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ABSTRACT: In a vision of a perfect brain-computer inter-
face (BCI), a user would be able to use the system instantly
without the need for a subject-specific calibration, and the
performance would remain stable and not deteriorate over
time. However, this remains a vision, due to two char-
acteristics of the electroencephalography (EEG) signals:
non-stationarity and inter-subject variability. Inter-subject
variability describes the fact that the EEG of each per-
son is different and for sufficient BCI communication,
the BCI needs to be calibrated separately for each user.
Non-stationarity describes a change over time of the EEG
signals leading to a decrease in BCI performance with
prolonged use. In an approach to better understand these
issues, we analyzed the event-related potentials (ERP) and
spectral EEG data of 23 subjects in terms of these charac-
teristics. We found that both issues highly affect the data,
but we were able to identify a method that nearly elim-
inates non-stationarity, whereas inter-subject variability
remains a major issue that needs to be further addressed.

INTRODUCTION

Using EEG for the signal acquirement in BCI applications
is very common and broadly used in research but has some
obstacles that prevent a user friendly usage out of the lab.
Since scalp EEG recordings represents the summarized
activity of a great number of neurons, small changes in the
mental state of the user can already make a difference in
the overall activity that can be measured. Therefore, train-
ing phases before every session are necessary to adapt the
system to the current EEG characteristics and mental state
of the user in order to guarantee a good performance of
the system. Even with long training phases before the start
of a session major decrease in performance can occur with
increasing time of the session. This will result in a loss of
usability and increasing frustration of the subject, which
is naturally not desired. Non-stationarity of the signal can
be the cause of this, introduced for example by mental
changes of the subject (fatigue, disengagement,..) or tech-
nical changes (drying electrode gel), leading to differences
in the appearance of the trained target signals which in
turn leads to a failure of the classifier. Decreasing perfor-
mance with duration of a session or especially in between
offline and online sessions due to a change of the target
signal has been observed numerous times. An online, real-
time, adaption of the classifier to the upcoming changes

in the brain activity is one way to deal with this issue. The
classifier is recalibrated by integrating currently recorded
data into the already existing data. Supervised [1] as well
as unsupervised [2,3] methods have been proposed for the
implementation of adaption mechanisms, partly solving
this issue. It has also been suggested that the combination
of different types of classifiers can reduce the issue of
non-stationarity, as they complement each other [4].
Apart from issues within a single session or between on-
line and offline sessions, there are also issues between
different subjects that have hardly been solved so far. The
issue can be referred to as inter-subject variability which
prevents the successful transfer of a previously trained
classifier to a new subject, since the differences in EEG
signals are usually too big between subjects even though
the same task is performed. In some cases normalization
methods have been used in order to deal with this vari-
ability as for example scaling the data to the mean and
standard deviation of a certain number of baseline trials
[5]. This can reduce the problem but still cross-subject
classification is significantly worse than within subject
classification, leaving cross-subject classification an open
problem. Other methods like transfer learning, super-
vised as well as unsupervised, provide the same portion
of solution. Information from previously collected trials
and subjects can be used to infer knowledge to new and
unknown data. Approaches using hierarchical Bayesian
models based on Gaussian probability distributions [6,7]
or k-Nearest Neighbor approaches [8] for training and
optimizing a classifier based on old and new data have
been introduced. Almost all approaches are still adap-
tive since the collection of new and subject specific data
is necessary to update the classifier and to integrate sub-
ject specific information into the classification approach,
therefore persisting the necessity of individual training.

In contrast to this, other approaches were implemented
in which researchers used the distinct differences of EEG
signals of different subjects during the same task to their
advantage. It could be shown that an identification or
authentication of a specific subject out of many is possible.
Armstrong and colleagues used ERP characteristics [9]
and Palaniappan features based on the power spectrum
[10] for the authentication of a specific subject which was
successfully with almost no errors. This opens up new
possibilities for applications using EEG-BCI technology.
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The aim of the analysis of this paper is to quantify the
extent of non-stationarity and inter subject variability in
EEG data to better understand these properties. A large
dataset from a standard BCI application was chosen for
an anew analysis with respect to the mentioned factors.
The data set allowed within and between session as well
as between subject comparisons which were evaluated
with classical correlation and classification measures. The
following sections will describe the properties of the
chosen dataset, the methods used for quantification of
the two stated issues and several approaches to deal with
non-stationarity in EEG data.

MATERIALS AND METHODS

Data: A dataset of Spüler and colleagues [11] consist-
ing of EEG recordings of 23 subjects participating in a
P300 speller experiment was used for the analysis. The
dataset consists of 2 sessions on two different days for
each subject. The participants can be divided into three
groups according to their age and health status. Group 1
consists of 9 subjects between age 20 - 28, Group 2 of 8
subjects between age 39 - 52 and the third group was a
patient group with severe motor impairments consisting of
6 subjects between the age of 36 - 63. The montage was,
in standard 10/20 positions, with electrodes at positions
F3, Fz, F4, T7, C3, Cz, C4, T8, CP3, CP4, P3, Pz, P4,
PO7, PO8, Oz. Ground and reference electrodes were
placed at the left and right mastoid, respectively and the
signal was sampled at 256 Hz. The P300 speller consisted
of a 6x6 matrix in which the 12 rows and columns of sym-
bols were flashed in random order. Each intensification
lasted for 62.5 ms and the matrix remained blank for 125
ms between flashes. In one sequence, each row and col-
umn were flashed exactly once. One trial contained 2-10
sequences, depending on the subject. This dataset was
chosen as it was comparably big and it included two ses-
sions per subject. Therefore, it provided the opportunity
to investigate changes across subjects and changes over
time within a session as well as across sessions. To that
end, inter subject variability as well as non-stationarity
can be evaluated and compared within this dataset.

Data processing: For the analysis, ERPs and power
spectra of the data were evaluated. The power spectra
were calculated for each trial separately with Burgs maxi-
mum entropy method [12] (modelorder 16), from 1 to 30
Hz in 1 Hz bin. In contrast to that, ERPs were averaged
over several target intensifications, to improve the signal
to noise ratio. One ERP in the analysis was calculated
by sequentially averaging over 50 target intensifications
using a sliding window approach with a step size of 10.
This lead to an average number of 237 trials (± 49) and
145 (± 68) ERPs for session one and 273 trials (± 80) and
169 (± 68) ERPs for session two.

Inter subject variability: Evaluating the effect of inter-
subject variability was done by a classification approach
that aimed to assign ERPs and power spectra to the sub-
ject they originated from. Two different approaches were

tested, one with the aim to identify a subject correctly on
the basis of the ERPs (or power spectra) and the other
one with the aim to authenticate a subject on the same
signals. Since distinct differences between subjects are
assumed to be present, a SVM classification approach
should be able to separate the data of different subjects ac-
cording to their differences. For the identification scenario
a one vs one classification was implemented in which it
is tested how well a subject can be identified within a set
of subjects. Therefore, one classifier was trained on one
session for each pair of subjects and tested on the second
session of all possible pairs. To determine the accuracy a
multiclass-classification was performed.
For the authentication scenario a one vs all classification
was implemented. One individual classifier was trained
for each subject to distinguish between data of the subject
itself and the data of all others. Again one session was
used for training, the other session used for testing. In this
case sensitivity and specificity were used as performance
measures to account for the highly unbalanced classes. If
the signals of one subject can be extracted from a variety
of signals, it validates that the signal of a single subject
does stand out and is distinct. It can be seen as an au-
thentication approach since a yes or no decision is made,
answering the question if the signal belongs to the person
in question.
In consequence both classification approaches reveal a
measure to quantify the inter-subject variability within
the given dataset. The higher the performance measures
the higher the variability between subjects. For both ap-
proaches a C-SVM from the libsvm implementation [13]
for Matlab was used in a 5-fold cross-validation. The data
of all 16 electrodes was used for the classification.

Non-stationarity: To evaluate the non-stationarity of
the signal linear regression models were fit to the ERPs
(and the power spectra) and the time of their occurrence
in the recording (1...n), again in a 5-fold cross-validation.
The occurrence in the recording was labeled consecutively
with increasing numbers representing the time of appear-
ance. This was done individually for each subject and
session. The regression models are evaluated by calculat-
ing R2 values to estimate how well the time of recording
can be predicted from the EEG signals. The R2 value de-
notes the proportion of variance in the target variable that
is explained by the predicted values. Systematic changes
over time that can be described by a linear function should
lead to a strong correlation, therefore, quantifying non-
stationarity to a certain extent. In addition to quantifying
non-stationarity, several methods to decrease the influ-
ence of non-stationarity were tested and evaluated. The
measure for quantification of non-stationarity after the
application of the tested approaches remained the same:
A fitted linear regression model and its corresponding R2

values, representing the correlation between actual and
predicted time in recording.
(1) First covariate shift adaption was applied to the data.
It reduces trial to trial variability in the distribution of
spectral power, by normalizing the power with an averag-
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ing approach shifting over a certain number of preceding
trials. The originally proposed window size of w = 15 was
used [14].

(t) = P (t)− 1

w
(

w∑
i

P (t− i)) (1)

The hypothesis is that an overall reduced variability might
erase the change in signal introduced by non-stationarity.
(2) As a second approach lateral symmetry was calculated
on the data for the electrode pairs (F3-F4, T7-T8, C3-C4,
Cp3-Cp4, P3-P4, Po7-Po8). It reveals lateral disparities
or asymmetries between the two hemispheres and could
possibly minimize systematic changes that are present in
the signal. Two different ways of calculating the differ-
ence were applied. Once the signal of the two electrodes
was subtracted before transferring it into the frequency
domain, and the other time the signal was subtracted after
transferring it to the frequency domain.
(3) As a last approach event related desynchronization
or synchronization (ERD/S) was computed by using the
difference of the power spectral density of the trial and
a time frame of equal size shortly before (pretrial) [15].
The quotient of the difference and the power of the pretrial
reveals the ratio of how much the power has changed due
to an event by a (de-)synchronization of firing neurons.
Again the hope is that this mathematical approach might
erase a possibly present systematical change in the signal.

ERD/S =
Ptrial − Ppretrial

Ppretrial
(2)

RESULTS

Tab. 1 shows the results of the analysis concerning non-
stationarity in the data. It includes the R2 values between
the actual time in recording of a trial and the predicted time
(with regression methods) for session one. Session two
revealed the same trend which is why only the results of
one of the two is shown. The individual columns represent
the different signals that were used for the analysis, stan-
dard ERP and power spectrum and the transformed data
according to the four suggested methods. When looking
at column two and three it can be seen that the prediction
quality is much higher for the spectral density distribution
than for the ERPs on average for all subjects. When com-
paring those two columns to the remaining ones in the
table it can also be seen that applying lateral symmetry
(difference calculated after) to the data reduces the R2

value notably, whereas ERD/S reduces it to almost 0. The
other two methods have smaller or no notable effects on
the correlation with the time of recording. Tab. 2 shows
the results of the evaluation of inter-subject variability. It
is quantified by the classification performance measured
in accuracy or sensitivity and specificity depending on the
mode of classification. The table is divided into two parts,
each representing one mode of classification. Identifying
the signals of an individual subject (across sessions), rep-
resented in the left part of the table, works better on the

basis of ERPs than on the basis of the spectral density
distribution (One vs One). The same observation can be
made for the authentication approach (One vs All). The
One vs All approach reaches very high specificities (TNR)
for both signal types (above 97%), whereas the sensitivity
(TPR) is much lower in both cases, but significantly better
for ERP than spectral data (0.76 vs 0.49 on average respec-
tively). In both approaches it can be seen that the variance
of the performance between subjects is rather high, espe-
cially for classification on the spectral data. Both tables
reveal that there seem to be differences between the three
groups of subjects more or less pronounced throughout
the various approaches.

Figure 1: The colors indicate the squared correlation (R2)
between spectral features and the time of recording for
each subject and both sessions. Channels from top to
bottom: Po8, Oz, Po7, P4, Pz, P3, Cp4, Cp3, T8, C4, Cz,
C3, T7, F4, Fz, F3)
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Table 1: Correlation (R2) of the actual time and predicted
time of each trial in the recording, regression based, for
23 subjects of 3 groups. a) Covariate Shift adaption, b)
Lateral symmetry (before), c) Lateral symmetry (after), d)
ERD/S

Sub ERP Spec a) b) c) d)
S01 0.20 0.38 0.40 0.38 0.22 0.01
S02 0.37 0.80 0.62 0.82 0.71 0.11
S03 0.37 0.33 0.63 0.20 0.04 0.03
S04 0.20 0.23 0.57 0.72 0.04 0.01
S05 0.30 0.67 0.46 0.60 0.45 0.12
S06 0.29 0.22 0.43 0.29 0.06 0.06
S07 0.50 0.24 0.51 0.35 0.08 0.07
S08 0.20 0.16 0.49 0.31 0.06 0.01
S09 0.21 0.26 0.36 0.10 0.05 0.02
Mean 0.29 0.37 0.50 0.42 0.19 0.05
S10 0.16 0.41 0.46 0.47 0.19 0.01
S11 0.49 0.73 0.36 0.48 0.35 0.02
S12 0.14 0.26 0.20 0.32 0.15 0.03
S13 0.34 0.81 0.62 0.76 0.71 0.04
S14 0.30 0.22 0.66 0.44 0.09 0.06
S15 0.19 0.83 0.32 0.73 0.69 0.07
S16 0.28 0.54 0.35 0.59 0.14 0.02
S17 0.13 0.67 0.43 0.57 0.32 0.04
Mean 0.25 0.56 0.42 0.55 0.33 0.04
S18 0.12 0.85 0.36 0.89 0.75 0.11
S19 0.08 0.81 0.54 0.80 0.58 0.01
S20 0.18 0.78 0.37 0.80 0.76 0.10
S21 0.02 0.74 0.60 0.66 0.77 0.01
S22 0.14 0.89 0.25 0.56 0.87 0.04
S23 0.08 0.60 0.71 0.75 0.55 0.03
Mean 0.10 0.78 0.47 0.74 0.71 0.05
Mean 0.23 0.54 0.46 0.55 0.37 0.04
std 0.13 0.26 0.14 0.22 0.30 0.04

Especially notable are the high R2 values for spectral data
of the patient group in contrast to the other two groups
of subjects. Fig. 1 visualizes the analysis of the non-
stationarity by plotting the R2 values for each channel and
the respective spectral features of each subject for both
sessions. It is included as a showcase to show the vari-
ance between and within subjects to highlight the problem
statement.

DISCUSSION

The results presented in Tab. 1 and Tab. 2 revealed that
non-stationarity and inter-subject variability can be mea-
sured and quantified with the proposed methods. Both are
highly present in the dataset underlining the importance of
awareness of these issues during BCI development. Non-
stationarity was assessed by detecting a systematic change
of EEG characteristics over time by linear regression meth-
ods. It is strongly present in the power spectra of the signal
and a little less prominent in the ERP data. Depending
on the application, this change in signal might not be a
relevant issue, but to ensure the use of valid features that
are related to the cognitive process of interest and not to a
systematically introduced artifact, this effect needs to be
eliminated.

Table 2: Classification performance quantified in accuracy
or TPR (sensitivity) and TNR (specificity) in a single-
subject approach - training on session 1 - testing on ses-
sion 2, with a C-SVM and a linear kernel in a 5-fold
cross-validation.

One vs All One vs One
Sub ERP Spec ERP Spec

TPR TNR TPR TNR Acc Acc
S01 0.80 1.00 0.95 0.98 0.99 0.90
S01 0.95 1.00 0.61 0.99 0.99 0.79
S03 0.98 1.00 0.81 0.95 0.99 0.91
S04 0.82 1.00 0.80 0.97 0.97 0.91
S05 0.88 1.00 0.40 0.99 0.85 0.18
S06 0.59 1.00 0.44 0.93 0.65 0.18
S07 0.90 1.00 0.53 0.94 0.85 0.72
S08 0.78 0.98 0.85 0.99 0.91 0.90
S09 0.86 1.00 0.39 0.97 0.96 0.51
Mean 0.84 0.99 0.64 0.96 0.90 0.66
S10 0.67 1.00 0.96 0.99 0.70 0.95
S11 0.75 1.00 0.00 0.99 0.95 0.00
S12 0.85 0.99 0.48 0.95 0.92 0.45
S13 0.86 1.00 0.38 0.97 0.99 0.53
S14 0.97 1.00 0.85 0.99 0.99 0.72
S15 0.25 0.99 0.00 0.96 0.33 0.01
S16 0.63 0.99 0.00 0.96 0.80 0.00
S17 0.94 1.00 0.18 0.98 0.93 0.38
Mean 0.74 0.99 0.36 0.97 0.82 0.38
S18 0.80 1.00 0.66 0.90 0.80 0.88
S19 0.33 0.99 0.22 0.94 0.56 0.24
S20 0.60 0.99 0.01 1.00 0.75 0.00
S21 0.53 1.00 0.26 1.00 0.65 0.27
S22 0.82 0.98 0.59 0.94 0.88 0.70
S23 0.97 1.00 0.89 0.95 0.97 0.94
Mean 0.67 0.99 0.44 0.95 0.77 0.51
Mean 0.76 0.99 0.49 0.97 0.84 0.53
std 0.20 0.01 0.32 0.02 0.17 0.35

Our analysis was able to show that the systematic change
over time can be reduced by using the lateral symmetry
(R2 of 0.30), whereas ERD/S can reduce the effect of
time to a minimum (R2 of 0.04) if not eliminate it com-
pletely. The systematic change over time affecting ERPs
was rather weak. The R2 value accounted for a squared
correlation of 0.23 on average, leading to the assump-
tion that the effect is merely present or can at least not
be predicted well with linear regression methods. Non-
stationarity therefore seems to be a bigger issue when
dealing with frequency-domain than with time-domain
features. Interestingly the patient data (subject 18-23)
showed a much higher correlation with time in the power
spectra than all other subjects did. Nevertheless ERD/S
provided a solution for this equally well to subjects with
high and also to subjects with low correlation of the power
spectra with time of recording. No further universal trends
can be derived concerning the different groups of subjects.
At this point it needs to be mentioned that the evaluated
non-stationarity is linear only, non-linear non-stationarity,
which also exists, has not been accounted for in this pa-
per and needs to be addressed further. It can be observed
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that the variance is in general very high for all evaluated
measures between the groups but also within the groups
leading over to the topic of inter-subject variability. A first
assumption can be made that the inter-subject variability
is supposedly very high since a high variance between the
R2 values can be observed. No pattern across subjects
is visible, hence for each subject other features provide
discriminability. Inter-subject variability was investigated
with a classification approach and the achieved perfor-
mance measures suggest differences between subjects are
reflected more strongly in ERPs than in the power spectra.
The assignment of the current trial to the correct subject, in
a pairwise or overall comparison, can express the stability
of the signal across time and sessions or the great variabil-
ity between subjects. Both are equally valid assumptions
that do not exclude each other. The results showed that
an assignment of the correct subject based on the ERPs
was possible in both classification approaches with good
performance values whereas the assignment on the basis
of the power spectra worked less well. Since the train and
test set were taken from two different sessions it can be
assumed that ERPs contain very specific sections that can
be identified across sessions. Due to the high performance
values it can also be assumed that differences between the
subjects must be very distinct, again at least for the ERPs.
The performance values therefore suggest, that a biometric
use of P300 ERPs could be feasible for an identification
as well as an authentication of the subject in question.
Regarding the classification on the power spectra it can be
said that the variability between subjects must be severe
since a high (close to perfect) specificity can be achieved.
The rather low sensitivity leads to the assumption that the
signal is likely to be not unique enough or too different
between sessions that the identification is not viable. This
means that an authentication is possible, though with a
high rejection rate on the power spectra in this very sce-
nario. Overall it can be said that an authentication on the
basis of brain signals is a possibility for future applica-
tions as the specificity is very high despite a rather large
rejection rate. Since it is desirable with respect to secu-
rity aspects to rather need several trials to be successfully
authenticated, than to grant access to someone that is not
allowed to have access, a real world usage seems to be
feasible.

CONCLUSION

Non-stationarity in the power spectra of EEG signals can
be modeled with linear regression models and almost be
eliminated by using ERD/S instead of the plain power
signal. Therefore, using ERD/S could prevent a decline
in classification performance with increasing time of the
experiment or the need of a recalibration during a session.
Inter-subject variability was quantified by classification
approaches revealing that differences between subject spe-
cific ERPs (power spectra) must be very distinct as an
authentication of the correct subject to a corresponding
signal was possible reliably. It remains a big issue that

needs to be further addressed in terms of BCI develop-
ment, but it can be turned to an advantageous feature when
considering subject authentication and identification as an
application. It can be suggested that P300 ERPs work
as a biometric measure for identifying subjects, whereas
the spectral features of a P300 were less suitable for that
cause.
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