 
29 completed the tasks successfully.  Of those 29, only 
three failed to achieve 100% Acc. and Eff. and yet their  
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(A)                                                                                          (B) 

 
Figure 4: Data collected from 30 healthy participants. (A) The results from SSVEP-only achieved a mean Acc. 93.3%, 
Eff. 89.56%, and ITR 23.78 bpm. (B) The results from the hBCI (SSVEP + Eye Tracking) achieved a mean Acc. 99.84%, 
Eff.  99.74%, and ITR 24.41 bpm. 
 
performance still increased significantly in contrast with 
SSVEP-only.  In some cases, the ITR may have dropped 
moderately from SSVEP control to the hBCI.  As 
mentioned previously, and contradictory to prior research 
[16], the average bit rate improved for hBCI interaction.  
This is likely due to the ITR calculation, which is 
satisfied with three variables: 1) accuracy of target 
detection; 2) number of choices; and 3) time per 
selection.  A system that returns perfect accuracy can 
account for an increased time per selection and return a 
higher bit rate when compared with less accurate systems 
that have a decreased time per selection.  In an eye-gaze 
collaborative BCI this tradeoff is related to the dwell time 
of eye tracking decisions.  Optimal parameters in the eye 
tracking algorithm will ensure interaction speed does not 
diminish to a level that reduces bit rate.  An offline 
analysis of the data for a representative participant 
confirms this finding. Fig. 5 provides further 
interpretation of hBCI task one for a representative 
participant, confirming the eye tracker voted first on 12 
of the 13 selections.  For the most part, the eye tracker 
was not limiting performance, but for one of the 
selections, the up selection, the BCI had to wait for the 
eye tracker to agree before a selection could be issued, 
which increased the total time for task completion.  A 
common assumption, may suggest this should indicate 
the BCI-only version will return a higher ITR, but in 
certain cases this is incorrect. The hBCI still manages to 
outperform the BCI alone in terms of information 
throughput, if it issues slower selections with greater 
accuracy.  Comparison of the result of BCI alone and 
hBCI for Participant 2 when completing task one 
confirms this to be the case.  From period 45-48 seconds, 
it is clear the BCI was confident that the participant was 
attempting to issue an up selection but the eye tracker 
slowed performance, and yet the hBCI still exceeded the 
bit rate of BCI alone. This is particularly interesting as it 
suggests that refining the hybrid system may further 
improve performance. A softer decision process allowing 
selection based on confidence level of singular 
modalities would likely improve the system as an 

assistive technology.  Allowing decisions from one 
modality to surpass the other, however, prevents the 
assessment of individual components from a research 
perspective, e.g. eye tracking decisions that do not 
interact with BCI cannot be considered as an hBCI 
process, since decisions do not necessarily rely on 
activity from the brain.   

 
Figure 5: BCI, eye tracking, and collaborative selections for 
Participant 2 completing task one using the hBCI. 

Moreover, a comparative analysis of BCI and hBCI must 
always consider the same number of choices in the ITR 
calculations.  The BCIs discussed herein have four 
choices, the SSVEP stimuli for left (7.5 Hz), right (8.57 
Hz), up (12 Hz) and down (6.67 Hz) selections.   Each of 
these choices is reinforced with eye tracking decisions 
but the number of choices in the ITR calculation does not 
increase.  In a hybrid design, the number of choices could 
potentially increase significantly.  For example, a single 
frequency for SSVEP detection could be employed and 
12 choices added to an interface.  Each choice would be 
selectable via the user gaze and a BCI component.  In this 
form the hybrid utilizes BCI as a switch, but 
unfortunately the ITR cannot consider 12/13 choices.  
Doing so would provide a misimpression of performance 
and instead the ITR should be calculated using a single 
choice.      
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CONCLUSION 
 
The SSVEP paradigm provided a natural and intuitive 
procedure to collaborate with an eye tracking algorithm.  
Users were required to observe and fixate on the icon 
they wished to select, and if icons were also collocated 
with SSVEP stimuli, then the technique for interaction 
would not change at all from a user perspective. For the 
hBCI mean performance metrics of Acc., Eff. and ITR all 
improved. While the absolute improvements are small, 
they may contribute to user acceptability, as the eye gaze 
component adds minimal additional user effort to the 
interaction. BCI offers enormous hope for assisting 
communication/interaction for people with neurological 
disease. Further significant advances have been made in 
recent years. The hybrid discussed in this paper increased 
the performance metrics under study and generally the 
perceived robustness by the volunteers. Set up by an 
experienced user is still required, particularly regarding 
the thresholds to achieve best performance. Analysis of 
the eye tracking data and the collaborative decision 
process provides insight, showing that metrics can be 
further improved. This level of detail can also be used to 
quickly screen out people for whom the technology is 
inappropriate.   
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