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ABSTRACT: We have previously shown that real-time
fMRI, despite the low temporal resolution of the BOLD
signal, can be used for BCI navigation, using motor-
imagery and -execution. Here we leverage the superior
spatial resolution of fMRI to implement a BCI paradigm
going beyond a single brain network for control, while
retaining an intuitive mapping between brain activity and
BCI functionality. The experiments simulate non-trivial
navigation and item selection tasks by a subject teleop-
erating an HRP-4 humanoid-robot. Motor actions are
mapped into simple navigation commands inside a room
and visual attention is mapped to direct the robot’s arm
toward one of three objects placed on a table. When the
correct item has been selected, the subject navigates the
robot toward the experimenter in order to simulate the
delivery of the object. We describe a method based on
two parallel classifiers, with four and three classes (inde-
pendent of the first four), offline and real-time classifica-
tion results from a single-subject pilot, performing sev-
eral times.

INTRODUCTION

This research is part of a thread of studies aimed at dis-
solving the boundary between the human body and a sur-
rogate robotic representation in a physical reality. The
subject is expected to act as if the robotic body is his own
body, and our aim was to provide the subject with an in-
tuitive thought-based control of this surrogate representa-
tion. The subject was located in Israel and the robot was
located in France; this geographic split was only made
due to the availability of the facilities.
Electroencephalogram (EEG)-based brain-computer in-
terface (BCI) for device control, despite much recent
progress, is still mostly based on three paradigms (with
some variants): motor imagery, P300, and steady state
visually evoked potential (SSVEP). Our overarching goal
in this research is to leverage the superior spatial resolu-

tion of blood-oxygen-dependent-signal (BOLD) in order
to explore novel BCI control paradigms based on multiple
brain systems simultaneously, such that we map different
types of mental patterns to relevant functional goals, ap-
proximating a realistic task. Specifically, in this study we
allow the subject to navigate using three motor classes, to
select one of three objects using the visual system, and a
null class.
There have been several studies including EEG-based
BCI control of avatars [1, 2, 3] and teleoperation of a hu-
manoid robot [4, 5], including studies with spinal cord
injured people [6]. We have demonstrated teleoperat-
ing a humanoid robot using motor imagery and execu-
tion with real-time functional magnetic resonance imag-
ing (fMRI) [7, 8], and others have demonstrated navigat-
ing a robot using covert visuospatial attention [9]. In this
pilot study we aim going beyond these studies, using two
different brain systems simultaneously.

MATERIALS

fMRI scans were performed on a 3T Trio Magnetom
Siemens scanner as described in [7, 10], with a repeti-
tion time (TR) of 2000ms. Our system includes a tool
for whole brain classification of raw data in real-time as
described in [11]. Visual feedback is provided by a mir-
ror, placed 11cm from the eyes of the subject and 97.5cm
from a screen, which results in a total distance of 108.5cm
from the screen to the eyes of the subject.
We used the vision system framework (VSF)1 to ac-
quire, transcode and transmit the video stream between
the scanner (in Israel) and the robot (in France) with min-
imum latency.

METHODS

We created a complete software suite for running a wide
range of real-time fMRI studies, which is able to process

1https://github.com/LIRMM-Beziers/visionsystem
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both brain data arriving in real time from the fMRI scan-
ner and pre-recorded fMRI data [11]. It supports various
experimental protocols, includes several analysis meth-
ods, is integrated with the Unity3D game engine for vir-
tual environment feedback, and can interface with other
external devices. Our tool is efficient in terms of process-
ing, can be configured for a wide range of experimental
protocols and was previously tested in several types of
real-time fMRI BCI experiments. It is based on statisti-
cal machine learning classification of subjects’ brain state
in real time, based on whole brain activity.

Figure 1: Sample stimuli for testing the visual category
task. From left to right the categories are: faces, tools and
houses.

Training and applying classifiers in real-time requires
that learning be executed faster than is generally done in
the application of machine learning to fMRI. Our sys-
tem is optimized for memory usage, processing speed,
and classification speed using feature reduction, fea-
ture selection, and redundant data reduction. The sys-
tem uses pre-recorded raw brain data for the purpose
of learning a classifier using Platt’s sequential minimal
optimization (SMO) version of the support vector ma-
chine (SVM) learning algorithm [12]. The system culls
empty voxels and the subject’s eyes and corrects non-
linear non-homogeneous drifts. For classification and
feature selection we use Weka, which is a collection of
machine learning algorithms [13]. For feature selec-
tion we use the information gain (IG) measure to se-
lect the most relevant voxels [14]. The filtered dataset
is passed into Weka’s [15] implementation of multi-
class [16] SVM [12], using default parameters. The result
of the training phase is an SVM classifier model that can
classify previously unseen vectors. The system automat-
ically verifies that the model classifies the training data
with perfect accuracy (“test on train” for sanity check)
and displays the selected voxels.
In the real-time classification stage, the subjects perform
a task and the system classifies their intentions in real
time. The system classifies a brain scan every time reso-
lution unit (TR), which in this case is 2 seconds. It uses
the filtering and normalization methods as in the training
stage and select the same voxels based on the IG filter-
ing performed at model training. The data is then passed
into the trained SMO model, and the classification re-
sult is then transmitted to the external application using a
user datagram protocol (UDP). The classification process
takes approximately 50 milliseconds. Before moving to
a free choice task the subject undergoes a cue-based part

of the study, the task is similar to training but feedback is
provided based on real time classification.

Figure 2: The HRP-4 humanoid robot’s state-machine
protocol for the visual-motor task.

The subject (female, 31) underwent several training ses-
sions for each classification task: i) motor execution (4
sessions) – moving left fingers, right fingers, toes, and a
null (rest) class; ii) motor imagery (4 sessions) – imag-
ining left hand, right hand, feet, and a null class; and
iii) visual categories (5 sessions) – viewing images of
houses, faces and tools. The motor execution classifier
was trained 3 months prior to this experiment, the motor
imagery classifier was trained 2.5 months prior and the
visual categories classifier was trained 24 days prior.
Each motor training session included 40 events from each
category, i.e., for four training sessions there are 160 la-
belled samples; all details are as in [10]. For visual classi-
fication training is done using a block design – a sequence
of images from the same category is flashed, one per sec-
ond, for 12 seconds, followed by a duration of six sec-
onds during which the category images were painted in
white to allow the signal to return to baseline. The subject
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was trained with 36 image sequences for each category,
i.e., for five training sessions there were 180 samples. In
test sessions each stimulus includes three images from
the three categories simultaneously, and the target cate-
gory is indicated by a fixation dot (Fig. 1). The subject
carried out three such test runs, with 30 stimuli in each
session (10 from each category).

The motivation behind the visual paradigm is to allow the
subject to select one of several objects by visual atten-
tion, even if the multiple objects are seen together. Our
processing pipeline assures that information from the ar-
eas surrounding the eyes is pruned prior to being fed into
the machine learning system [11]. Thus, we expect that
the machine learning system can classify this task by de-
coding, in real time, the activity of the well-known visual
areas in the cortex, corresponding to the visual categories
of faces, tools, and houses. Such decoding in real time
and as part of a BCI task has never been attempted to our
knowledge, and the task is especially challenging given
that the training and testing of the algorithm are not done
in the same conditions – the training is based on a single
image display and the testing is based on three images
shown simultaneously. The goal in this paradigm is to
move towards new naturalistic BCI paradigms, such that
training is done in controlled conditions, and the model
can be applied in real time, in naturalistic conditions,
which may be different than those available for train-
ing. In our case, we expect the classifier to be trained
separately over different object categories, whereas the
free choice task includes multiple object categories at the
same time.

The experiment and the robot’s control were based on a
predefined state machine (Fig. 2). The task included sev-
eral stages, including navigation and object selection (see
Fig. 3 and companion video2). The robot was placed in
a fixed orientation. First, the subject steered the robot
towards a table, by passing an obstacle chair and by uti-
lizing all four motor commands in order to reach the table
(Fig. 4, 3). The subject was instructed to guide the robot
around the chair and then turn towards the printed sign
as seen in 4(b) (on the right). The subject had to read,
through the eyes of the robot, the instructions from the
sign with the target object to select. After seeing the in-
struction, the subject was expected to navigate towards a
table, eventually stopping in front of it. On top of the ta-
ble we placed three objects: a (toy) doll’s head, a (toy)
house, and a tool (either a hammer or a tea cup). Prior to
the experiment, the subject was instructed that in order to
select an object she had to rotate towards the sign to learn
about the target object, and from that moment she had
to focus her attention to the target physical object on the
table at all times and study it, including while walking
to table, until it is selected. For example, if the experi-
menter revealed the word ”face” then the subject had to
focus attention to the head’s eyes, nose and chin, i.e., pay
attention to the features of the object. If the word ”tool”

is revealed, then the subject had to imagine herself using
that tool.
After walking the path, the subject was expected to stop
within grasping distance from the objects. Once the sub-
ject reached the table the steering was deactivated, the
robot stood still and the robot’s left hand was pointed
toward one of the items on the table. The item was se-
lected by a majority vote from the classification at times
0-16 seconds following the instruction from the experi-
ment (8 TRs). The 16 seconds delay was based on the
optimal classification time as determined in offline eval-
uation. If a majority vote did not take place (i.e., a draw)
the classification continued until there was a decision.

Following the classification, the subject had to indicate
whether she agrees with the selection or not using motor
categories. The subject used either motor execution or
motor imagery (in different runs), as follows: feet – try
again, right hand – activate a grasp motion. If the mo-
tor action was classified as null, then the subject received
feedback indicating her to repeat the motor action. The
subject repeated this step until she was satisfied with the
category that was selected. Immediately after the subject
activated the grasp motion by selecting the category, the
robot takes a few steps backward away from the table.
Only then the system is re-activated the steering and the
subject was allowed to control the robot and navigate it
towards the experimenter.

Figure 3: A schematic drawing of the intended walking
path inside the room. The red dot indicates the robot’s
fixed position. The path goes around the chair rotating
towards the sign, and then towards the table that has the
three category items placed on top. Following the visual
task, the path continues toward the experimenter.

During the task our system ran two classifiers in paral-
lel: motor (motor execution or motor imagery) and visual
categories, the former with four categories and the latter

2http://y2u.be/eYSb9Q5PcP8
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with three. The subject teleoperated the robot using all
seven classes: left, right, forward, null class, house, face
and tool. The longest run was 12 minutes. For each run
the subject was assigned with a different target category
(face, house, or tool). During the navigation part of the
experiment, the flow of high level commands (forward,
left, right, null, face, tool, house) was sent to the robot
through a user UDP connection with a latency of 100-150
milliseconds using the VSF.

RESULTS

Throughout the experiment we used three classifier mod-
els: motor execution, motor imagery, and visual cate-
gories. A combination of motor execution and visual cat-
egories was used on the first day of the experiment, and
a combination of motor imagery and visual categories on
the second day. Estimating accuracy for the free choice
is difficult, so we provide offline evaluation of the classi-
fication models.

Figure 4: The HRP-4 humanoid robot during a visual-
motor task, standing in front of three objects. Top: the
target objects as seen from the robot camera by the sub-
ject, bottom: the robot performing the task, escorted by
an experimenter for robot safety.

Offline analysis of the motor classifier is based on a sin-
gle training session (Fig. 5). As expected, a cue-based
session with real time feedback using the same classifier
yields similar results. More real-time data is required to
assess the difference in accuracy in TR3. The motor exe-
cution classifier was trained and tested three months prior
to this real-time experiment and test. Similarly, single-

run motor imagery classification accuracy results can be
seen in Fig. 6; we note that the pre-recorded and real-time
tests were done 3 & 2.5 months apart, respectively.

Figure 5: Motor execution cue-base classification accu-
racy comparison between a single pre-recorded and a sin-
gle real-time run.

Figure 6: Motor imagery cue-base classification accuracy
comparison between a single pre-recorded and a single
real-time run.

Figure 7: Cue-base classification accuracy, comparing
single and triple frame (best run and average).

Offline analysis of the visual classifier was performed as
follows. A single model was trained on five sessions –
overall 180 stimuli, each including one category. The
model was then tested in two conditions: i) another run of
36 stimuli with one image displayed on screen, and ii) a
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run of 36 stimuli, each comprising of all three categories
displayed on the screen simultaneously. Fig. 7 presents
the results, indicating that while both methods perform
significantly better than chance (33%), testing on a single
image is superior to testing on three parallel images.

A qualitative assessment of the subject’s performance can
be provided for the free choice task. In the motor exe-
cution experiment the subject performed the navigation
part successfully in all four experimental sessions. In the
motor imagery experiments the subject failed to stop the
robot near the table and was only successful in the third
session.

Thus, our subject had five attempts at the visual task: four
in the motor execution conditions and one in the motor
imagery condition. The subject succeeded in all cases,
but only in the second attempt (in all of the motor ex-
ecution sessions) or in the fourth attempt (in the motor
imagery session).

The classification seemed to be skewed towards the face
category. Fig. 8(A) shows several red dots that corre-
spond to a successful classification of the “face” com-
mand in each time point during 8 TRs. However, when
the subject was instructed to focus on one of the two
other categories (house or tool) there was category ri-
valry between the classes. Fig. 8(B) is a rivalry exam-
ple that show a fluctuation between “face” and “house”.
When category rivalry occurs, it prolongs the classi-
fication stage and it is harder to get a majority vote.
In other words, without rivalry there are less classi-
fication attempts and a majority vote occurs quickly.

Figure 8: Visual categories real-time classification exam-
ples. The subject was instructed to focus on a) face, b)
house.

DISCUSSION

We have developed a novel paradigm, based on simulta-
neous classification of both motor and visual brain net-
works, and have evaluated it in the context of a complex
navigation and object-selection task, involving teleoper-
ating of a humanoid robot. The pilot study with one
subject serves to demonstrate that our system is fully
operable, and provides a preliminary evaluation of the
paradigm. Our results indicate that the task can be per-
formed, although motor imagery and visual classification
are challenging. Specifically, further work is required to
refine the visual paradigm. Our offline evaluation results
suggest that training subjects on simultaneous images (in
the same fashion as the actual task) may be more appro-
priate.
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