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ABSTRACT: Many brain-computer interfaces (BCIs)

measure brain activity using electroencephalography

(EEG). Unfortunately, EEG is highly sensitive to arti-

facts originating from non-neural sources, requiring pro-

cedures to remove the artifactual contamination from the

signal. This work presents a probabilistic interpretation

for artifact correction that unifies session transfer of lin-

ear models and calibration to upcoming sessions. A lin-

ear artifact correction model is derived within a Bayesian

multi-task learning (MTL) framework, which captures in-

fluences of artifact sources on EEG channels across dif-

ferent sessions to correct for artifacts in new sessions or

calibrate with session-specific data. The new model was

evaluated with a cross-correlation analysis on a real world

EEG data set. We show that the new model matches state-

of-the-art correlation reduction abilities, but ultimately

converges to a simple group mean model for the exper-

imental data set. This observation leaves the proposed

MTL approach open for a more detailed investigations of

artifact tasks.

INTRODUCTION

As opposed to artifact-computer interfaces, a brain-

computer interface (BCI) relies on decoding signals of

neural origin. Unfortunately, electroencephalography

(EEG) based BCIs are very prone to contamination with

non-neural noise sources. On the one hand, such ar-

tifacts may deteriorate the signal-to-noise ratio and de-

crease BCI performance. On the other hand, the perfor-

mance may misleadingly increase due to exploitation of

artifact patterns in the learning process. Hence, reduc-

ing the effect of artifacts is a key requirement for BCIs in

order to reliably decode brain activity from EEG signals.

Many successful techniques to enhance the signal-to-

noise ratio in EEG signals have been proposed for BCIs

over the last decades. However, advanced methods like

beamforming [1], Independent Component Analysis [8]
or Common Spatial Patterns [2] often require manual se-

lection of components by an expert for optimal perfor-

mance. While hybrid approaches have been reported to

work well [9], computing filters in the first place is also

prone to noise and may miss signals of interest in favor

of artifacts. It may therefore be advantageous to correct

the signal from known artifact sources before applying

further techniques. A popular method is the correction of

electrooculographic (EOG) artifacts caused by eye move-

ments and blinks using linear regression. This technique

aims to learn the influence of EOG electrodes on EEG

and subtracts EOG artifacts from the EEG signals. Note

that EOG electrodes may accidentally capture brain ac-

tivity from the frontal area, which is then unwantedly

removed in the process. Influence coefficients are usu-

ally determined by regressing the observed EEG signal

[10, 11, 12]. It has been found that averaging over co-

efficients from different signal segments, trials or sub-

jects may increase performance of the artifact correction

[13, 14]. However, approaches based on calibration data

from the upcoming session or time based re-calculation

of the coefficients were also suggested [3, 15]. These

findings motivate a common framework in order to ex-

ploit stability of transfer models while still retaining the

ability to calibrate regression models with new data.

In this work, a theoretical framework is presented that

unifies the combination of influence coefficients from dif-

ferent sessions and the adaptation with new artifacts. The

artifact correction problem is put into a probabilistic in-

terpretation and approached within a Bayesian multi-task

learning (MTL) framework that is already used to decode

brain activity [4, 5, 16]. The presented algorithm is able

to learn a matrix Gaussian prior distribution over artifact

influences from different signal segments, sessions and

subjects. The trained prior can be either used to directly

correct artifacts in new sessions or be calibrated with new

artifacts.

The remainder of this paper is organized as follows. The

method section introduces a probabilistic interpretation

for artifact correction and restates the problem with an

equivalent formulation in order to derive a closed form

solution. It is then shown how the new model can be im-

mediately used for artifact correction and later on adapted

with calibration data. Afterwards, the experimental setup
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and the evaluation of the new model against current arti-

fact regression models is described. The results section

shows that the new model operates on lower correlation

levels in comparison with other models. However, the

MTL algorithm is found to train a simple group mean

over influence coefficients for the artifacts in the data set.

Finally, this paper elaborates on the results with a discus-

sion and concludes with a short summary and future work

on the proposed framework.

METHODS

In this paper, scalars are denoted with lowercase, vectors

with bold lowercase, matrices with upper case and sets

with calligraphic uppercase letters.

Probabilistic Artifact Regression: In accordance with

the literature, we assume that an EEG measurement sam-

ple y ∈ R
k from k channels can be modeled with

y = s + Wn, where s ∈ R
k are the EEG signals,

n ∈ R
m are the artifact sources as measured by m arti-

fact channels and W ∈ R
k×m is the weighting matrix.

W explains the influence of the m artifact sources on

each of the k EEG channels. However, the signal that

is observed at the recording sites is additionally contam-

inated by noise contributions arising from other sources

that we do not keep track of. We therefore extend the

model to y = s + Wn + ε, where ε ∈ R
k repre-

sents the signal contribution from other noise. This model

can be put into a probabilistic relation by assuming that

the noise is distributed according to a zero-mean Gaus-

sian ε ∼ N
(

0, σ2Ik
)

with some variance σ2, where

Ik ∈ R
k×k denotes the identity matrix in k dimensions.

An observed EEG sample y is then drawn from a Gaus-

sian distribution

y ∼ N
(

s+Wn, σ2Ik
)

, (1)

centered at the linear model output and deviating accord-

ing to some noise encoded in σ2.

Multi-task Learning with Artifacts: The weight ma-

trix W is usually determined by linear regression on an

artifactual data set in order to find the influences of arti-

fact sources on EEG channels. However, these influences

may vary across subjects, sessions and trials. We there-

fore regard the regression problem for an artifact as an

individual task and denote the gathered data set of q tasks

with T =
{

D(t)
}q

t=1
. Each task data set D(t) ∈ T takes

the form

D(t) =
{(

n
(t)
i ,y

(t)
i

)}nt

i=1
⊂ R

m × R
k (2)

consisting of a single artifact contaminated segment with

nt EEG samples y
(t)
i measured at k channels and arti-

fact samples n
(t)
i recorded at m channels. Each data set

D(t) ∈ T is associated with a linear regression model de-

fined by its weight matrix W (t) ∈ R
k×m. We denote the

set of weight matrices with W =
{

W (t)
}q

t=1
. Follow-

ing the Bayesian MTL framework presented in [16], we

can state a data likelihood from the probabilistic interpre-

tation in (1) and introduce a prior distribution over the

weight matrices. The prior aims to capture commonali-

ties in the influence of artifact sources to EEG channels

across artifacts. In particular, we assume a matrix Gaus-

sian distribution p(W ) = MN (W | MW ,Σr;W ,Σc;W )
as prior model, where MW ∈ R

k×m is the mean weight

matrix, Σr;W ∈ R
k×k is the row covariance matrix that

captures correlations in the influence between the EEG

channels and Σc;W is the column covariance capturing

correlations between the artifact channels. Unfortunately,

pulling everything together to state a posterior objective

does not yield a closed form solution. However, the re-

lation between matrix and multi-variate Gaussians is ex-

ploited in the next section in order to obtain an analytic

solution for MTL artifact regression.

Bayesian Kronecker Regression: While the MTL

approach using a matrix Gaussian prior does not de-

rive in closed form, the problem can be restated into

a form that yields an analytic solution. First, note

that the matrix Gaussian MN (W | MW ,Σr;W ,Σc;W )
is equivalent to a multi-variate Gaussian of the form

N (vec (W ) | vec (MW ) ,Σc;W ⊗ Σr;W ), where vec :
R

k×m → R
km is the vectorization of a matrix stack-

ing the columns into a column vector and ⊗ : Rk×m ×
R

k×m → R
km×km is the Kronecker product of two ma-

trices [6]. Hence, instead of targeting the weight matrix

W itself, the vectorized version vec (W ) of the weights

can be optimized. In fact, the model stated in (1) is equiv-

alent to a Kronecker formulation of the form

y ∼ N
(

s+
(

n
T ⊗ Ik

)

vec (W ) , σ2Ik
)

. (3)

It turns out that by assuming that the source s and noise

signal n are independent, the artifact regression prob-

lem in this formulation is directly solvable by the MTL

algorithm from [16]. Hence, the maximum a-posteriori

(MAP) estimate of a task weight matrix W ∈ W for task

t is given by

vec (W ) =

(

Σ⊗

nt
∑

i=1

N
(t)
i

T

N
(t)
i + σ2Ikm

)−1

(

Σ⊗

nt
∑

i=1

N
(t)
i

T

y
(t)
i + σ2vec (MW )

)

,

(4)

where N
(t)
i = n

(t)
i

T

⊗ Ik and Σ⊗ := Σc;W ⊗ Σr;W .

Applying the iterative learning algorithm from [16] trains

the parameters of the multi-variate Gaussian prior, i.e. the

vectorized mean vec (MW ) and Kronecker covariance

matrix Σ⊗. The original weight matrix W can be easily

restored from the Kronecker model by reshaping the vec-

torized weights accordingly W = unvec (vec (W )). The

original row and column covariance matrices Σr;W and

Σc;W , respectively, may be obtained from the unvector-

ized weights using expectation maximization algorithms

[17]. An algorithm to obtain the matrix Gaussian param-

eters is outlined in Algorithm 1.
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Calibration-Free Correction: A prior model

MN (MW ,Σr;W ,Σc;W ) encodes shared characteris-

tics across artifact regression models. In fact, the mean

weight matrix MW can be used to parameterize a ma-

trix regression model y = s + MWn. A sample

(y,n) ∈ R
k × R

m from a new session can be there-

fore immediately corrected by computing

s = y −MWn (5)

and using s as the artifact-free sample. This correction

is based on the commonalities found across artifact influ-

ences in different sessions or subjects. Hence, in contrast

to the group mean approach, the MTL algorithm addi-

tionally updates the prior mean in dependency to the co-

variance relations.

Model Adaptation: The Bayesian setting of the MTL

model proposed in this work allows for a natural adap-

tation to calibration data. If a calibration data set D(∗)

becomes available, an adapted weight matrix W (∗) can

be inferred using the MAP estimate from (4) on the data

set D(∗). The prior then acts as a regularizer towards

the shared structure that is controlled by the variance fac-

tor σ2. The correction procedure then follows (5) where

we replace the prior mean MW with the adapted weights

W (∗). The adaptation is also eligible for calibration in

which new artifacts are obtained in an online setting, e.g.

by thresholding techniques [18] or the Riemannian Potato

[7].
Experimental Setup: We performed an evaluation of

the model on real EEG signals recorded from five sub-

jects with four to five sessions. Each subject sat on a com-

fortable chair in front of a screen and began the session

with a five minute resting state recording (eyes open, fix-

ating a cross on the screen). The subject then performed

five to 13 runs of mental imagery with nine trials per run.

As we are only interested in the artifacts of the record-

ings, the exact design of the imagery experiment is of no

further interest in this work (however, details on the data

set can be requested from the authors).

Brain activity during the experiment was recorded using

EEG with 128 electrodes positioned according to the ex-

tended 10-20 system (referenced at TPP10h). The signals

were sampled at 500Hz using actiCHamp amplifiers 1 and

active electrodes.

The recorded EEG signals were divided into training and

test segments. The five minute resting state recording was

used to extract EOG blinking artifacts for model training.

Each training segment consisted of a one second window

containing an EOG blink artifact in the center that was

automatically extracted by variance thresholding. In ab-

sence of explicitly placed EOG channels in the record-

ings, the artifacts were measured at two frontal electrodes

(Fp1 and Fp2) designated to act as sources for EOG ar-

tifacts that measure eye blinks. The data from the exper-

imental runs were then used as test signals for a cross-

correlation evaluation between artifact sources and EEG

Algorithm 1: Multi-task Kronecker Regression

Data: Training sets T as described in (2)

Result: Matrix-variate Gaussian prior

MN (MW ,Σr;W ,Σc;W )
1 Initialize MW = 0, Σr;W = Ik, Σc;W = Im ;

2 Initialize W =
{

W (t)
}q

t=1
with W (t) = 0 ;

3 Set Σ⊗ = Σc;W ⊗ Σr;W ;

4 for D(t) ∈ T do

5 for
(

n
(t)
i ,y(t)

)

∈ D(t) do

6 Compute N
(t)
i = n

(t)
i

T

⊗ Ik

7 while MW and Σ⊗ not converged do

8 for W (t) ∈ W do

9 Train vec
(

W (t)
)

using (4) ;

10 Restore W (t) := unvec
(

vec
(

W (t)
))

;

11 Update MW with the sample mean of the

weights in W;

12 Update Σ⊗ with the sample covariance of the

vectorized weights in W ;

13 Estimate Σr;W and Σc;W from W [17];

channels. Each test segment consisted of a four sec-

ond window where the subject was either in an imagery

phase (with rare eye blinks and little noise) or a pause

phase (with more frequent eye blinks and more noise).

In summary, the models were only trained from contami-

nated EEG samples, while the test segments consisted of

artifact-free as well as contaminated samples. All signals

were preprocessed with a common average reference and

band-passed in 1-40Hz (Butterworth, order 4).

We based our evaluation on the assumption that EEG

source signals are uncorrelated to artifact signals [13].
Accordingly, correction models with lower correlation

between artifact and EEG were considered better. We

compared the MTL regression model for artifact correc-

tion presented in this work against no correction, stan-

dard linear regression and a group mean of weight matri-

ces. The MTL prior and group mean are transfer models

and were trained from artifacts of the training segments

of all subjects, but excluding the subject that was evalu-

ated. The MTL prior model (MTL Reg (P)) was trained

using Algorithm 1. The group mean model (Mean Reg)

was constructed by averaging over the weight matrices

trained from individual artifacts. The standard regression

(Std Reg (A)) and adapted MTL regression (MTL Reg

(A)) were calibrated models trained from the artifacts in

the same session that was been evaluated.

The test segments were corrected with the models and the

Pearson correlation coefficient between the time series of

an artifact source and the cleaned EEG signals were com-

puted. This procedure resulted in 125 normalized cross-

correlation values for a total of 360 test segments (result-

ing in a total of 45000 correlations per artifact source).

The correlation coefficients were pooled and compared

according to their absolute total correlation, density

1BrainProducts GmbH, Gilching, Germany
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Figure 1: Correlation analysis between EOG electrode and the EEG channels. The Pearson correlation coefficient be-

tween EOG channel Fp1 and the 125 EEG channels were computed over all 360 test segments. The top and bottom left

plot show the mean (solid lines) and standard deviation (shaded areas) of the total absolute correlation of each model. The

bottom left plot rescaled the y-axis to highlight the differences between the transfer models. The histogram on the right

shows the density distribution of the correlation coefficients for each model.

Figure 2: An exemplary comparison of the artifact cor-

rection models on a preprocessed EEG time series of four

seconds recorded at channel AF7. The signal was band-

passed between 1 and 40Hz and contains an EOG blink

artifact at 1.5 seconds. All artifact correction methods

visibly attenuate the deflection and follow the original

signal in the segments where no artifact occurs.

distribution and topographic relations. In the following

section, we only present the results for EOG channel Fp1

and omit Fp2, as both channels showed identical behav-

ior.

RESULTS

We first compared the performance of each model in

terms of total correlation. Therefore, the mean correla-

tion values over all 360 test segments was taken at each

EEG electrode. Then, the mean and standard deviation of

the absolute correlations were computed across all chan-

nels. The results for the different models are shown in

Figure 1 (top left and bottom left). The calibrated models

(suffixed by (A)) were trained on an increasing number

of artifacts from the calibration session. The standard

regression approach (orange) shows similar total corre-

lation as opposed to not performing any regression at all

(brown). The MTL and mean regression models show

equal performance by decreasing the total correlation and

variance compared to both, no and standard regression.

The bottom left plot scales towards the MTL models and

the mean regression. Here, the MTL prior (green) and

adapted model (red) have minimally lower correlation

than the mean model (blue). The MTL adaptation per-

formance is equal to the MTL prior and does not change

with more session-specific artifacts to train on.

The top right plot of Figure 1 shows the density distri-

bution of the correlations in a histogram. Performing no

regression at all (brown) exhibits a clear peak at negative

correlations and a smaller at the positive tail. Standard re-

gression (orange) also has modes at the positive and neg-

ative tails, but induces another peak around zero. The

MTL models (red and green) and mean regression (blue)

are again indistinguishable and centered with most corre-

lation values around zero. Hence, the transfer models are

able to keep more correlation values closer to zero than

standard or no regression.

The topographic relations of the cross-correlations are

depicted in Figure 3. The topographies show the corre-

lation difference on each electrode between the two mod-

els pairs in a row and column. Red areas are positive

differences indicating that the row model has lower cor-

relation than the column model. Likewise, blue areas are

negative differences and indicate that the row model has

higher correlation than the column model. Performing

regression lowers correlations mainly at the very frontal

and occipital region. The transfer models (Mean Reg,

MTL Reg (P) and MTL Reg (A)) yield reduced occipital

and parietal correlations compared to standard regression

(Std Reg (A)). While topographic differences between the

MTL models compared to mean regression are present,

there are no clear brain regions where one model outper-
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Figure 3: Topographies of the correlation difference be-

tween two models for artifact source Fp1 and the EEG

channels. Red regions are positive differences and state

the the row-model induces a lower correlation at that re-

gion than the column-model. Likewise, blue regions are

negative differences and imply a lower correlation of the

column-model compared to the row-model. Notable dif-

ferences emerge for EEG channels near the frontal arti-

fact sources (associated with No Reg) and for the frontal

and occipital areas (associated with regression).

forms the other. The MTL prior model (MTL Reg (P))

and its calibrated version (MTL Reg (A)) show no differ-

ences at all.

Finally, Figure 2 shows an example of an EEG times se-

ries from a four second test segment at the frontal elec-

trode AF7. An eye blink occurred at 1.5 seconds and after

the preprocessing it is still clearly visible without EOG

regression (green). Standard regression (blue) manages

to reduce the amplitude, but the deflection is still visi-

ble. The transfer models (red and purple) manage to even

further reduce the amplitude and seem to have visually

corrected the artifact well. The corrected signals follow

the original signal before and after the artifact occurred.

DISCUSSION

The results suggest that the group mean and MTL models

outperform standard regression in terms of reducing cor-

relation between artifact sources and EEG channels. In

fact, standard correction seems to perform worse at some

EEG channels with a varying total correlation, similar to

the uncorrected signal and high negative and positive cor-

relation modes. The differences seem to also occur at rel-

evant brain regions within the frontal and parietal areas.

A possible explanation may be that the standard regres-

sion is able to regress out artifacts well, but corrupts the

signal at some channels when there is no artifact present.

The transfer methods on the other hand account for vari-

Figure 4: Visualization of the matrix Gaussian prior pa-

rameters trained by the MTL algorithm. The top two

plots show topographies of the learned weights associated

with the corresponding artifact source Fp1 or Fp2 on each

channel. In both cases, the influence gradually decreases

with increasing distance to the artifact source. The bot-

tom plot shows a heatmap of the prior covariance matrix

in Kronecker form that was estimated from the vector-

ized form with the standard sample covariance. The co-

variance matrix shows spatial block structures captured

across artifacts from different subjects and sessions.

ability in the artifacts, resulting in more stable regres-

sion models. These results agree with findings that

group means may outperform individual regression mod-

els [13, 14].

Notice that the group mean is a special case of the MTL

learning algorithm where only a single prior update is

performed. This equivalence led to our expectation that

the MTL prior will perform at least as good as the group

mean. Moreover, as the prior was used to regularize adap-

tation with session-specific calibration data, we expected

to further increase performance as opposed to using the

plain prior or group mean. Unfortunately, the MTL prior

and adaptation have trained the same weights and there

are only minimal differences between the MTL and group

mean model. The neglectable difference in total cor-

relation and density distribution indicate that MTL and

group mean essentially trained the same weights. This

conclusion is supported by the lack of correlation dif-

ferences at clear brain regions shown in the topographic

maps. We analyzed the MTL training process and found

that the prior quickly converges within a few iterations.

A possible explanation for the quick convergence may

arise from the rather low dimensionality of the feature
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space compared to the large amount of data points for

training. Hence, the resulting MAP estimates are mainly

based on the data likelihood and do not need to rely much

on the prior regularization. It is further worth noticing

that the MTL adaptation process to calibrate with session

specific artifacts does not increase performance over the

MTL prior. The covariance prior was also analyzed and

showed structure captured across artifacts (see Figure 4),

which implies general spatial feature directions for train-

ing. However, the captured structure did not seem to be

of relevance in case of EOG artifacts, as the final prior

ultimately converge to the group mean and could not be

improved through calibration. A solution to this problem

may have been to not only consider eye blinks, but further

horizontal and vertical saccades.

CONCLUSION

This work presented a probabilistic interpretation of arti-

fact correction that unifies inter-subject linear models and

session-specific calibration. The introduced method com-

bines influence distributions of artifact sources on EEG

channels within a Bayesian MTL framework in which in-

dividual artifacts across sessions and subjects constitute

the tasks. However, the final model ultimately converges

to a group mean of the weight matrices, implicating that

there was no additional session-specific structure across

EOG artifacts that further improved performance of the

model. The MTL framework has already proven to work

well in the case where tasks have few data points com-

pared to the feature dimensionality. In this sense, promis-

ing follow up work is the evaluation of this approach for

other tasks, artifacts and data sets that may contain ex-

ploitable structure across artifact tasks. Further promis-

ing future work may investigate and interpret the influ-

ence structure captured by the covariance matrix. Such

an analysis is likely to give further insights into the be-

havior of artifacts across sessions or subjects and may aid

the development of new models for artifact correction or

regression techniques on EEG signals.
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