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ABSTRACT: GUIDER is a graphical user interface 

developed in MATLAB software environment to identify 

electroencephalography (EEG)-based brain computer 

interface (BCI) control features for a rehabilitation 

application (i.e. post-stroke motor imagery training). In 

this context, GUIDER aims to combine physiological 

and machine learning approaches. Indeed, GUIDER 

allows therapists to set parameters and constraints 

according to the rehabilitation principles (e.g. affected 

hemisphere, sensorimotor relevant frequencies) and 

foresees an automatic method to select the features 

among the defined subset. As a proof of concept, we 

compared offline performances between manual, just 

based on operator’s expertise and experience, and 

GUIDER semiautomatic features selection on BCI data 

collected from stroke patients during BCI-supported 

motor imagery training. Preliminary results suggest that 

this semiautomatic approach could be successfully 

applied to support the human selection reducing operator 

dependent variability in view of future multi-centric 

clinical trials.  

 

INTRODUCTION 

 

Brain-computer interfaces (BCIs) collect the 

neurophysiological correlates of the brain activity (e.g. 

the electroencephalogram, EEG) and process them with 

the aim of controlling external devices, bypassing the 

neuromuscular system, or providing the user with a 

feedback of specific processes occurring in the brain [1]. 

A growing application field of this technology regards 

rehabilitation and more specifically the improvement of 

motor recovery in stroke patients [2]. In this context 

EEG-based BCIs monitor the modulation of brain 

activity induced by e.g. the imagination of movement. In 

fact, motor imagery (MI) practice elicits event-related 

desynchronization that occurs within EEG frequency 

bands (alpha and beta) and primarily over the scalp in 

sensorimotor cortical regions contralateral to the 

imagined part of the body. The introduction of BCI 

technology in assisting MI practice has been 

demonstrated to uncover the rehabilitative potential of 

MI, contributing to significantly better motor functional 

outcomes [3]. In order to reinforce a specific pattern, 

related to correct MI, appropriate choosing of BCI 

control parameters (EEG features) is needed. In [3], BCI 

features, channels and frequencies, were identified 

according to a “manual” procedure (following EEG data 

analysis from the screening session). Namely, 

neurologists and/or therapists identify the features taking 

into account neurophysiological evidence and 

rehabilitation principles and basing on the visualization 

of matrices obtained from the statistical comparison 

between two conditions (task and rest). This procedure is 

highly dependent on the operator and is not suitable for 

the majority of therapists because it requires experience 

for visualizing patterns of desynchronization in that 

form. 

With the aim to reduce the variability of this procedure 

in view of a wider employ of the BCI-based rehabilitation 

in stroke (e.g. for a multi-centric clinical trial), this study 

proposes the application of an algorithm to automatically 

choose EEG features.  

As reported in [4], the genetic algorithm, the principal 

component analysis, the distinctive sensitive learning 

vector quantization and the sequential floating forward 

selection are the most common features selection 

methods used in BCI studies, especially the last one in 

sensorimotor rhythms-based BCI. In the same context, 

McFarland [5] proposed a stepwise multiple regression 

procedure to periodically update the features used to 

control cursor movement across training sessions. 

According to the stepwise algorithm, the feature that 

most reduces the residual variance (i.e., the variance not 

accounted for by target location) and does so with p-

value less than 0.01 is added to the model. Additional 

features are then added in the same way. After each new 

addition, a backward stepwise regression removes any 

variables for which p-value is greater than 0.01. This 

process continues until no further features satisfy the 

addition/removal criteria. 

As previously mentioned, the identification of 

“appropriate” control features, consistent with 

rehabilitation principles in terms of frequencies and 

areas, is a milestone in rehabilitation protocols supported 

by BCI technology. For this reason, this study proposes 

the application of the method in [5], as automatic method, 

suggesting an essential improvement for the 

rehabilitative field: the inclusion of the operator, 

neurologist and/or therapist and his neurophysiological 

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-19



knowledge, in the features selection procedure. With this 

in mind and in view of a wider employ of the BCI-based 

rehabilitation in stroke, a user-friendly graphical 

interface was developed to guide the operator in the 

feature selection procedure and give him the possibility 

to define some constraints in which the automatic method 

has to run. In the overview [6] of publicly available 

software platforms for BCIs, the presented tool might 

match needs of rehabilitation BCI researchers orientated 

to a translational approach, from machine learning to 

physiology and vice-versa.  

 

METHODS 

 

     Description and operating procedure: GUIDER is a 

graphical user interface (GUI) for semiautomatic and 

physiologically driven EEG features selection. It was 

designed and developed in MATLAB R2015a (The 

MathWorks, Inc., Natick, Massachusetts, USA) and runs 

until MATLAB R2011a. GUIDER allows users to 

interact with BCI data through a graphic interface 

without needing to use MATLAB syntax. Calling 

GUIDER in the MATLAB command window launches 

the first screen (Fig. 1) of the tool.  

 

 
 
Figure 1: MATLAB main window and typical screen shot of 

GUIDER (right side). 
 

The buttons “Load DATA” and “Load MONTAGE” 

allow importing BCI data (GUIDER supports several file 

formats) and montage files, respectively. More than one 

data file could be processed: files are concatenated.  

The “START ANALYSIS” button launches the 

following modules,  

(a) data conditioning module which applies spatial and 

frequency filtering, 

(b) feature extraction module which employs methods to 

estimate the signal spectrum,  

(c) statistical analysis module in which comparison tests 

of two conditions, i.e., two tasks, task vs rest, are 

implemented,  

(d) visualization module that gives output a matrix, 

channels and bins, where the statistical comparison index 

value of any feature is shown in a colour tint. A colour 

bar shows the colour range.  

At the end of these analyses, the user visualizes pattern 

of desynchronization in the form of statistical index 

matrices, each one obtained using a different spatial 

filtering [7], e.g., common average reference (CAR), 

bipolar filters, surface Laplacian filters (other filtering 

options can be implemented). The pop-up menu in the 

bottom part of GUIDER main window allows the choice 

of filtering option (how many and which filters). At this 

point, the operator is required to define topographical and 

spectral constraints taking into account 

neurophysiological evidence and rehabilitation 

principles. This step may be guided by GUIDER or 

manual (Fig. 2). According to the first modality, the 

operator checks which hemisphere and channels to 

include in the analysis. In the manual modality, instead, 

operator selects rectangular areas in the statistical matrix 

after inserting the number of areas of interest in the edit-

text box in GUIDER. The “OK” button closes all figures 

and opens the figures of statistical matrices, according to 

the number and the type of filtering earlier chosen, 

allowing the user to select rectangular areas accordingly 

(Fig. 3). 

The values of features belonging to the areas selected 

manually or by the guided modality, are the inputs for the 

features selection algorithm: the stepwise regression 

(SW). This algorithm identifies an optimal subset of 

predictor variables (i.e. the features) and assigns weights 

to them in order to build an effective regression model to 

evaluate the relationship between the predictors and the 

dependent variable (here equivalent to subject’s 

intention). During each iteration, the algorithm adds or 

removes a feature from the classification model in order 

to obtain a combination of features ensuring a good 

classification performance. GUIDER implements it 

using the MATLAB ® function stepwisefit.m.  

The optimal features and their weights are saved both as 

text file and external parameter file.  

     Proof-of-Concept: EEG dataset from three patients 

(subacute stroke patients with right-sided lesions, 

involved in previous studies at IRCCS Fondazione Santa 

Lucia, [3] for an extended description) were used to 

compare semiautomatic and manual procedure in terms 

of both features selection (channels and frequencies) and 

classification performance. Screening session’s data of 

each patient were analysed to identify the control 

features. Patients were instructed by the therapist to 

perform the movement (grasping and finger extension) 

imagination of their affected hand. During the initial 

screening session EEG signals were collected from 61 

electrodes according to an extension of the 10–20 

International System with 200 Hz as sampling frequency; 

scalp signals were referenced to the linked-ear signal. 

Each run consisted of 15 trials related to motor imagery 

task (grasping and finger extension) and 15 trials of 

baseline rest (9s each). Trials were randomly presented 

within a run. For each trial, we analysed the 4 epochs 

corresponding to the 4 seconds during which the patients 

performed the MI task. In the screening session, the 

subjects were not provided with any feedback of their 

brain activity.  
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To compare the procedures, the number of features 

automatically identified (in the constraints imposed by 

operator using GUIDER) is coherent with the number of 

features manually selected just by observing the 

statistical index matrix. These two control features drive 

the visual feedback to therapist and patient during the 

training sessions. In the training session the patients sat 

in a chair/wheelchair and their hands were covered by a 

white sheet on which a dedicated software projected a 

realistic visual representation of the patient’s hands. The 

therapist instructed the patients to imagine the movement 

(grasping and finger extension) of the affected hand and 

they received a feedback when the trial was successful. 

The feedback consisted in the replication of the imagined 

movement by the virtual hand. 

     Data Analysis: The spectral analysis was performed 

on EEG data epochs (1s long) corresponding to MI task. 

The Maximum Entropy Method (16th order model) was 

employed to estimate amplitude spectrum with a 

resolution of 2 Hz and considering not overlapped 

epochs. All possible features in a reasonable range (i.e., 

0-36 Hz in 2 Hz bins) were extracted and analysed. A 

feature vector, spectral amplitude at each bin for each 

channel, was extracted from each epoch. For each feature 

a contrast was performed to assess statistically significant 

modulation induced on a specific feature. To this aim, the 

coefficient of determination R-square, i.e., the proportion 

of the total variance on the feature samples accounted for 

by target position, was computed for each feature 

(dependent variable).  

     Validation: In order to compare the classification 

performance achieved with both human and 

semiautomatic selection, Area Under Curve (AUC) of 

Receiver Operating Characteristic (ROC) curve was 

assessed in auto-validation and cross-validation 

condition: screening data (previously exploited to obtain 

the control features and weights) and training data were 

used as testing dataset, respectively. Separately, outputs 

of the stepwise regression and the weights assigned by 

neurologists and/or therapists (conventionally, each one 

of -0.5) were the input of a linear classifier for the 

computation of the score used to calculate AUC values.

 

  
Figure 2: Screen shot of the window for the definition of topographical and spectral constraints. In the left side, guided procedure: the operator just 

checks the hemisphere and channels (in the sensorimotor area) to include in the analysis. In the right side, manual procedure: the operator just 

writes in the box the number of rectangular areas he would to select in the statistical matrix that it will following open.   

 
Figure 3: R-square matrix (channels and frequency intervals) obtained from EEG data analysis collected during the screening session and filtered 
using the filter chosen in GUIDER pop-up menu (e.g. CAR). The red rectangular areas (e.g. three areas as those written in Figure 2 right panel) are 

those selected by the operator (according neurophysiological evidence and rehabilitation principles) for the features selection using the GUIDER 

manual procedure.  
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RESULTS 

 

Figure 4 shows the graphic output of the GUIDER 

operating procedure until topographical and spectral 

constraints definition. It displays for Subject 1 (S01) the 

R-square values of all features (61 channels and 18 

frequency bins) after the filtering selection (in this case, 

CAR). The relevant control features selected, just based 

on R-square matrix visualization, by an expert 

neurophysiologist are reported in Table 1 for all three 

patients. The same operator, using the areas selection 

procedure in GUIDER, selected some rectangular areas: 

three for S01, from FCz to FC6, from Cz to C6, from CPz 

to CP6, all ranged from the forth and to the seventh bin 

in the R-square matrix. Two optimal, coherent with the 

number of features selected just based on R-square 

matrix visualization, features identified by the stepwise 

algorithm in those areas are in Table 1.  

The classification performance (AUC) in both auto-

validation and cross-validation condition using the 

features identified in manual and semiautomatic 

(GUIDER) procedure are summarized in Table 2. 

 

 

 

 

 

 

Table 1: Control features identified during BCI tasks at the 

screening session (for three subjects with right-sided lesions) by an 

expert neurophysiologist (manual procedure) and by the 

semiautomatic procedure implemented by GUIDER. For each 
feature EEG channel and frequency are reported (for each 

procedure) in the left and right columns, respectively. 

 

Subject 
Control 

feature 
Manual procedure GUIDER procedure 

S01 
1 CP4 9 Hz CP2 9 Hz 

2 C4 9 Hz C4 11 Hz 

S02 
1 C2 21 Hz C2 21 Hz 

2 CP2 23 Hz Cz 25 Hz 

S03 
1 C4 19 Hz C4 19 Hz 

2 CP4 19 Hz CPz 21 Hz 

 

 
Table 2: AUC values computed in auto-validation condition 

(namely, on data previously exploited to obtain the control features 

and weights) and in cross-validation condition (data from a 

rehabilitation training session used as testing dataset) for manual 
and semiautomatic procedure.  

 

Subject 
Validation 

(V) 

Manual  

procedure 

GUIDER 

procedure 

S01 
Auto-V 0.91 0.94 

Cross-V 0.88 0.88 

S02 
Auto-V 0.76 0.79 

Cross-V 0.74 0.74 

S03 
Auto-V 0.75 0.82 

Cross-V 0.70 0.65 

 

 
 
Figure 4: R-square matrix (channels and frequency intervals) obtained from EEG data analysis collected during the screening session from a 

subacute stroke patient with right-sided lesions (S01). The red (channels CP4 and C4 at 9 Hz) and yellow rectangles (channels CP2 and C4 at 9 Hz 

and 11 Hz, respectively) are features selected (for the rehabilitation training phase) by an expert neurologist and by GUIDER, respectively. 
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DISCUSSION 

 

Identifying the optimal control features is a milestone in 

rehabilitation protocols supported by BCI technology. In 

contrast to other fields of application where optimal 

cursor control is pursued, in a rehabilitation context the 

aim is also to reinforce the appropriate sensorimotor 

activation in terms of both topographic and spectral 

characteristics. Therefore, the feature selection procedure 

requires knowledge coming of neurophysiology and 

rehabilitation principles as well as expertise in 

visualizing pattern of desynchronization in the form of 

statistical index matrices. The manual procedure is 

highly dependent on the operator and is currently 

restricted to researchers with experience in the BCI field. 

Therefore, the aim of GUIDER is twofold: first, to reduce 

the intra- and inter- operator variability of feature 

selection supporting the procedure with a semiautomatic 

method but without giving up to neurophysiological 

principles that characterize the rehabilitation; second, to 

facilitate this procedure for therapists without experience 

with BCIs.  

GUIDER could be a (user-friendly) tool to support even 

non-expert operators in the reproducible identification of 

control features, since it considers both 

neurophysiological and machine learning approaches.  

However, in view of a wider employ of GUIDER, several 

limitations must be addressed in the near future. First, 

although involved operators anecdotally considered 

GUIDER a user-friendly tool, the needs of the target 

group in terms of usability haven’t been evaluated yet 

according to the user centered design approach.  Second, 

the implementation in MATLAB environment, which is 

subjected to licensing issue, will be considered and 

overtaken as a next step.   

The preliminary results suggest that the features 

identified by GUIDER are close to those chosen by 

experienced operators (manual procedure): e.g., CP4 vs 

CP2 at the same frequency and the same channel (C4) at 

neighboring bins (9 Hz and 11 Hz) for Subject 01. 

Furthermore, both procedure’s outputs are congruent 

with the physiological evidences. Also in terms of 

classification performance, the procedures give indices 

(values of AUC) comparable in cross-validation 

condition and higher in the GUIDER application that in 

manual procedure in auto-validation. Hence, the choices 

of neurologists could be reproducible by a semiautomatic 

method that includes the operator and his 

neurophysiological knowledge in the procedure.  

 

CONCLUSION 

 

The introduction of GUIDER and its application in a BCI 

rehabilitation context suggest that it is feasible to support 

the operators during the procedure of features selection 

with a user-friendly tool. GUIDER employs a 

semiautomatic method and takes into account 

neurophysiological evidence and rehabilitation 

principles. Performances are as good as manual selection, 

and GUIDER allows reproducibility of the procedure. 

The latter is a prerequisite for planning large multi-

centric clinical trials, including a larger number of 

patients with several different operators, ensuring the 

comparability of BCI results among centers and thus 

increasing the generalizability of the results.  

 

ACKNOWLEDGEMENTS 

 

This work was funded in part by the Sapienza University 

of Rome - Progetti di Ateneo 2015 (C26A15N8LZ). 

 

REFERENCES 

 

[1] Wolpaw J and Wolpaw EW. Brain-Computer 

Interfaces: Principles and Practice. Oxford, 2012.  

 

[2] Cincotti F, Pichiorri F, Arico P, Aloise F, Leotta F, de 

Vico Fallani F et al. EEG-Based Brain-Computer 

Interface to Support Post-Stroke Motor Rehabilitation of 

the Upper Limb. Proceedings of the Annual International 

Conference of the IEEE Engineering in Medicine and 

Biology Society, EMBS, 2012, 4112–15.   

 

[3] Pichiorri F, Morone G, Petti M, Toppi J, Pisotta I, 

Molinari M et al. Brain-computer interface boosts motor 

imagery practice during stroke recovery. Annals of 

Neurology 2015; 77 (5): 851–65.  

 

[4] Bashashati A, Fatourechi M, Ward RK, Birch GE. A 

survey of signal processing algorithms in brain-computer 

interfaces based on electrical brain signals. Journal of 

Neural Engineering 2007; 4(2): R32-R57.  

 

[5] McFarland DJ, Sarnacki WA, Wolpaw JR. 

Electroencephalographic (EEG) control of three-

dimensional movement. Journal of Neural Engineering 

2010; 7(3).  

 

[6] Brunner C, Andreoni G, Bianchi L, Blankertz C, 

Breitwieser S, Kanoh S et al. BCI Software Platforms. In:  

Towards practical Brain-Computer Interfaces.  Springer, 

2013.  

 

[7] McFarland DJ, McCane LM, David SV and Wolpaw 

JR. Spatial Filter Selection for EEG-Based 

Communication. Electroencephalography and Clinical 

Neurophysiology 1997; 103 (3): 386–94.

 

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-19




