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ABSTRACT: Learning from label proportions (LLP) is
a recently introduced unsupervised classification method
for event-related potential (ERP) based brain-computer
interfaces. It estimates the target and non-target means of
brain signal epochs based on a known proportion of these
classes in different subsets of the data, which can be gen-
erated by interleaving different stimulus sequences, e.g.,
in a visual ERP speller. In contrast to other unsupervised
methods, estimations obtained by LLP have the theoret-
ical property of converging to the correct class means.
However, the convergence is rather slow. In this paper,
we investigate the effect of varying EEG channel num-
bers as a simple form of regularization onto the perfor-
mance of LLP classifiers by offline analyses. We found
that reduced channel sets can outperform the full set both
in terms of single event classification rate and symbol se-
lection accuracy. This is especially pronounced in the
initial learning phase. These findings suggest that LLP
classification can be significantly improved by reducing
the feature dimensionality.

INTRODUCTION

One of the fundamental tasks in brain-computer inter-
faces (BCI) is to tune the decoder to reliably detect a
user’s intention. This is a challenging problem because
signals do not only differ between subjects, but also be-
tween sessions for the same subjects. While some in-
formation can be transferred from other subjects or ses-
sions [1–3], a portion of task-specific information re-
mains unknown prior to the start of each session. Hence,
the traditional approach is to conduct a calibration ses-
sion before going into the online application. While this
generally works well, some problems are associated with
it, namely that it requires additional time, that wrongly
labelled data may be recorded when the user incorrectly
follows the instructions and that the effect of feedback is
not present during the calibration session, possibly lead-
ing to different data distributions between calibration and
online use of the system [4].

To overcome these problems and avoid calibration ses-
sions, unsupervised methods have been introduced to the

BCI communities which can learn from scratch with-
out requiring label informations. They have the addi-
tional benefit of continuously learning during a session,
thus adapting to possible non-stationarities in the data.
One example is the expectation-maximization (EM) al-
gorithm by Kindermans et al. [5] which is applicable for
BCI paradigms that use event-related potentials (ERPs)
of the electroencephalogram (EEG). It optimizes a like-
lihood function given a probabilistic model of the data.
While it generally works well in practice, it relies on a
good random initialisation and has no guarantee to con-
verge to the right solution. As an alternative unsuper-
vised learning method, we recently introduced learning
from label proportions (LLP) to the BCI community [6].
This method estimates the average responses to target and
non-target stimuli based on ERP data. It exploits known
proportions of target and non-target stimuli contained in
different subsets of the data, but does not require the la-
bels for each stimulus. In contrast to the EM approach,
LLP is guaranteed to converge to the correct class means
(and thus, to the corresponding decoder) given sufficient
amount of data. It also has the advantages of being easy
to implement, has extremely short runtime and is deter-
ministic. However, the convergence is often slower as for
the EM-algorithm. Further details on LLP are provided
in the method section.

An important argument against unsupervised learning is,
that these methods go through an initial learning phase
in which the feedback is relatively unreliable. The major
reason of this effect is the limited amount of (unlabelled)
training data in this initial phase, in combination with the
high dimensionality of the feature space leading to a dif-
ficult unsupervised learning problem. In this paper, we
re-analyse data from a previous experiment to answer the
question whether a reduced number of channels, corre-
sponding to a reduced number of features, can improve
the performance of LLP and shorten this initial ramp-up
phase.

MATERIALS AND METHODS

Learning from Label Proportions

For classification, we used the recently introduced learn-
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ing from label proportions (LLP) for ERP data [6] which
is based on the work of Quadrianto and colleagues [7].
The main idea is to tune the stimulus presentation of
a visual ERP-BCI paradigm such that the prerequisites
of LLP are satisfied – in this way, the experimental
paradigm and decoder are very closely linked and should
be seen as a whole and not as independent steps. In or-
der to enable LLP to estimate the target and non-target
class means, it is necessary that the recorded visual ERP
responses consist of at least two subsets, and that one of
the sets has a higher target proportion than the other. Ad-
ditionally, these proportions have to be known.

The way we created two different subsets is by ran-
domly interleaving two sequences in each single trial
(i.e. spelling one character) of a visual speller. In each
highlighting event of the first sequence, 12 characters are
highlighted, while an event of the second sequence only
highlights 3 or 4 characters resulting in average of 3.5
highlighted characters per event. Because there is a total
of 32 selectable characters, this leads to an average target
ratio of 12/32 = 3/8 and 3.5/32 = 2/18 for the first and
second sequence respectively.

By manipulating the stimulus presentation in that fashion,
we can write the average responses of the two sequences
µ1 and µ2 as a combination of target µ+ and non-target
responses µ−, therefore utilizing our knowledge about
the average proportions.

µ1 =
3

8
µ+ +

5

8
µ−

µ2 =
2

18
µ+ +

16

18
µ−

(1)

As we are interested in the mean target and non-target
ERP responses, we solve the equations for µ+ and µ−
which yields the following two equations.{

µ+ = 3.37µ1 − 2.37µ2

µ− = −0.42µ1 + 1.42µ2

(2)

Two steps are necessary to obtain an estimate of the aver-
age target and non-target ERP responses. In a first step,
the sequence means (µ̂1 and µ̂2) are estimated. In a sec-
ond step, these estimates are plugged into the equation
set 2. Given independent and identically distributed (IID)
data points, the estimated sequence means will converge
to their true value, such that the true class means can be
obtained in the limit.

An implicit assumption of LLP in this formulation is the
homogeneity assumption, which states that the average
target and non-target responses have to be the same in
both subsets. The first precautionary measure to accom-
plish this is to randomize the order of events from both
sequences within each single trial. This should guarantee
that the target-to-target interval (TTI) does not depend on
the sequence, which seems like a desirable characteris-
tic given the known influence of target-to-target intervals

onto e.g. the P300 amplitude [8]. The second precau-
tionary measure we propose is to match the overall vi-
sual stimulus intensity between both sequences. It is ex-
pressed by the overall number of symbols highlighted on
the screen in one point in time. To reach a balanced set-
ting, the traditional P300-spelling matrix was extended
by 10 additional blank/hash symbols (’#’). These are
included only in the second highlighting sequence and
should never be attended by the subject, thus they never
serve as targets. This simple trick ensures that events
of both sequences have the same number of highlighted
symbols per event while having the predefined target and
non-target ratios. An example is depicted in Fig. 1. Apart
from these manipulations, the sequences were generated
in a pseudo-random manner using a heuristic approach
designed by Verhoeven et al. [9] with the goal to mini-
mize double flashes and adjacency distractions. We pre-
viously showed that the homogeneity assumption holds
for the data generated in the above way [6].

Fig. 1: Examples of pseudo-randomized highlighting
events of sequence 1 (left) and sequence 2 (right). Se-
quence 1 never highlights ’#’ symbols, while sequence
highlights 8-9 ’#’ symbols per event.

Classification

Given estimates of the class means, several classifier ap-
proaches are possible. It was previously observed that the
ERP responses for targets and non-targets closely follow
a multivariate normal distribution with the same covari-
ance matrix [10]. Based on this assumption, linear dis-
criminant analysis (LDA) classifier have shown to be very
competitive in ERP-BCI paradigms [11]. These are lin-
ear classifiers looking for the best projection w such that
samples x are assigned to the target class if w · x ≥ 0
and to the non-target class otherwise. It is known that
the optimal projection can be found solely by knowing
the shared covariance matrix Σ and the class-wise means
µ+ and µ− in the following way [10]:

w = Σ−1
(
µ+ − µ−

)
.

In the formulation of Blankertz et al. [10], the class-
wise covariance matrix is used as Σ. However, one can
show that the pooled covariance matrix, i.e. the covari-
ance computed on the complete data-set, leads to a pro-
jection which has the same orientation, but is scaled dif-
ferently [12]. As no label information are used for the
pooled covariance estimation, we can replace the class-
wise covariance matrix by the pooled covariance matrix
and still obtain the same classifier — if the means are
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correctly estimated. In addition, it was shown that regu-
larizing the estimated covariance matrix towards an iden-
tity matrix leads to better performance. Hence, we adopt
the covariance-shrinkage by Ledoit & Wolf as proposed
in [10]. In summary, data is classified by combining the
mean estimations derived from LLP with the regularized
pooled covariance in order to obtain a linear classifier.

To compare the LLP-approach to a traditional classifier,
we included a supervised classifier into our comparisons.
Again, we used a LDA classifier with regularized covari-
ance matrix [10], which is precisely the same model as
described above, only that the class-wise means and co-
variances are estimated using the sample statistics based
on the label information. As supervised classifiers are
much more prone to overfitting than unsupervised ap-
proaches, we estimated the generalization performance
on increasing data sets in a chronological 5-fold cross-
validation.

Data

The data used in this work was previously described in
our paper on LLP [6]. A short summary is given here.
In an online copy spelling tasks, thirteen subjects (5 fe-
male, average age: 26 years) spelled three times the
same sentence of 63 symbols. The stimulus onset asyn-
chrony (SOA) was 250 ms. To spell an individual sym-
bol, a train of 68 highlighting events were presented.
This train is the result of randomly interleaving 32 events
of sequence 1 and 36 events of sequence 2, which had
been generated as described before. A very salient high-
lighting method proposed by Tangermann et al. [13] us-
ing a combination of brightness enhancement, rotation,
enlargement and a trichromatic grid overlay was used.
EEG signals were recorded at 1 KHz sampling rate with
31 passive Ag/AgCl electrodes (EasyCap) placed on the
head according to the extended 10-20 system. The ref-
erence was placed on the nose. After a baseline cor-
rection of each EEG epoch, the ERP features were ex-
tracted as the average potential values in the six intervals
[50, 120], [121, 200], [201, 280], [281, 380], [381, 530]
and [531, 700] ms. Outlier epochs were not removed at
any time during the data processing, however, visual in-
spection ensured, that classification was not performed
based on eye movement artefacts.

The data of all 13 subjects is freely available online at:
http://doi.org/10.5281/zenodo.192684.

Performance Measures

The selection accuracy is the percentage of characters in-
tended to spell by a user and that were decoded correctly
by the BCI system. As the selection accuracy is only
based on 63 symbols per sentence, it is quite a noisy per-
formance metric. It can be evaluated online by reporting
the actual performance observed during the experiment,
but it can also be estimated by a post-hoc offline analysis.

For the latter, we decided to simulate the experiment sev-

eral times and on different subsets of the data. Within
each sentence, the classifier was restarted multiple times
to obtain a better estimate of the selection accuracy. A to-
tal of 7 classifiers were simulated per sentence, and each
classifier was trained on data of 21 characters: The first
one used the characters 1-21, the second one used charac-
ters 8-28, . . ., and the last one used the characters 43-68.
Finally, these spelling accuracies were averaged across
the classifiers, subjects and experimental blocks.

We also looked at how well single targets (attended high-
lighting events) can be discriminated from non-targets
(not-attended highlighting events). This was quantified
by the area under the curve (AUC) of the classifier out-
puts as a threshold-independent and robust performance
metric. The AUC values range between 0 % and 100 %,
with a theoretical chance level of 50 %. An AUC value
of 100 % indicates perfect separation between the two
classes, i.e. the classifier can correctly tell for each high-
lighting event whether it was attended or not. To compute
these values in this paper, we simulated an online exper-
iment with different number of channels where the LLP
classifier was retrained after each character. The perfor-
mance was then computed on the complete data-set up to
that point by using the given label information. Please
note that overfitting is not a problem in this context, be-
cause the classifiers do not use the label information for
training.

Channel Selection

To determine the importance of an EEG channel in iso-
lation, it is a common strategy to estimate its informative
content with respect to the target vs. non-target classi-
fication task. We estimated this by assessing univariate
informative content expressed by the AUC between the
target and non-target features derived from the same six
intervals as mentioned before. This was computed for
each subject and channel. The AUC values were rescaled
to have a theoretical chance level of 0 by applying the
following formula:

AUCrescaled = |(AUCregular−0.5) · 2|

These values were then averaged across all subjects and
intervals to obtain one relevance score per channel. Un-
like in wrapper methods for channel selection [14], this
simple and fast relevance score does not grasp informa-
tive content of a channel which is only expressed in com-
bination with other channels.

RESULTS

Channels sorted according to their descending impor-
tance are shown in Fig. 2. One can observe that the oc-
cipital channels O1 and O2 have the highest importance
which is in accordance with our expectations for a visual
ERP experiment [6] that should elicit class-discriminative
visual ERP components for electrodes located over the
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occipital cortex. The five next top-ranked channels are
mostly located over the centro-parietal cortex, showing a
slight lateralization to the right hemisphere.
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Fig. 2: Channels sorted according to their importance.
The y-axis shows the averaged AUC value across all 13
subjects for each channel.

According to these results, we selected the n first-ranked
channels for n ∈ {3, 5, 10, 31} to run offline experiments
with classifiers trained on smaller channel subsets. In
the simulation with growing amounts of data, the clas-
sifiers were retrained after each additional character and
directly applied to classify the current character. The tar-
get vs. non-target LLP performances reported in Fig. 3
overall reflect a growing amount of information provided
by larger and larger training data sets. Interestingly, a re-
duced number of 10 channels outperforms the complete
set of 31 channels, even if the full amount of data is used.
The difference between channel subsets and the full chan-
nel set is especially pronounced, when data from only few
epochs is available, which corresponds to the early stages
of a spelling session. With more and more training data
available, the configuration with 10 channels remains on
top, while 5 and 31 channels are close behind. The con-
figuration with 3 channels falls back by a good margin.
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Fig. 3: Average simulated LLP classification accuracy
in dependence of the number of channels and training
points. Per trial, the p-value of a Wilcoxon signed-rank
test is given, comparing the results of 31 channels and 10
channels.

When looking at the selection accuracy in the initial
ramp-up phase of LLP in Fig. 4, a similar behaviour is ob-
servable. Again, the full set of channels is outperformed
by a reduced number of channels. Around 70 % of the
characters are already classified correctly from the third
character on, when using a reduced channel number. This
corresponds to less than a minute of training time. After
a bit more than 2 minutes of training time, the selection
accuracy already exceeds 80 % for the configuration with
5 or 10 channels.
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Fig. 4: Average simulated LLP selection accuracy as
a function of training time / amount of data points and
channels.

Finally, we ran a simulation of a supervised shrinkage-
LDA classifier to compare the effect of reduced channel
subsets with those observed for LLP. Fig. 5 shows that
10 channels significantly outperform 31 channels when
few data is available. However, the supervised classifier
is able to learn much quicker and utilize the additional in-
formation from all channels leading to significantly bet-
ter performance when data of more than 15 characters is
available.
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Fig. 5: Average simulated supervised single epoch ac-
curacy as a function of training time / data points and
channels. For each character, the complete data up to that
point was divided in 5 chronological parts and a cross-
validation was applied. The p-values show the outcome
of a Wilcoxon signed-rank test between the configura-
tions with 31 and 10 channels.
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DISCUSSION

In theory, more information is contained in the complete
channel set. Reducing the number of channels corre-
sponds to a reduced model complexity and less free pa-
rameters and effectively regularizes the learning problem,
which can be a beneficial strategy for smaller data sets.
In accordance with this reduced complexity, the LLP was
able to learn the essential characteristics in our simula-
tions much faster with reduced channel sets. The best per-
formance could be achieved with 10 channels. While this
is an expected outcome, it is interesting that LLP could
not reach a superior performance for the full channel set
despite the full amount of data provided. To explain this,
one hypothesis is that even when a lot of data is avail-
able, a reduced number of channels, which are highly
correlated to the control task, could facilitate the learning
of LLP in comparison to using more channels which are
potentially polluted by task-irrelevant features, including
noise. The alternative hypothesis is that our experiment
has just not delivered a sufficient amount of data in order
to make the 31 channel LLP outperform the smaller sub-
sets. Looking at the results from the supervised classifi-
cation, one can see a similar behaviour in the early stage,
but the configuration with 31 channels quickly rises to the
top.

The similarity of the behaviour is in accordance with our
theoretical considerations in [6], where we introduced the
term noise amplification factor (NAF). It measures how
much more data is necessary for LLP to reach the same
accuracy in the class mean estimation compared to the
supervised case. This NAF metric depends on the tar-
get and non-target ratios of each sequence and can be in-
fluenced by designing the experimental paradigm. For
the sequences used in this data-set, the NAF was around
20. We observe that – with growing data – the un-
supervised LLP behaves like a slowed-down supervised
method. This is expressed by a qualitatively similar be-
haviour of the curves, as they display the same order of
intersection points in Figures 3 and 5 with growing data
set sizes. Observing this similarity in the behaviour of
the LLP and the supervised methods supports the second
hypothesis that the LLP configuration with 31 channels
will eventually outperform the smaller channel sets when
a sufficient amount of data is available.

We cannot directly observe a slowing factor of 20, which
would correspond to the NAF. One of the causes is that
the performance of these classifiers is not only dependent
on the quality of the estimated class means, but also on
the quality of the estimated covariance matrix.

Realizing the slow ramp-up behaviour of LLP with large
channel sets, a possible mitigation strategy is to start with
a low number of channels and incrementally increase the
number of channels and features over time. A similar
approach was already proposed for motor imagery data

classification [15, 16]. By developing new adaptive fea-
ture selection methods, other unsupervised methods, e.g.
the MIX method [17], which is the combination of LLP
and an expectation-maximization algorithm, could also
benefit.

CONCLUSION

By re-analysing data from 13 subjects performing a copy-
spelling task, we showed that the unsupervised LLP clas-
sifier can be significantly improved by simply reducing
the number of utilized features. Interestingly, this is not
only the case during the initial ramp-up, but even during a
later stage of the experiment when more data is available.
In contrast, a supervised classifier only benefits from a
reduction of features in the early stage. This behaviour of
the unsupervised LLP method can be understood by con-
sidering it as a slowed-down version of the supervised
algorithm with the same guaranteed convergence. Future
work will go towards the development of adaptive feature
selection method for unsupervised classifiers utilizing the
observations made in this paper.
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