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ABSTRACT: Brain computer interfaces are an important
tool to enable communication for patients suffering from
amyotrophic lateral sclerosis. Yet most existing devices
use cognitive functions that are impaired in later stages
of the disease. Systems based on higher cognitive pro-
cesses provide new possibilities for this field. However,
many patients in the target group suffer from memory
impairments. As many higher cognitive processes in-
volve memory, this could be an interference. The present
study investigates the differences between a currently ex-
isting cognitive paradigm using autobiographic memories
and a new paradigm using a guided imagery story. Both
are developed to be used in patients and try to target the
same processes, with the new paradigm being less depen-
dent on memory functions. Assessment of EEG- and be-
havioral data in healthy subjects results in two working
paradigms for brain computer interface control. Higher
classification accuracies and more favorable behavioral
ratings are achieved by the previously existing paradigm.

INTRODUCTION

Patients suffering from the neurodegenerative disorder
amyotrophic lateral sclerosis (ALS) can use brain com-
puter interfaces (BCIs) for communication [1] [2]. Most
of these BCIs are based on EEG or single-unit features
from somatosensory or motor areas of cortex [3]. This is
problematic for ALS patients as with the progress of the
disease neurons in motor cortex, especially giant pyrami-
dal neurons, degenerate [4]. Another class of BCIs makes
use of visual evoked potentials to detect an attended or in
this case preferred stimulus [3]. As this class relies on eye
movement, and oculomotor dysfunction - especially dys-
function of effective pursuit - is common in ALS [5], it is
also not suitable for late-stage ALS patients. Therefore,
particularly for patients that reach the completely locked
in stage, different classes of BCIs are needed. Until now
there are no reliable BCIs for those patients available [6].
One approach are BCI systems that are based on higher
cognitive functions. Hohmann et al. introduced a system
that allows answering of binary questions by either think-
ing about a positive experience or focusing on ones breath
[7] or, in a more recent version, doing mathematical cal-
culations [8]. Making use of positive memories, how-
ever, includes a possible interference: Retrieval of auto-
biographic memories needs both self-referential process-

ing and memory retrieval processes [9]. As those systems
are designed to serve as communication devices for ALS
patients the impact of the disease on memory processes
is an important factor. A study by Mantovan et al. (2003)
showed episodic memory deficits in ALS patients without
dementia, with subjects having problems both in encod-
ing and in retrieval [10]. When performing a battery of
neuropsychological tests on a patient sample, nearly half
of the sample showed cognitive impairments including
memory, changing of judgement and reasoning and ver-
bal fluency, as well as behavioral discontrol [11]. Those
ALS patients who show cognitive impairment measured
by a verbal fluency test also show frontal lobe dysfunc-
tion, as indicated by abnormalities in a PET scan [12].
Further, patients exhibit white matter changes in temporal
regions, including motor pathways as well as non-motor
areas including association fibres to the frontal lobe and
anterior cingulate gyrus, that are accompanied by deficits
in executive functions and memory [13]. In cognitively
unimpaired ALS patients white matter changes were not
as strong but still present [13].
These findings encourage the idea to create a BCI for
which memory processes are less relevant, as well as mo-
tor and oculomotor functions, to make it usable for ALS
patients in all stages of disease even when memory func-
tions are impaired.
The system introduced by Hohmann et al. is likely to tar-
get up- and down regulation of parietal nodes in the de-
fault mode network (DMN). ALS patients even in late
stages showed to be capable of modulating activity in the
target region without prior training [7]. This is supported
by the argument that in locked-in state patients connectiv-
ity in the DMN is not significantly different from the one
in controls [14]. The DMN is associated with remember-
ing the past, especially autobiographic remembering [15],
and is also seen as the seat of self-referential processing
in the brain [16] [17]. As a brain system for internal
mentation the DMN is most active during spontaneous
cognition including mental processes that create fantasy,
imagination, daydreams and thoughts. It also takes part
in self-relevant mental simulation, which means imag-
ination of scenarios or hypothetical events [15]. Self-
related thoughts correlate with an increase in spectral
power mainly in the α-band (8-13 Hz), showing spatial
patterns consistent with DMN modulation [16] [2]. It is
proposed that the DMN consists of two systems: a sys-
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tem related to associations and memory retrieval, and a
system related to self-relevant thoughts and self referen-
tial judgments [15]. Anatomically, the posterior cingulate
cortex (PCC) is described as a critical node of the DMN
[18] and the Precuneus (pC)/PCC node as possible side
of interaction of the two proposed subsystems [19].
Considering these properties of the DMN, a scenario that
could very well up-regulate the DMN is a guided imagery
story. It is directed to the self and includes imagination
and fantasy without being bound to autobiographic mem-
ory. Yet, for creating a binary BCI with external stimula-
tion, this stimulation has to be presented simultaneously
to enable subjects to make a decision. Some existing
auditory BCI systems with simultaneous stimulation on
both ears work with event related potentials like the N1
and P3 component and reach high accuracies even in on-
line scenarios [20]. Studies working on decoding of au-
ditory streams from EEG data like the one by O’Sullivan
and colleagues additionally show that subjects are very
well capable of following a story on one ear, when get-
ting presented a different one on each ear [21].
In the present study this ability of selective attention is
used for an auditory BCI targeting DMN activity. The
task introduced by Hohmann et al., including positive
memories and a math task [8], is compared to a new task
including a guided imagery story and math tasks, both
read to the participants simultaneously. During guided
imagery a participant has to imagine for example being
on a field in the sun or walking through the forest, experi-
encing the different tones and smells. The former will be
referred to as ”Memory” paradigm and the later as ”Im-
agery” paradigm. The goal of this study is twofold: First,
to find out whether the ”Imagery” paradigm is suitable
for a BCI system targeting DMN modulation, and second,
which of the two paradigms shows a better classification
performance.

MATERIALS AND METHODS

Experimental Paradigm: Participants were placed in
a chair 1.25 m away from a 17” LCD screen with a reso-
lution of 1280x1024 pixels and a 60 Hz refresh rate and
were provided with Phillips SHB9250 headphones. The
background of the screen was black, with a white fix-
ation cross in the center. Subjects were briefed on the
experimental procedure and the different tasks and their
comprehension was assured. They performed four ex-
perimental blocks with brief intermissions in which they
rated each block. Each experimental block consisted of
thirty trials, in which participants were asked questions
(fifteen correct and fifteen incorrect) in pseudo random-
ized order. The questions were binary general knowl-
edge questions designed to be as easy as possible (e.g. “Is
Christmas celebrated in December?” or “Is Berlin the
capital of Italy?”). Participants indicated their answer to
the questions by performing a certain task. After each
question an instruction was given to remind the subject
which task means ”yes” and ”no” (cf. Figure 1). One

Figure 1: Example trial for the ”Memory” and ”Imagery”
paradigm.

block lasted about 15 minutes. In two of the four blocks
the task was to remember a positive experience or to sub-
tract a number between three and nine continually from
a higher number (between 800 and 850) for either ”yes”
or ”no”. The concerning numbers were named in the in-
structions and the task was performed in silence (”Mem-
ory” paradigm).
In the other two blocks subjects were instructed to
indicate their answer by focusing on the sound on
one ear while ignoring the sound on the other ear.
On the right side a guided imagery story was read
(based on stories published on www.hierfindichwas.de
and www.planetsenior.de, accessed September 2016) and
on the left side mathematical calculations (addition or
subtraction of two digit numbers) were asked. The two
different sounds were presented simultaneously over the
whole task time (”Imagery” paradigm).
Each trial began with five seconds rest, followed by the
question and instructions. The time to indicate the answer
by performing the instructed task was 17 seconds, to be
sure to not cut any of the auditory recordings, which were
approximately 15 seconds long. The task for either ”yes”
or ”no” stayed constant within one block but changed be-
tween blocks. The resulting different blocks with differ-
ent paradigms and instructions were alternated and coun-
terbalanced across participants. Questions remained the
same for each block. After all four blocks participants
got a questionnaire with all 30 general knowledge ques-
tions asked during the experiment to ensure they knew
the correct answers.

Experimental Data: The study was conducted at the
Max Planck Institute for Intelligent Systems in Tübingen,
Germany. Ten healthy subjects (German native speakers,
5 female, 5 male) with a mean age of 34.4 ± 11.2 years
took part in the experiment. All of them reported to have
unimpaired hearing abilities. They received 12 Euro per
hour for their participation. All participants signed a con-
sent form to confirm their voluntary participation in ad-

Table 1: Questions (originally in German)
1) How easily could you concentrate on the task?
2) How exhausting was it to concentrate on the task?
3) How stressful was performing the task?
4) How tiring was performing the task?
5) How successful could you follow the instructions?
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Figure 2: Left side: Encoding model for ”Memory” paradigm. Right side: Encoding model for ”Imagery” paradigm.
Dark colors show the areas most relevant for classification, with the transfer learning algorithm, in arbitrary units.

vance, after being fully informed about the procedure.
The study was approved by the ethics committee of the
Max Planck Society. For EEG recordings a 124-channel
system with a sampling frequency of 500 Hz with act-
iCAP active electrodes and a BrainAmp amplifier (pro-
vided by BrainProducts GmbH, Gilching, Germany) was
used. Electrode placement was according to the extended
10-20 system with the left mastoid electrode as the initial
reference. All recordings were converted to common av-
erage reference previous to analysis. The BCI2000 tool-
box was used to implement the application [22]. Behav-
ioral data was obtained by handing a pen and paper ques-
tionnaires to participants after each block of the exper-
iment. The questions asked to participants are listed in
Table 1. All answers could be indicated on a seven point
Likert-scale, with one being the most favorable and seven
the most unfavorable answer.

Data Analysis: The 17 seconds per trial in which sub-
jects could indicate their answer to the given questions
were used for EEG analysis. As previous studies [16]
[7] showed that the α-frequency range is the range of
most significance for modulations of the DMN, analysis
was restricted to this frequency band. We used the Dis-
crete Fourier Transform with a Hann window to compute
the log-bandpower of the α-frequency band (8–13 Hz) at
every channel in every trial. As the α-frequency range
is not very susceptible to muscular or oculomotor arti-
facts, preprocessing only included the removal of elec-
trodes that showed malfunctioning for at least one partic-
ipant, reducing the feature space from 124 to 117. For ob-
taining optimal decoding with the relatively small num-
ber of trials recorded, we used a transfer learning tech-
nique further described by Jayaram et al. [23]. It allows
to simultaneously learn decoders for all subjects while
still accounting for inter-individual differences, using a

linear regression model. We employed a nested cross-
validation procedure, with leave-one-subject-out cross-
validation for learning priors over decoders and ten-fold
cross-validation to estimate decoding accuracy on each
individual subject. To spatially depict the resulting en-
coding model, we multiplied the priors obtained by the
transfer learning algorithm with the covariance matrix of
the extracted features, both averaged over subjects [24].
This was plot as a topography to illustrate the areas most
relevant for classification.

RESULTS

EEG Data: On average subjects achieved a de-
coding accuracy of 75.5% (SD 20.1%) in the ”Mem-
ory” paradigm and 64% (SD 14.7%) in the ”Imagery”
paradigm. The encoding models used by the transfer
learning algorithm for each paradigm are shown in Figure
2. Individual decoding accuracies can be seen in Table 2.
Both paradigms classify significantly better than chance
(p < 0.001) when tested with a permutation test with
1000 permutations of class labels. On an individual level

Table 2: Individual Accuracies
Subject ”Memory” ”Imagery” Differences
S1 50% 63.3% -13.3%
S2 70% 65% 5%
S3 96.7% 90% 6.7%
S4 95% 40% 55%
S5 51.7% 53.3% -1.6%
S6 90% 51.7% 38.3%
S7 95% 83.3% 11.7%
S8 46.7% 61.7% -15%
S9 73.3% 61.7% 11.6%
S10 86.7% 70% 16.7%
Mean 75.5% 64% 11.5%
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Figure 3: Mean values and standard deviations of rating data, showing a different perception of the two paradigms.

there was a high variability and some subjects did not
succeed using one or the other or both paradigms while
others were highly successful (Table 2). When comparing
the two different paradigms in a paired permutation test
with 104 permutations, the ”Memory” paradigm achieved
a better performance (+11.5%), yet this difference was
not significant (p = 0.126).

Behavioral Data: Mean rating values of each ques-
tion of the pen and paper questionnaire are shown in Fig-
ure 3. Participants indicated by their ratings that they
found it more difficult and more exhausting to concen-
trate on the ”Imagery” task as well as more stressful and
tiring. They also rated to have been more successful in
performing the ”Memory” task. Over all, the ”Mem-
ory” paradigm achieved lower mean rating values (2.94,
SD 0.07) compared to the ”Imagery” paradigm (3.21, SD
0.59). A paired sample t-test revealed this difference to
be significant (p = 0.0167).

DISCUSSION

Results of EEG- and behavioral data of the ”Memory”
paradigm and the ”Imagery” paradigm lead to further
support for the ”Memory” paradigm to be a well function-
ing BCI system and introduced the ”Imagery” paradigm
as a new approach for classification based on DMN mod-
ulation. The ”Memory” paradigm showed a better per-
formance and was also more liked, based on participants’

ratings. This pattern of results shows to be robust even
when using a different approach of data preprocessing to
completely omit including possible residual muscular ar-
tifacts: When performing artifact correction using an in-
dependent component analysis approach [25], instead of
using the unfiltered EEG signal, the mean accuracy for
classification in the ”Memory” paradigm was 73.2% (SD
18%) and for the ”Auditory” paradigm 60.3% (SD 8.2%).
The areas weighted as being most relevant for classifica-
tion by the encoding model of the transfer learning algo-
rithm show a spatial distribution that is consistent with
bandpower modulation in the pC/PCC [2]. The pC/PCC
node interacts strongly with the rest of the DMN [19]
and, regarding the proposition that the DMN consists of a
system related to associations and memory retrieval and
a system related to self-relevant thoughts and self refer-
ential judgements [15], the key role of communicating
between those systems is assigned to the PCC/pC node
[19]. Even though both tested paradigms appear to target
the region of the PCC/pC node, there is the possibility
that each of them triggers a different system of the DMN,
with the ”Memory” paradigm triggering system one and
the ”Imagery” paradigm triggering system two. This pos-
sible explanation is supported by the finding that the in-
dividual accuracies of both paradigms are not highly cor-
related (Pearson’s ρ = 0.315).
A potential explanation for the differences in decoding
accuracy across paradigms is provided by the over all dif-
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Figure 4: Baseline difference of α-power between
paradigms over all participants. Approximate overlap of
areas with largest differences and areas most relevant for
classification.

ferences in α-power during baseline periods within each
trial. The mean value of the α-log-power over all sub-
jects and channels was −1.789 (SD 0.32) and −1.831
(SD 0.31) for the “Memory” and “Imagery” paradigm,
respectively. This over all difference showed to be signif-
icant (p = 0.031) when tested with a paired permutation
test with 104 permutations. The distribution of the dif-
ferences over the scalp can be seen in Figure 4. These
findings can be related to the research of Blankertz et al.,
who detected that for BCI systems based on sensorimotor
rhythms (SMRs) strength of idling SMR in EEG is pre-
dictive for BCI performance.
They calculated this predictor with the maximum eleva-
tion in power spectral density compared to a noise floor
over a sensorimotor area in resting state. The higher this
maximum, the better the performance as it opens the pos-
sibility for a bigger difference when SMRs are attenuated
[26]. Related to the current study this could mean that the
over all lower α-power in the ”Imagery” paradigm leaves
less space for big differences due to task dependent mod-
ulations. The areas having the largest differences (Figure
4) also approximately correspond to the areas most rele-
vant for classification. As stress is correlated negatively
with α-band power [27], and participants rated the ”Im-
agery” paradigm as more stressful, this could be the ori-
gin of the detected difference.
Nevertheless, the finding of a new paradigm working with
binaural auditory stimulation supports the development
of more auditory BCI systems. They could be an attrac-
tive alternative to vision based BCIs for ALS patients be-
cause, as Hill and colleagues report [20], even if vision
remains intact, listening is less exhausting for most pa-
tients. Additionally, eye movements are getting more and
more tiring with progressing disease. The high accuracies
throughout studies support acoustic BCIs as promising
tools [20] [28]. However, what should be kept in mind
regarding this development is the opinion of the users.

For example binaurally presented beep sounds are judged
as unpleasant by participants [20] and also in the present
study participants rated the paradigm presenting binau-
ral acoustic stimuli as less appealing than the ”Memory”
one. Yet, the results presented here correspond to the
performance and opinion of a sample of healthy subjects
with no memory impairment. Until tested on an ALS pa-
tient sample, it is not clear if this pattern of results will
be replicated in this special group of subjects with com-
pletely different preconditions. It is important for future
research to pay attention to crucial differences between
populations to be able to transfer results to target groups
and develop assistive devices that can improve patients
everyday life.
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