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ABSTRACT: Non-invasive brain-machine interfaces 

(BMI) based on motor imagery (MI) of body limbs have 

been largely studied. However, a non-negligible 

percentage of users do not produce sufficient 

discriminable MI brain patterns. It has been suggested 

that this limitation could be explained by the non-

congruency of the delivered feedback with the attended 

MI task. Following this theory, we propose for the first 

time the use of sensory threshold neuromuscular 

electrical stimulation (St-NMES) during MI task to 

enhance kinesthetic strategies. We hypothesized that St-

NMES would foster subjects MI performance without 

any EEG artefactual contamination by NMES. In this 

offline study, five naïve healthy subjects were recorded 

over two different days using either a visual or St-NMES 

guidance during MI or resting exercises. Results showed 

how, St-NMES led to enhanced MI discriminability and 

classification accuracy. Our findings indicate that St-

NMES is a promising support for future online MI-BCI 

performances. 

 

INTRODUCTION 

 
Perirolandic µ and β rhythms modulations in response to 

motor actions, are a common input control signal for 

brain-machine interfaces (BMI) for healthy and 

paralyzed users [13, 2].  In particular, motor imagery 

(MI) is among the most common tasks to control devices 

via a BMI. MI is defined as a mental representation of 

body actions based on internal sensation of movement 

[10, 17]. However, in practice it can be very challenging 

for some subjects, especially naïve ones, to generate 

discriminable MI brain patterns [10]. A possible 

explanation to this large inter-subject performance 

variability is that the strategy used to perform MI plays a 

key role in the accuracy of MI production. It has been 

proven that the most efficient strategy to perform MI is 

based on kinesthetic imagery (internally feeling the 

movement) preferred over visual imagery (internally 

visualizing the movement) [17]. Indeed, contrary to 

visual imagery, only kinesthetic imagery activates 

sensorimotor brain networks, which are similarly 

observed during motor imagery and motor execution [17, 

7, 8]. Thus, the difference between these two kinds of 

imagery is crucial to improve BMI efficiency, as pointed 

out by previous works. In particular, several studies 

already remarked the importance of emphasized users’ 

kinesthetic experiences instead of visual representations 

during MI [6, 12]. However, despite it is currently well 

known that we have to brief users how to perform 

kinesthetic imagery, BMI remains poorly reliable and 

users’ performance is still limited.  Furthermore, most 

BMI systems are currently based on a visual feedback, 

although other types of feedback could possibly be more 

effective to help subject perform kinesthetic MI. The 

choice of the feedback modality could then have an 

important impact on the accuracy of the BMI. 

Instead of simply delivering the outcome of the 

movement imagery as is common use for visual 

feedback, one possible solution is the use of 

somatosensory afferences in order to deliver kinesthetic 

information and to help subjects to focus on the sensation 

of the movement. Recent studies have already 

implemented continuous somatosensory feedback, such 

as robotic orthosis, vibrotactile stimulation or 

neuromuscular-electrical stimulation (NMES) to 

improve MI performance. Among them, Vukelić et al. 

showed that subjects were able to better modulate β 

oscillatory rhythms with a proprioceptive feedback 

delivered by a robotic orthosis [18]. Reynolds et al. 

demonstrated that NMES during MI induces a larger 

desynchronization of the sensorimotor rhythm compared 

to motor imagery supported only by visual feedback [15]. 

However, the main drawback of the proposed approaches 

is that the use of somatosensory feedbacks alone (such as 

passive movement of the joint [18], muscular contraction 

[15] and even vibrotactile stimulation [5, 6, 9] may also 

activate similar sensorimotor networks [4, 11, 1], even 

without any voluntary motor imagery performed by the 

subject. Thus, it is not yet clear how to provide such rich 

kinesthetic feedback for online experiments or 

kinesthetic guidance for offline MI tasks, without 

interfering with the voluntary modulation of brain 

activity, limiting their usability for online applications. 

In this paper we propose a novel guidance modality to 

guide subjects during MI performance, based on sensory 

threshold neuromuscular electrical stimulation (St-

NMES). This stimulation conveys natural proprioception 

by depolarizing sensory and motor nerves, yet without 

eliciting muscular contraction [15]. The purpose of this 

offline study is to understand the possible impact of this 

new approach on MI classification compared to a 

standard visual guidance. We hypothesize that St-NMES 

guidance does not interfere with EEG detected brain 
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patterns, fosters MI and enhances the discriminability of 

EEG patterns during MI.   

 

MATERALS AND METHODS 

 
Experimental design 

Five right-handed healthy subjects (2 females, age 25.6 

±1.67) naïve in motor imagery practice, took part 
voluntarily in the experiment. The study was approved 

by an internal ethical protocol and participants gave their 

written informed consent before participation.  

The experiment (Fig. 1) was composed of two days of 

recordings during which all subjects were asked to 

perform continuous kinesthetic motor imagery (MI) of 

closing their dominant hand (day 1: n = 60 trials, day 2: 

n = 40 trials) or a resting task (same amount of trials). For 

both days subjects randomly started with one guidance 

modality (St-NMES or visual guidance) then with the 

other one (visual or St-NMES guidance). During the 

second day, a control condition was also recorded during 

which subjects received St-NMES whereas no MI was 

performed. For all 3 conditions (St-NMES, visual, 

control) each trial started with the preparation cue (3s), 

then a cue indicating the type of trial (MI or rest, 1s), 

followed by the task (MI or resting, 4s) and finished with 

the appearance of the stop cue. Inter-trial intervals lasted 

between 3 and 4.5 s.  

 

 

 
 

Figure 1: Schema of the experimental design. The order of the guidance 

modality was randomized across subjects. 

 

St-NMES guidance modality 

NMES electrodes were placed on the Flexor digitorum 

superficialis muscle at the anterior face of the forearm. 

Amplitude of the sensory threshold stimulation (St-

NMES) was fixed for each subject before each recording 

(but keeping the same for both days), and was on average 

5±1 mA. With sensory threshold stimulation subjects felt 

tingling sensation in their palm and forearm but they did 

not elicit any muscular contraction. The frequency of 

stimulation was fixed to 30 Hz for all subjects.  Subjects 

received sensory threshold NMES during the MI task and 

control trials. No stimulation was delivered during 

resting trials. No visual guidance was provided during the 

St-NMES condition. 

 
Visual guidance modality 

We compared our new approach to the standardly used 

cursor paradigm moving in a screen for MI [3] [14] [20]. 

Subjects were instructed to perform kinesthetic MI while 

seeing a bar going up (for MI trials) or going down (for 

resting trials). 

EEG acquisition and trials extraction 

EEG signal was recorded at 512 Hz using a gHiAmp 

system (gTec, Austria) from 60 channels equally 

distributed over the scalp following the 10/10 

International System. EEG was filtered within the 

[1,100] Hz (zero-phase Butterworth 4th order), re-

referenced to linked ears, then common-averaged 

referenced. Noisy channels (detected post-experiment by 

visual inspection) were manually replaced by the mean 

of the orthogonal neighboring channels. Trials were 

epoched and concatenated per condition (St-NMES, 

visual, control), and composed of a baseline from [-3s 0s] 

and a task time window [1s 5s]. Trials with a filtered EEG 

signal above 100 µV were considered artefactual and 

discarded.  

 
Features analysis 

We evaluated the discriminability of MI EEG patterns 

with both guidance modalities (St-NMES, visual) with 

single-sample classification. First, power spectral density 

(PSD) for the 16 channels covering the sensorimotor 

regions (Fz, FCz-1-3-2-4, Cz-1-3-2-4 and Cpz-1-3-2-4) 

were computed using the Welch method with 5 internal 

Hanning windows of 500ms (75% overlap). We 

extracted all the features from µ and β frequency bands 

for all channels, then fed them to principal component 

analysis (PCA). We evaluated the accuracy of each 

guidance modality (St-NMES vs rest, visual vs rest) 

using a linear discriminant analysis (LDA) as a function 

of the number of components retained from PCA (from 1 

to 20). Each classifier was trained with data from day 1 

and tested with data from day 2.  

Additionally, we investigated the impact of guidance 

modality by plotting the first two principal components 

extracted from 4 pairs of tasks: St-NMES MI vs rest; 

visual MI vs rest; visual MI vs St-NMES MI; and St-

NMES MI vs control. 

 

Classification analysis 

We further evaluated the LDA classification 

performance from the following pairs of tasks St-NMES-

MI vs rest, visual-MI vs rest, and control vs rest. Every 

classifier was trained with data from day 1 using the first 

8 principal components (optimal number of features, see 

below) and tested with data from day 2.  For the control 

condition the classifier was trained with data from St-

NMES-MI vs rest from day 1 and tested with the control 

data from day 2. Statistical significance of classification 

was defined from a binomial cumulative distribution 

assuming equal priors (p=0.5) and the number of trials 

available (n = 80) leading to a chance level of 0.60. 

The impact of the guidance modality during the training 

phase of the classifier on the final accuracy was assessed 

by comparing accuracies of classifiers with equivalent 

guidance between the training and testing set to different 

guidance (e.g. training with St-NMES and testing with 

St-NMES versus training with visual guidance and 

testing with St-NMES guidance).  
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RESULTS 

Features analysis 

Figure 2 shows the classification accuracy of MI 

compared to rest as a function of the number of selected 

features. We chose to use eight features as no discernable 

improvement was observed with more features. The 

averaged mean of accuracy across subjects was higher 

for the St-NMES (0.78±0.1) compared to the visual 

modality (0.69±0.1). Despite this improvement was not 

significant (Wilcoxon ranksum test, p=0.31), the power 

of the statistical analysis was low (0.5) and more subjects 

will be needed to draw further conclusions.  

 

Representative cases 

Figure 3 shows the representative case of one subject (s1) 

with larger discriminability with St-NMES compared to 

visual guidance; and another example of a subject (s3) 

who had low performances with both guidance 

modalities. S1 showed discriminable MI patterns with St-

NMES guidance but not with visual guidance. The 

discriminable EEG patterns were induced by MI 

performance and not by the device itself, since the control 

condition, where the subject received St-NMES without 

performing MI, was poorly discriminable from rest. On 

the other hand, s3 showed no clear dissociation between 

distributions during St-NMES and poorly separable EEG 

patterns during the visual condition. 

 
Figure 2: Classification accuracy between MI and rest as a function of 
the number of features selected, for both guidance modalities. The line 

(shade) represents the mean (standard error of the mean) of accuracy 

across subjects. The dashed line represents the chance level estimated 
at 0.60. 

 

 

Classification accuracy 

Figure 4 represents the accuracies of each subjects for 

each guidance modality (St-NMES and visual) as well as 

the classification of a possible bias induced by the St-

NMES itself (control). On average, the accuracy for the 

St-NMES guidance was higher than for the visual 

guidance (accuracies: 0.78 and 0.69, respectively). 

Importantly, the control condition showed no significant 
classification of the St-NMES itself compared to rest  

 

 

 

 
 

 

Figure 3: PCA analysis between the 4 pairs of tasks St-NMES (blue), visual (red), rest (green) and control (yellow). Representation of the two first 
principal components of each pairs of tasks. Each dot represent a sample. The ellipsoids represent the covariance matrix of the distriutions and the cross 

the mean of the distribution. The black line represents the hyperplane computed from an LDA classifier.  
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(accuracy: 0.59). For 3 subjects over 5 (s1, s4 and s5) the 

accuracy increased with the St-NMES compared to the 

visual guidance by 35%, 27% and 26% respectively.  

One subject (s2) had similar accuracy with both 

modalities (St-NMES: 0.84, visual: 0.85), and one 

subject (s3) had better accuracy with the visual modality 

(St-NMES: 0.61, visual: 0.69). Importantly, for every 

subjects except subject 1, the St-NMES itself (control 

condition) did not induce significant detectable EEG 

artefacts. In the case of subject 1, the St-NMES induced 

some discriminable patterns, but they did not explain 

completely the results obtained during MI with St-

NMES. 

 

 
Figure 4: Classification accuracies for each individual subject 
according to the guidance modality and the control condition. The 

averaged accuracy across subjects (with the standard error of the mean) 

is represented on the right part of the figure. The dashed line highlights 
the chance level. 

 

 

Impact of the guidance modality of the training data set 

on classification accuracy 

Previous classification analyses were based on 

equivalent guidance modalities between the training data 

set and the testing data set. However, as illustrated in 

Figure 5, the guidance of the training set had an impact 

on the classification accuracies. Indeed, if the guidance 

modality of the training data set was different than the 

testing set the accuracy was decreased (St-NMES—St-

NMES: 0.78±0.1, visual—St-NMES: 0.69±0.1 and 

visual—visual: 0.69±0.1, St-NMES—visual: 0.61±0.1).  

 

DISCUSSION 

 

In this work we show that St-NMES guidance enhanced 

discriminability of MI pattern and substantially increased 

classification accuracy without interfering with the 

recorded EEG signal. EEG pattern during MI were 

probably enhanced and stronger with the support of the 

St-NMES which led to a better classification. A plausible 

explanation of the obtained results is that St-NMES 

helped subjects to emphasize and focus on kinesthetic 

imagery.  

Figure 5: Classification accuracy based on the testing data set according 

to the guidance modality of the training data set. The dashed line 

represents the chance level.  

 

 

 

As described in the literature kinesthetic imagery 

activates sensorimotor brain regions similarly to motor 

execution [15, 8]. Moreover, it is known that MI is based 

on body representation and on the internal focus of 

sensation of movement. Thus, we believe that our 

somatosensory support delivered by St-NMES guided 

subjects to bring their attention toward the feeling of the 

limb movement and less on the outcome of the task. On 

the contrary, the standard visual guidance did not deliver 

information through somatosensory afferences, which 

may make less natural for subjects to focus on the 

sensation of the movement. As a result, subjects may 

have performed suboptimal strategy during MI based on 

visual guidance. Our results could be explained then by 

more accurate kinesthetic focus which induced more 

discriminable EEG patterns. 

Moreover, it has been shown that in the absence of 

somatosensory feedback, novice subjects were 

spontaneously less able to produce kinesthetic imagery 

[19], which can explain the lack of BMI reliability and 

accuracy [16, 6]. Our study shows that a somatosensory 

guidance appeared to be more suitable to support MI 

tasks and it could improve BMI classification. 

Importantly, our results show that the increase of 

classification accuracy was not due to a bias induced by 

the stimulation but by an improvement in MI task. 

Indeed, St-NMES during rest did not provide detectable 

sensorimotor network activations.  

The representative cases highlighted further elucidated 

the differences in accuracy obtained. S1 was barely able 

to modulate sensorimotor rhythms modulations with 

visual guidance (accuracy: 0.65), but able to perform 

accurate MI with St-NMES (accuracy: 0.88). As a result, 

no discriminable patterns were obtained with visual 

guidance whereas St-NMES guided the user to generate 

more discriminable brain patterns. Our explanation is 

that the visual guidance and the instructions of the task 

were insufficient to guide our subject to perform 
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appropriate MI strategy. In fact, this subject reported that 

it was easier to focus with St-NMES because he knew 

where to focus his attention (behavioral questionnaire, 

results not shown). However, for subject 3 no 

discriminable EEG pattern could be discerned during MI 

task even during St-NMES condition. Further studies 

will have to investigate the reasons of this remaining 

limitation.   

 

Our results are in line with current opinions on motor 

imagery performance. Neuper et al. [12] already pointed 

the importance of emphasizing kinesthetic imagery to 

improve single trial EEG classification. Moreover, other 

studies also showed that a somatosensory feedback such 

as a robotic orthosis [18], vibrotactile stimulation [1, 6] 

or NMES [15] improves BMI classification and may 

induce stronger MI neural correlates. In this study, we 

also showed that results are only due to subjects’ 

improvement and not biased by the feedback alone. On 

the contrary, a continuous robotic feedback which 

induces a passive movement of the joint may induce 

similar EEG patterns and thus, the detected EEG brain 

pattern will be biased by the passive movement and not 

due to an accurate MI. In a similar context, Chatterjee et 

al. [5] also proved that vibrotactile stimulation induces a 

significant bias in BMI MI features, and other studies 

showed that NMES eliciting muscular contraction cannot 

be used as a continuous feedback since it activates similar 

brain networks [11]. 

 

In sum, these results show that the choice of the guidance 

modality can have a significant impact on the induced 

EEG features and classification accuracy. Thus, future 

BMIs may benefit from the use of a continuous feedback 

that does not induce undesirable brain activations but that 

help subject to perform MI. Perhaps logically, this 

feedback should remain the same throughout the entirety 

of the sessions as results have shown that the 

transferability from one feedback to another leads to 

suboptimal performances. 

 

CONCLUSION 

 

MI-based BMI systems have become an interesting tool 

to induce motor recovery and motor learning. However, 

its applicability remains limited for an important amount 

of subjects. In this work, we propose a new kind of 

continuous guidance, St-NMES that has the potential to 

face some BMI limitations by delivering feedback 

congruent with the kinesthetic effort of the task without 

biasing the EEG recordings. Further analysis and online 

experiments will shed light on the applicability of the 

proposed feedback for online BMIs. 

 

REFERENCES 

 

[1] Ahn,S, Ahn M, Cho H, Jun SC. Achieving a hybrid 

brain–computer interface with tactile selective 

attention and motor imagery. J. Neural Eng. 2014; 

11(6): 1741-2552 

 

[2] Birbaumer N, Cohen LG. Brain-computer interfaces: 

Communication and restoration of movement in 

paralysis. The Journal of Physiology 2007; 579(3): 

621-636 

 

[3] Carlson T and Millán JdR. Brain-Controlled 

Wheelchairs: A Robotic Architecture. IEEE Robotics 

&Automation Magazine, 2013, 65-73 

 

[4] Cassim F, Monaca C, Szurhaj W, Bourriez JL, 

Defebvre L, Derambure P, et al. Does post-movement 

beta synchronization reflect an idling motor cortex? 

Neuroreport. 2001; 12(17): 3859-63 

 

[5] Chatterjee A, Aggarwal V, Ramos A, Acharya S, 

Thakor, NV. A brain-computer interface with 

vibrotactile biofeedback for haptic information. J. 

Neuroeng. Rehabi. 2007; 4(1): 1-12 

 

[6] Cincotti F, Kauhanen L, Aloise F, Palomäki T, 

Caporusso N, Jyänki P, et al. Vibrotactile Feedback 

for Brain-Computer Interface Operation. Comput. 

Intell. Neurosc. 2007; 2007: 1-12 

 

[7] Guillot A, Collet C, Nguyen V, Malouin, F, Richards 

C, Doyon J. Brain activity during visual versus 

kinesthetic imagery: An fMRI study. Hum. Brain. 

Mapp. 2009; 30(7): 2157-2172 

 

[8] Hétu S, Grégoire M, Saimpont A, Coll MP, Eugène 

F, Michon, PE, et al. The neural network of motor 

imagery: An ALE meta-analysis. Neurosci. 

Biobehav. Rev. 2013; 37(5): 930-949 

 

[9] Leeb R, Gwak K, Kim DS, Millán JdR. Freeing the 

visual channel by exploiting vibrotactile BCI 

feedback, in Proc. IEEE EMBC 35th, Osaka, Japan, 

2013, 3093-3095 

 

[10] Milton J, Small S, Solodkin A. Imaging motor 

imagery: Methodological issues related to expertise. 

Methods 2008; 45(4): 336-341 

 

[11] Müller GR, Neuper C, Rupp R, Keinrath C,  Gerner 

HJ, Pfurtscheller G. Event-related beta EEG changes 

during wrist movements induced by functional 

electrical stimulation of forearm muscles in man. 

Neurosci. Lett. 2003; 340(2): 143-147 

 

[12] Neuper C, Scherer R, Reiner M, Pfurtscheller G. 

Imagery of motor actions: Differential effects of 

kinesthetic and visual-motor mode of imagery in 

single-trial EEG. Cogn. Brain Res. 2005; 25(3):668-

677 

 

[13] Pfurtscheller G, Lopes da Silva FH. Handbook of 

Electroencephalography and Clinical 

Neurophysiology – Event-related desynchronization, 

Elsevier, Amsterdam, Netherlands (1999) 

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-21



 

[14] Pfurtscheller G, Brunnera C, Schlögla A, Lopes da 

Silva FH. Mu rhythm (de)synchronization and EEG 

single-trial classification of different motor imagery 

tasks. NeuroImage 2006; 31(1): 153-159 

 

[15] Reynolds C, Osuagwu BA, Vuckovi A. Influence of 

motor imagination on cortical activation during 

functional electrical stimulation. Clinical 

Neurophysiology. 2015; 126(7): 1360-1369 

 

[16] Sakurada T, Hirai M, Watanabe E. Optimization of 

a motor learning attention-directing strategy based on 

an individual’s motor imagery ability. Exp. Brain 

Res. 2016; 234(1): 301-311 

 

[17] Solodkin A, Hlustik P, Chen EE, Small SL. Fine 

Modulation in Network Activation during Motor 

Execution and Motor Imagery. Cereb. Cortex 2004; 

14(11): 1047-3211 

 

[18] Vukelić M, Gharabaghi A. Oscillatory entrainment 

of the motor cortical network during motor imagery 

is modulated by the feedback modality. NeuroImage 

2015; 111: 1-11 

 

[19] Wei G, Luo J. Sport expert's motor imagery: 

Functional imaging of professional. Brain Res. 2010; 

1341:52-62 

 

[20] Wolpaw, J.R. and McFarland, D.J. Control of a 

twodimensional movement signal by a noninvasive 

brain–computer interface in humans. Proc. Natl. 

Acad. Sci. U.S.A, 2004, 17849–17854 

 

 

 

 

 

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-21




