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ABSTRACT: Patients in completely locked-in state 

(CLIS) are unable to communicate with the external 

world because of complete paralysis of the motor 

system. Brain computer interface (BCI) aims to restore 

communication in CLIS patient by bypassing the 

dysfunctional motor system. Electroencephalography 

(EEG) based BCI has been used successfully in patient 

in Locked-in state (LIS), but once the patient transition 

in CLIS EEG-BCI fails to provide communication. 

Recently we reported the first single case report of 

functional near infrared spectroscopy (fNIRS) based 

auditory BCI control by an ALS patient in CLIS. Here 

we report fNIRS-BCI based communication in four 

ALS patients in CLIS, two of them in permanent 

completely locked-in state (CLIS) and two entering the 

CLIS without reliable means of communication. 

Patients learned to answer personal questions with 

known answers and open questions all requiring a “yes” 

or “no” thinking using fronto-central oxygenation 

changes measured with fNIRS. Online fNIRS 

classification of personal questions with known answers 

and open questions, using linear support vector machine 

(SVM), resulted in an above-chance-level correct 

response rate over 70%. Electroencephalographic 

(EEG) oscillations and electro-oculographic (EOG) 

signals did not exceed the chance-level threshold for 

correct communication despite occasional differences 

between the physiological signals representing a “yes” 

or “no” response. 

 

INTRODUCTION 

 
Amyotrophic lateral sclerosis is a progressive motor 

disease of unknown etiology resulting eventually in a 

complete paralysis of the motor system but affecting 

sensory or cognitive functions to a minor degree [1]. 

There is no treatment available; patients have to decide 

to accept artificial respiration and feeding after the 

disease destroys respiratory and bulbar functions or to 

die of respiratory or related problems. If they opt for life 

and accept artificial respiration, the disease progresses 

until the patient loses control of the last muscular 

response, usually the eye muscles. If rudimentary 

voluntary control of at least one muscle is present, the 

syndrome is called locked-in state (LIS) [2]; ultimately 

as the disease progresses most of the ALS patients lose 

the control of all the muscles, the resulting condition is 

called completely locked-in state (CLIS) [2]. Patients in 

CLIS are unable to communicate with the external 

world because all assistive communication aids are 

based on some remaining motor control; hence there is a 

vital need for an assistive technology to help patients in 

CLIS to communicate their needs and feelings to their 

family members/caregivers. Brain computer interface 

(BCI) represents a promising strategy to establish 

communication with paralyzed ALS patients, as it does 

not need muscle control. BCI research includes invasive 

(implantable electrodes on or in the neocortex) and 

noninvasive means (including electroencephalography 

(EEG), magnetoencephalography (MEG), functional 

magnetic resonance imaging (fMRI), and near-infrared 

spectroscopy (NIRS)) to record brain activity for 

conveying the user’s intent to devices such as simple 

word-processing programs. Non-invasive methods have 

been utilized more frequent than invasive methods for 

people with disabilities (such as those with ALS) [3-7]. 

For these conditions (LIS and CLIS) Brain-Computer-

Interfaces were developed and tested extensively since 

the first publication of Birbaumer et al (1999) [8] of two 

LIS patients suffering from ALS. Patients select letters 

or words after learning self-regulation of the particular 

brain signal or by focusing their attention to the desired 

letter or a letter-matrix (Farwell & Donchin) [9] and the 

attention related brain signals allow the selection of 

desired letter.  While healthy people and ALS patients 

up to the LIS showed successful BCI control and 

communication [10], completely paralyzed ALS 

patients in CLIS did not learn sufficient BCI control for 

brain communication (Kuebler & Birbaumer, 2008) 

[11]. A single case report by Gallegos Ayala et al., 2014 

[12] suggested that a CLIS patient with ALS could 

achieve BCI-control and “yes” - “no” communication to 

simple questions with known positive answers or 

negative answers and some open questions over an 

extensive time period. NIRS was used to measure and 

classify cortical oxygenation and deoxygenation 

following the questions. The BCI methodology used in 

this report departed radically from the previous BCI-
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procedures: a more “reflexive” mode based on learning 

principles of classical conditioning to simple questions 

was used to train the classifier separating “yes” and 

“no” thinking of answers by the patient and instead of 

neuroelectric recording (EEG) functional NIRS (fNIRS) 

was used. 

Hence, an extensive study was performed on four ALS 

patients in CLIS to train them to communicate “yes” 

and “no”. The fNIRS based BCI was employed 

successfully to train patients to regulate their fronto-

central brain regions in response to auditorily presented 

questions. After training a classifier separating “yes” 

from “no” answer for several days the patients were 

given feedback of their affirmative or negative response 

to questions with known answers and open questions 

over weeks [13]. 

 

 MATERIAL AND METHOD 

 

The Internal Review Board of the Medical Faculty of 

the University of Tubingen approved the experiment 

reported in this study and the patients’ legal 

representative gave informed consent for the study with 

permission to publish the results and show the face of 

patients in the publication. The study was in full 

compliance with the ethical practice of Medical Faculty 

of the University of Tubingen. The clinical trial 

registration number is ClinicalTrials.gov Identifier: 

NCT02980380. 

 

Patient 

Patient F (Female, 68 years old, completely locked-in 

state) was diagnosed with bulbar sporadic ALS in May 

2007, as locked-in in 2009, and as completely locked-in 

May 2010, based on the diagnosis of experienced 

neurologists. She has been artificially ventilated since 

September 2007, fed through a percutaneous endoscopic 

gastrostomy tube since October 2007, and is in home 

care. No communication with eye movements, other 

muscles, or assistive communication devices was 

possible since 2010.  

Patient G (Female, 76 years old, CLIS) was diagnosed 

with bulbar ALS in 2010. She lost speech and capability 

to walk by 2011. She has been fed through a 

percutaneous endoscopic gastrostomy tube since 

September 2011, artificially ventilated since March 

2012, and is in home care. She started using assistive 

communication devices employing one finger for 

communication in Feb 2013. Later she was diagnosed 

with degeneration of vision due to cornea defects in 

Sept 2013. After the failure of the finger communication 

device an attempt was made to communicate using eye 

tracking in early 2014. She stopped communicating 

with the eye in Aug. 2014 before the BCI was 

introduced and an attempt was made to communicate 

with the subtle twitch of eye lid which was not reliable. 

The husband and caretaker declared no communication 

with her since August 2014. 

Patient B (Male, 61 years old, CLIS) was diagnosed 

with non-bulbar ALS in May 2011. He has been 

artificially ventilated since August 2011, fed through a 

percutaneous endoscopic gastrostomy tube since 

October 2011, and is in home care. He started 

communicating with a speech device in his throat from 

Dec. 2011 which ultimately failed and he started using 

MyTobii eye-tracking device in April 2012. He was 

able to communicate with MyTobii until Dec 2013 after 

which the family members attempted to communicate 

by training him to move his eyes to the right to answer 

“yes” and left to answer “no”, but the response was 

variable. No communications was possible since August 

2014. 

Patient (Female, 24 years old, locked-in state on the 

verge of CLIS) was diagnosed of juvenile ALS in Dec 

2012. She was completely paralyzed within half a year 

after diagnosis and has been artificially ventilated since 

March 2013, fed through a percutaneous endoscopic 

gastrostomy tube since April 2013, and is in home care. 

She was able to communicate with eye-tracking from 

early 2013 to Aug 2014 but was unable to use the eye-

tracking device after the loss of eye control in Aug 

2014. After August 2014 family members were able to 

communicate with her by training her to move her eyes 

right to answer “yes” and left to answer “no” questions 

until Dec 2014. In Jan 2015 eye control was completely 

lost and she tried to answer yes by twitching the right 

corner of her mouth and that too varied considerably. 

 

Instrumentation 

A continuous wave (CW) based NIRS system, 

NIRSPORT (NIRX), which performs dual-wavelength 

(760 nm & 850 nm) CW near-infrared spectroscopic 

measurement at a sampling rate of 6.25 Hz, was used. 

The NIRS optodes were placed on the fronto central 

brain region.  

During the BCI sessions the EEG was also recorded 

with a multi-channel EEG amplifier (Brain Amp DC, 

Brain Products) from ten Ag/AgCl passive electrodes 

mounted on the same cap. Six electrodes were used to 

acquire EEG signals based on the international 10-10 

system and the selected channels were FC5, FC1, FC6, 

CP5, CP1 and CP6 while four electrodes were used to 

acquire the vertical and horizontal EOG. The signals 

were bandpass filtered using an FIR filter with a 

passband of 0.5 – 35 Hz. The EOG was filtered with 

different filters (3.5 Hz, 10 Hz, and 30 Hz) but none of 

the filters led to significant differences of 

neurophysiological patterns related either to the ocular 

activity or to their SVM-classification accuracies. Each 

channel was referenced to an electrode on the right 

mastoid and grounded to the electrode placed on the Fz 

location of the cap. Electrodes impedances were kept 

below 10 kΩ and the EEG signal was sampled at 500 

Hz.  During all BCI sessions the spontaneous EEG was 

visually controlled by one of the authors (NB or BX) to 

avoid longer periods of slow wave sleep. A BCI session 

was initiated only if the EEG was free of high amplitude 

slow activity below 3.5Hz. 

 

Experiment Procedures 
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An auditory based paradigm was employed to a) train 

patients on questions with known answers, b) give 

feedback on questions with known answers and c) 

answer open questions. Known questions are personal 

questions with known “yes” and “no” answer. Patients 

were asked to think yes or no and if possible also to use 

their previously successful eye movements. Open 

questions are general questions related to quality of life 

and questions of caretakers whose answer can only be 

known by the patient. The BCI study started with 

training sessions during which the patients were 

instructed to listen to 20 personal questions (with 

known answers) consisting of 10 true and 10 

semantically equivalent false sentences, presented in 

random order. Patients were asked to think “ja, ja, …” 

(German for “yes”) and “nein, nein, …” (German for 

“no”) for 15 seconds, during the inter stimulus interval 

(ISI), until they heard the next sentence, as shown in 

Fig1. After the end of each training session the NIRS 

feature necessary to differentiate between “yes” and 

“no” answers during ISI was extracted and classified. If 

the classification accuracies across at least 3 

consecutive training sessions were greater than 65% - 

70% the patients were given online feedback after each 

question. During the online feedback sessions again the 

patients were presented the same sentences as described 

above but now at the end of the 15 sec answering period 

they were given auditory feedback, whether their 

answer was recognized as “yes” or “no”. If the accuracy 

of online feedback was greater than 70% we presented 

the patient with open questions during which he/she was 

always given the auditory feedback of his/her answer. 

The validity of answers to open questions can only be 

estimated by a) face validity (i.e. questions of pain in 

the presence of an open wound), b) stability over time 

and c) external validity estimated by family members 

and caretakers and d) internal validity between 

questions (i.e. the concordance between the answers to 

semantically equivalent questions (e.g., “Berlin is the 

capital of France” and “Berlin is the capital of 

Germany”). Tab. 1 enumerates the total number of 

training, feedback and open questions sessions 

performed by each patient.  

 
Figure 1: The auditory brain computer interface 

paradigm used for communication in CLIS patient.  

 
Patient W received no open questions because of low 

classification accuracy which we and the parents 

attributed to her emotionality distracting her from 

concentrating on the responses due to the short time 

period of adaptation to the CLIS. 
Table 1: Lists the total number of training, feedback, 

open question sessions performed by each patient 

 
 

Data Acquisition and Analysis 

The schematic depicting the acquisition and analysis of 

NIRS and EEG data during the BCI sessions is shown 

in Figure 2. The NIRS data acquired online throughout 

all the sessions was normalized, filtered using a 

bandpass filter of 0.01 Hz – 0.3 Hz and processed using 

Modified Beer Lambert’s law, as described in Cope et 

al. (1987)
 
[14] and Chaudhary et al. (2011) [15], to 

calculate the relative change in concentration of oxy 

(O2Hb) and deoxy hemoglobin (RHb). The relative 

change in O2Hb, with respect to the baseline, calculated 

online during each training session was used to train a 

model and check the cross-validation classification 

accuracy. The offline classification procedure used the 

mean of relative change in O2Hb across each channel as 

input feature to train a 5-fold linear support vector 

machine (SVM) classifier [16]. The SVM [16] model 

interpolates the data corresponding to true and false 

sentences’ ISI in a two-dimensional space such that the 

two categories are divided by a hyperplane and the gap 

between them is as wide as possible. 

 
Figure 2:  The setup and flow diagram of the brain 

computer interface for communication in ALS patients. 

 

Firstly a model space was determined and the input 

feature, extracted from the recorded and processed 

NIRS signal, i.e., the relative change in O2Hb, was 

mapped onto the model space to determine the side of 

the hyperplane the input feature fell on. For the NIRS 

signal the mean of the relative change in O2Hb across 

all the channels was used as input feature to map onto 
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model space, while for EEG and EOG signals temporal 

and power spectral features were used.  The relative 

change in O2Hb, EEG and EOG data acquired during 

BCI sessions from Patient F, G, B and W were 

processed off-line separately for each patient to 

determine: 

1) The statistical difference in the particular 

physiological signal (O2Hb, EEG and EOG) during the 

ISI of true (yes) and false (no) sentences. 

T-tests between the averaged ISI of true and false 

sentences were performed to ascertain the significant 

difference, if any, between “yes” and “no” thinking. The 

t-test analysis was performed across all the channels in a 

session and for all the sessions of acquired O2Hb, EEG 

and EOG signals. Furthermore t-test was also performed 

between the ISI of all the 10 true sentences and all the 

10 false sentences across different channels in a session 

averaged over many sessions varying slightly between 

patients.  

2) Classification accuracy, using SVM as described 

above, of O2Hb, EEG and EOG signals across each 

session between the true and false sentences’ ISI. 

The shapes of the relative change in O2Hb and EOG 

during ISI corresponding to true and false sentences 

from all the sessions were plotted in Figure 3 and Figure 

5 respectively, while the power spectrum of the EEG 

signal, calculated using Welch’s method [17], during 

the same ISIs is plotted in Figure 4.  

 

RESULT 

 

The t-test analysis performed using the relative change 

in O2Hb showed a significant difference between the 

true and false sentences’ ISI across all patients (not 

shown here). While, the same analysis performed using 

the EEG and EOG data across all the training sessions 

showed no significant differences (p > 0.05) between 

the true and false sentences’ ISI across each. The 

relative change in O2Hb in five channels over the 

fronto-central brain region of Patient F, G, B and W 

during the true and false sentence ISI is shown in Figure 

3. Figure 3 illustrates that the shape of the change in 

O2Hb during true sentence ISI is qualitatively different 

from false sentence ISI. Figure 3 also illustrates that the 

shape of the change in O2Hb during a true or a false 

sentence ISI is not consistent between the patients even 

though within each patient the shape of the change in 

O2Hb is stable. Figures 4 illustrates the power spectrum 

density (PSD) of EEG oscillations, in the frequency 

band 0 to 10 Hz, during the true and false sentence ISI 

from patient F, G, B and W respectively. The PSD of 

EEG signal shows that there was no significant 

difference between the true and false sentences ISI 

across all patients. The eye movements (vertical or 

horizontal, patients were free to use any direction) of 

patient F, G, B and W while they were performing the 

“ja (yes)” or “nein (no)” thinking task is shown in 

Figure 5. It illustrates that there was no significant 

difference in the eye movements between the true and 

false sentences ISI for all patients, confirmed by the t-

test: Figures 6, 7, 8 and 9 depicts the SVM classification 

across all the sessions using the change in (a) O2Hb, (b) 

EEG and (c) EOG in Patient F, G, B and W; 

respectively. 

 
Figure 3: The averaged relative change in O2Hb across 

5 out of 20 channels corresponding to YES and NO 

sentence inter-stimulus interval (ISI) in Patient F, G, B 

and W.  In each subplot; five different colored trace 

corresponds to relative change in HbO2 across five 

different channels, x-axis is time in seconds and y-axis 

is relative change in HbO2. 

 
Figure 4:  Power spectrum density (PSD) of 

electroencephalographic (EEG) signal corresponding to 

YES (red solid trace) and NO (blue dashed trace) 

sentence ISI acquired from channel FC6 in Patient F, G, 

B and W.  
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A 65% cut off was used to define whether the 

classification accuracy was above or below the 

acceptable level [18].  

 
Figure 5: The electrooculogram (EOG) signal 

corresponding to YES (red solid trace) and NO (blue 

dashed trace) sentence ISI in Patient F, G, B and W.  In 

each subplot x-axis is time in second and y-axis is EOG 

in micro volt (μV).  

 

 
Figure 6 – Patient F:  Linear support vector machine 

(SVM) classification accuracy across all sessions 1) 

Training (bar plot in spotted black), 2) Feedback (bar 

plot in solid green) and 3) Open question (bar plot in 

solid red) obtained using a) Relative change in HbO2, b) 

EEG and c) EOG data. In each histogram plot x-axis is 

the number of sessions and y-axis is classification 

accuracy. The black horizontal line represents the 65% 

classification accuracy. 

 

The SVM results illustrates that highest classification 

accuracy was achieved using the change in O2Hb for 

which more than 75% of the sessions yielded greater 

than 65% classification accuracy for all the patients 

with an average classification accuracy of 70%.  

 

 
Figure 7 – Patient G:  The description of Figure is same 

as described in Figure 6. 

 

 
Figure 8 – Patient B:  The description of Figure is same 

as described in Figure 6. 

 

 
Figure 9 – Patient W:  The description of Figure is same 

as described in Figure 6. 

 

While the SVM classification accuracy obtained using 

EEG and EOG data only few sessions yielded greater 

than 65% classification accuracy across all patients. 

Classification results using fNIRS for open question in 
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patients F, B and G, using the criteria for correctness 

described above in paragraph 2.3 ranged between 75-

90% “correct”. Patient W with 24 years of age suffering 

from juvenile ALS with an extremely rapid disease 

progression (2 years from diagnosis to CLIS) was not 

asked open questions at that early stage but continue to 

train the BCI at present. 

 

DISCUSSION AND CONCLUSION 

 

All in all, 4 patients in CLIS communicated with fronto-

cortical oxygenation based BCI with an average correct 

response rate of 70% over a period of several weeks. 

Correct response rate for open questions as estimated by 

relatives exceeded even 75% in 3 of the 4 patients. 

Patient W, 24 years with juvenile ALS (completely 

locked-in within 2 years after diagnosis) is still in an 

emotional labile state which prevented us from asking 

her the difficult to validate open questions at the time of 

this study. Patient F, G and B answered open questions 

containing quality of life estimation with a yes response 

indicating a positive attitude towards the present 

situation and life in general as found in larger samples of 

ALS patients [19]. Correct classification of “yes” and 

“no” answers given mentally through fNIRS exceeded 

classification of EEG oscillations from 0-10 Hz (EEG 

frequencies in advanced ALS rarely show high 

frequencies) and vertical and horizontal EOG 

classification. However, despite the absence of reliable 

eye communication in all patients as the inclusion 

criteria in the study, EOG classification often was above 

chance despite the inability of the social environment to 

perceive them and eye tracker’s failure to use them for 

communication [10]. If replicated with ALS patients in 

CLIS, these positive results could indicate the first step 

towards abolition of complete locked-in states at least 

for ALS. 
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