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ABSTRACT: Cognitive brain-computer interfaces
(BCIs) are an auspicious alternative to BCIs based
on motor tasks for severely paralyzed patients, e.g.,
those in late-stages of amyotrophic lateral sclero-
sis. These patients, however, are often not able to
volitionally control their eye lids: Undeliberate eye
opening and closing affects modulation of theta- and
alpha-rhythms, which impairs decoding performance
in cognitive BCIs. Here, we demonstrate on EEG
data recorded from nine healthy subjects that a cog-
nitive BCI based on task-induced modulation of the
frequency of the parietal alpha-rhythm is more ro-
bust to eye lid movements than a BCI based on am-
plitude modulation. Specifically, we instructed sub-
jects to either open or close their eyes while perform-
ing cognitive tasks, and show that closing their eyes
decreases decoding performance relative to the eyes-
open condition for amplitude modulation but not for
frequency modulation features. This insight has im-
portant consequences for the design of cognitive BCIs
for severely paralyzed patients.

INTRODUCTION

Humans’ capability to interact with the environment
– whether via motion, sensation or communication –
relies on the precise control of muscles. Several dis-
eases may impair the capabilities of control. Tem-
porary or partially reversible disturbances up to a
complete degeneration of the necessary structures in
the central nervous system can be the consequence in
which case the (complete) locked-in state ((C)LIS) is
the inevitable final condition of the patient [1].
In this condition the only remaining devices for com-
munication are brain-computer interfaces (BCIs).
Most of the well-established designs, however, trig-
ger neural activity in brain areas that are impaired in
some of these patients [2]. Amyotrophic lateral scle-
rosis (ALS) is characterized by a creeping degenera-
tion of the upper and lower motor neurons impairing
motor control already at the central level and hence
neural activity therein [3, 4]. As well, long-lasting
paralysis as a consequence of disorders on lower lev-
els of motor control may likewise affect processing
in central regions due to neuroplastic changes that

result from omitted afferent projections [5–7]. It is
apparent that under these circumstances motor im-
agery based BCIs are likely to be compromised. Be-
cause P300 speller systems [8] indirectly require mo-
tor control to shift the visual attention, they are,
however, likewise affected. The degeneration of neu-
rons in central sensorimotor areas may eventually im-
pair the ability of oculomotor control [9] completing
the locked-in state [10] and impeding the use of BCIs
that directly or indirectly involve motor areas [11].
For these patients another class of BCIs, one that
lacks any involvement of the very areas, is necessary
in order to have a chance of establishing communi-
cation. Cognitive tasks that involve the imagination
of goals of movements [12], language processing [13],
working memory [14–16] and internal self-referential
attention [17, 18] share this characteristic and have
been shown to provide neural modulations useful as
control signals. The big advantage of the cognitive
strategy over another sensorimotor free approach –
learning volitional control over certain neural activi-
ties through neurofeedback training [19,20] – is that
it can be used intuitively. Tasks like mental calcula-
tion, the imagination of words or remembering one’s
own past are convenient, under precise conscious con-
trol and feasible without training.
Functional MRI studies indeed suggest that perform-
ing tasks of this kind induces modulations of large-
scale cortical networks which exhibit correspondent
alterations in the ECoG and EEG signal [16,21,22].
Topographies show the involvement of frontal and
parietal regions in line with networks related to
higher cognitive functions like working memory, at-
tention and self-referential thinking [14,23,24].
Despite this encouraging perspective, online commu-
nication with a CLIS patient using any of these tasks
in an EEG- or even in a less artifactual ECoG-based
BCI has failed to date [11]. A potential cause is di-
rectly related to the impairment and eventual com-
plete loss of volitional eye(lid) movements once the
CLIS state is entered [9,10]. In this condition erratic
and undeliberate eye closing and opening is likely to
occur. Given the vast differences in the electrophysi-
ological patterns resulting from closed and open eyes,
it may likely be that classification accuracies based
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on these signals do not remain unscathed.
The most prominent electrophysiological change that
accompanies eyes closed periods is the power increase
in the alpha band of the EEG in occipital visual
areas [25]. More elaborate investigations revealed,
however, that the power of all of the common EEG
frequency bands in virtually all brain regions is mod-
ulated and that a restriction of functional effects to
visual processing is unlikely [26]. Specifically, Geller
et al. found that besides alpha’s up-modulation in
occipital regions it is likewise affected in parietal
regions and that a spatially diffuse low-frequency
power increase (delta to beta) is accompanied by a
high-frequency (gamma) decrease in some areas [27].
This indicates effects on large-scale cortical networks
whose modulation is intended by cognitive BCIs.
The specific paradigm under investigation in the
present study utilizes activation and deactivation of
the default mode network (DMN) triggered by self-
referential thinking and mental calculation [18]. The
DMN is a prominent example of a large-scale cortical
network whose discovery is directly associated with
the recording of brain activity during closed eyes con-
ditions (EC) [24]. Since the common feature used
for classification in BCIs is task-induced amplitude
modulation (AM), the aforementioned may pose a
significant problem for cognitive BCIs aiming to es-
tablish communication with patients lacking control
over their eyelids. In that light, an interference be-
tween modulations induced by cognitive tasks and
an EC-induced activation appears to be likely.
Recently, another property of the EEG signal was
described to be similarly informative as AM in the
context of BCIs. Jayaram et al. found that task-
induced shifts of the pronounced peaks in the power
spectra of EEG signals (FM) can be used to predict
task conditions in motor imagery as well as in cog-
nitive BCIs [28]. This finding provides a promising
perspective for the design of communication systems
for severely paralyzed patients. Here we test to what
extend AM and FM based classification in a cognitive
BCI is affected by the EC condition and whether this
condition leads to structural differences of the task-
induced AM compared to the open eyes condition
(EO).

MATERIALS AND METHODS

Experimental Paradigm: The mental tasks
performed by the participants were identical to those
described in [18]. The experiment was composed ac-
cording to a randomized block design. Each block
consisted of 10+10 randomized trials in which par-
ticipants had to either memorize a personal posi-
tive experience or perform a mental subtraction task
(trial-conditions). In total, four of these blocks had
to be completed. During two of them participants
were asked to keep their eyes open and during the

other two to keep them closed (block-conditions).
The order of block-conditions was randomized for
each participant. Each trial started with the in-
struction to either recall a positive memory or suc-
cessively subtract a given one-digit number from a
given three-digit number. Trial length without in-
struction time was 35 s. Instructions were presented
both visually and vocally on a computer screen and
via headphones. Before each trial, a 5 s pause sep-
arated it from the preceding one. Experiments al-
ways began with 2×5min of consecutive resting state
recording, one in EO and the other in EC condition.
During these participants were asked to relax and
let their mind wander at will. Following, the ex-
perimental blocks began between which participants
were allowed to have a break if desired.

Data Acquisition: The study was conducted at
the Max Planck Institute for Intelligent Systems in
Tübingen. Ten healthy subjects (5 female, 5 male)
with a mean age of 26±3 years participated and re-
ceived an allowance of 12e per hour. Before the
start of the experiment participants had to fill out
a consent and a questionnaire asking personal data,
former experience with the use of BCIs, the pres-
ence of neurological disorders, drug abuse and level
of fatigue. The experiment started after a detailed
explanation of the task and a demonstration of the
stimuli. Participants were seated in a chair at a dis-
tance of 1.25 m to the screen and asked to remain as
still as possible and to minimize eye blinks during
trials.
EEG was recorded at a sampling frequency of 500 Hz
using actiCAP active electrodes (124 channels) and
the BrainAmp amplifier (BrainProducts GmbH,
Gilching, Germany). Electrodes were mounted ac-
cording to the extended 10-20 system with the left
mastoid electrode as the initial reference and the
AFz-electrode as ground. Before data analysis,
recordings were re-referenced to common average.
Data streams were digitized and stored via Open-
ViBE [29], stimuli were implemented using a custom
BCI GUI. After each experiment behavioral ques-
tions were asked to rate the perceived difficulty of
performing the tasks in the different conditions on a
scale between 1 and 10.

Data Analysis: Preprocessing of the data in-
cluded band-pass filtering between 0.1 Hz to 45 Hz.
Visual inspection lead to exclusion of one participant
due to an abnormal shape of the power spectrum. No
further artifact reduction was performed since the
frequency band of interest is largely robust against
the main sources of EEG artifacts [30]. Bandpower
modulation and frequency modulation for each chan-
nel and trial were computed for the common alpha
band (8 Hz to 13 Hz). The former via FFT and the
latter according to the method described in [28].
This method relies on the analytic signal which is
obtained through the Hilbert transform and provides
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Figure 1: Distributions of the performance across participants for the different features (AM/FM), block-
(EO/EC) and classification-conditions (O/S). Black lines mark the mean and white the median accuracy. Dif-
ference between AM EO O and AM EC O is significant (pmedian = 0.038).

phase information. Derivation of the instantaneous
phase with respect to time yields the instantaneous
frequency. To obtain the location of a trial’s alpha
peak its data was band-pass filtered between the al-
pha band and the median of each data point’s es-
timate used as the instantaneous frequency of that
trial. Linear discriminant analysis was used for clas-
sification. According to the paradigm’s underlying
hypothesis concerning the involved brain areas, clas-
sification was based on channel Pz and channel Fz
providing a two dimensional feature space. Classi-
fication accuracy of each participant and condition
was computed by 100 repetitions of 10-fold cross val-
idated LDA (random split). Mean values across rep-
etitions are reported. To test the significance of clas-
sification against chance level permutation tests were
used, i.e. class labels were randomly permuted 1000
times and for each iteration the classification accu-
racy was calculated again. The fraction of values
greater than or equal to the original accuracy con-
stitutes the p-value. An analog procedure was used
to test the differences between conditions. Here the
difference between the means across participants of
two conditions was used as test statistic and its value
was calculated 1000 times by randomly splitting the
combined set of accuracies into sets of equal size.
The fraction of differences greater or equal to the
original difference constitutes the p-value. Permuta-
tion tests were calculated for each of the LDA repeti-
tions separately yielding distributions of p-values for
each comparison whose median value is the reported.

To further probe the differences between the block-
conditions the classification accuracies obtained by
using the condition’s own classifier, i.e., training and
prediction based on the same data set (O condition),
and the accuracies obtained by swapping the clas-
sifier (S condition), i.e., training on the EC data
and predicting EO data and vice versa, were com-
pared. Perceived difficulties of the tasks in different
conditions were compared using the non parametric
Wilcoxon rank sum test.

RESULTS

Average performance across participants of all con-
ditions was significantly above the chance level of
50 % (p-values not reported here). Fig. 1 shows the
accuracy distributions across participants for each
block- and classification-condition based on AM and
FM within the alpha band at channels Pz and Fz.

Table 1: Mean (top) and median (bottom) accu-
racies across participants separated by trial- and
block-condition in correspondence with Fig. 1 (val-
ues in [%]).

AM EO AM EC FM EO FM EC
O S O S O S O S

75.3 66.7 61 62.1 72 69.2 75 66.8
69.6 57.9 59.4 59.5 80.3 70.4 72.9 67.5
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Figure 2: Individual performances separated by feature and block-condition. Dashed line marks chance level.
AM EO: amplitude modulation in the eyes open condition. AM EC: amplitude modulation in the eyes closed
condition. FM EO: frequency modulation in the eyes open condition. FM EC: frequency modulation in the
eyes closed condition.

Tab. 1 shows the corresponding mean (top) and me-
dian (bottom) values. A significant difference be-
tween the EO and the EC condition was observed
if classification was based on the AM feature in the
O classification-condition (72 of the 100 p-values ob-
tained by LDA iterations were smaller or equal to
0.05, pmedian = 0.038). No significant differences were
found neither between block-conditions if classifica-
tion was based on the FM feature nor between the O
and S classification-conditions of both features. Im-
portantly, classification performance based on FM
is on average roughly the same as based on AM,
though, considering the individual accuracies shown
in Fig. 2, the feature which performs better varies
from participant to participant.
Analysis of the behavioral data suggested no dif-
ference in the perceived difficulty of performing the
memory or the mental calculation task in EO or EC
conditions (pMemory = 0.53, pCalculation = 0.85).

DISCUSSION

We could show that discriminability between trials
with mnemonic content and those without based on
AM in the common alpha range significantly drops
in the EC condition compared to the EO condi-
tion. This is not the case for classification based on
FM; here distinguishability between trial-conditions
is roughly the same in the EO and the EC condi-
tion. Furthermore, classification based on FM meets
the level of the well established AM, concerning the

median values FM even exceeded AM by more than
10 %, proving it to be a very promising feature for
the use in BCIs. Although our initial hypothesis
that a classifier trained on trials of the EC condi-
tion but applied to EO data performs significantly
worse than the condition’s own classifier was not
met, results still indicate a downswing and, in ad-
dition, that the downswing is stronger for AM than
for FM (comparing AM EO O/AM EO S and FM
EO O/FM EO S in Fig. 1). If significant, this effect
would have been evidence for the hypothesis that
task related AM exhibits diverging structures in the
two block-conditions impairing the classifier and con-
tributing to the failure of current BCI systems to es-
tablish communication with patients lacking control
over their eyelid movements.
From another perspective, though, the fact that the
classifier trained on EC data performed better if ap-
plied to EO data than if applied to EC data itself
sheds new light on the issue. It suggests that train-
ing the LDA model on either EO or EC data resulted
in a similarly oriented decision boundary and, hence,
that orientation of the task-induced AM in the EC
condition was preserved but less pronounced in com-
parison with the EO condition.
Another possible explanation for the accuracy drop
from AM EO to AM EC is that it is more diffi-
cult to concentrate on the cognitive tasks during
EC periods causing a weaker modulation of the neu-
ral activity. The rational behind this explanation is
that closing one’s eyes might increase the likeliness
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of mind-wandering and/or effects of fatigue leading
to a weaker involvement with the tasks. However,
probing the ratings of perceived difficulty to that ef-
fect suggests no difference between block-conditions.
Furthermore, in the case of a behavioral cause the
accuracy drop in the EC condition should likewise
be observable if classifying the FM feature. Taken
together, these arguments speak in favor of a gen-
uine effect within the alpha band caused by an in-
terference of the EC related up-modulation and the
task-induced modulations.
The strong up-modulation of the alpha band during
EC periods is a result of a corresponding synchro-
nization of neural activity. A straightforward expla-
nation for the observed drop is, hence, that alpha
synchrony is largely saturated during the EC condi-
tion and that modulation atop triggered by the cog-
nitive task is therefore less effective. This is in line
with the hypothesis that the orientation of the mod-
ulation is preserved in the EC condition but less pro-
nounced. An interference of that kind is supported
by fMRI studies suggesting effects of EC periods on
the topology of large-scale networks [31,32]. Xu et al.
report that the EC condition leads to a higher global
processing efficiency compared to EO and relate this
to an activation of the “introceptive” network which
includes the DMN. Including the assumed correlates
of DMN activation in the EEG [17,33] these findings
provide neurophysiological evidence.
In light of this argumentation it remains unclear why
classification is not impaired if based on FM. As-
suming the activation of the DMN along with EC as
well as along with self-referential thinking and fur-
ther that this activation reflects in an alpha power
increase in either case it may be expected that FM
would suffer the same fate. Nonetheless our results
indicate a dissociation between AM and FM which
can be explained by three settings. First, there is one
neural network whose activity is likewise triggered
by the EC condition and by the task but unlike AM
task-induced FM is effective atop EC-induced effects.
Second, there is one neural network but FM is only
induced by the tasks and not by closing and open-
ing the eyes, or third, there are two distinct neural
networks involved one of which features AM and the
other FM. Considering a study by Thuraisingham et
al. the second option can likely be rejected. Estimat-
ing the instantaneous frequency of EEG recordings
during EO and EC conditions via an Hilbert-Huang
transform they were able to distinguish with an high
level of accuracy between those two conditions [34].
This points to the significance of our results. As in
contrast to AM, the task-induced FM withstands the
block-condition related FM described by Thuraising-
ham et al. – whether because of the involvement
of two distinct neural networks or whether effective
modulations atop the EC-induced modulation –, FM
should be among the routinely considered features

when designing communication systems for severely
paralyzed patients.

CONCLUSION

Frequency modulation appears to be a more consis-
tent feature than amplitude modulation across eyes
open and eyes closed periods in a cognitive BCI
that relies on modulations of parietal alpha rhythms.
This property might help to improve BCI systems for
patients who lost control over oculomotor functions.
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