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ABSTRACT: Past research into motor-independent 

communication for the severely disabled has mainly 

focused on developing brain-computer interfaces (BCIs) 

implementing neuroelectric signals. More recently, also 

hemodynamic brain signals have been explored for BCI 

purposes. Here, we introduce a novel, straightforward, 

and easy-to-implement yes/no communication paradigm 

relying on mental imagery (mental drawing) and 

portable functional near-infrared spectroscopy. To 

hemodynamically encode answers to binary questions, 

participants either performed mental drawing (for 

encoding “yes”) or did not change their mental state (for 

encoding “no”). Participants’ answers were decoded 

offline using univariate and multivariate statistics. In 

approximately half of the participants, accuracies 

reached 70% or higher, which is considered a sufficient 

performance for binary communication BCIs. As the 

proposed communication technique requires relatively 

little cognitive capabilities, it might not only serve as a 

useful communication means but also as a diagnostic 

tool for detecting preserved conscious awareness in 

non-responsive patients. 
 

INTRODUCTION 
 

Communication is an essential element of human 

interaction. In the so-called ‘locked-in’ syndrome (LIS) 

[1], fully aware and conscious patients have lost the 

ability to naturally communicate due to severe motor 

paralysis. To help affected patients in this fateful 

condition, motor-independent communication through 

brain-computer interfaces (BCIs) has been suggested 

[2]. BCIs rely on brain signals that an individual can 

intentionally generate to encode an intention (e.g., to 

communicate a “yes” or a “no” answer). These brain 

signals are then measured with a functional 

neuroimaging method and finally decoded back into 

their originally intended meaning using signal-

classification methods. In the field of BCI an accuracy 

of at least 70% is considered sufficient for a two-class 

communication BCI [3]. For almost 30 years now, BCI 

research has focused on developing communication 

BCIs using neuroelectric signals mainly based on 

noninvasive electroencephalography (EEG) [e.g., 4-6]. 

Though these ‘classic’ communication BCIs have been 

applied successfully in affected patients [e.g., 7,8], not 

all individuals achieve proficiency in EEG-based BCI 

control (a phenomenon referred to as ‘BCI illiteracy’ 

[9]). Thus, there is an urgent need to explore further 

possibilities for brain-based communication. Recently, 

hemodynamic brain signals as measured with functional 

magnetic resonance imaging (fMRI) [10-13] and 

functional near-infrared spectroscopy (fNIRS) [14-16] 

have been suggested and tested in this context. For 

example, our group has developed a letter speller based 

on differently timed mental-task performance and real-

time fMRI that allows convenient back-and-forth 

communication of any word [17]. The robust letter 

speller requires almost zero pre-training or preparation 

time and can be of great benefit for short-term 

communication. However, the fMRI-based BCI 

approach is costly and tied to clinical or research 

institutions making it unsuitable for everyday-life usage. 

A primary need of LIS patients and their families, 

however, is immediate access to and frequent use of 

BCI communication. FNIRS is a functional 

neuroimaging method that relies on the same 

(hemodynamic, i.e., vascular) brain response as fMRI 

[18]. While being spatially less specific than fMRI, 

fNIRS is relatively easy to apply, inexpensive, safe and, 

most importantly, portable [19]. These factors open the 

possibility to transfer the developed fMRI 

communication paradigms to the more compact and 

portable fNIRS technology, making fNIRS an ideal 

candidate for future daily-life application. Due to its 

straightforward implementation it could be readily 

handled maybe even by the patient’s care givers. 
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Here, we suggest a novel, straightforward yes/no 

communication procedure employing mental imagery 

and fNIRS. In our suggested procedure, participants 

performed two localizer runs, one at the beginning of 

the experiment and one at the end. Each of these runs 

consisted of twenty 10 s periods of mental-task 

performance that alternated with twenty-one 20 s 

baseline blocks, adding up to 10 min 20 s per run. 

Between localizer runs, six answer-encoding runs were 

performed, during which participants were asked to 

answer biographical questions (e.g., “Do you live in 

Maastricht?”) by intentionally modulating their brain 

activation. For encoding “yes”, participants were asked 

to start mental drawing as soon as “yes” was aurally 

presented and to halt mental-task performance as soon 

as “stop” was presented. For encoding “no”, participants 

were asked to stay at rest for the whole length of the 

run. Each answer-encoding run consisted of five 10 s 

answer-encoding trials, alternated with six 20 s baseline 

periods, adding up to 2 min 50 s (Fig. 1). Participants’ 

brain responses were decoded offline. 
 

MATERIALS AND METHODS 
 

     Participants: Twenty healthy subjects (nine female, 

three left-handed, age = 26.0± 8.0 years [mean ± SD], 

all with normal or corrected-to-normal vision and 

reportedly normal hearing) participated in the study. 

Tab. 1 documents individual participants’ 

characteristics. All participants gave written informed 

consent according to procedures approved by the local 

ethics committee and received financial compensation. 

     Mental-drawing paradigm: To intentionally evoke 

fNIRS signals, participants were instructed to: “Imagine 

drawing simple geometric figures (such as circles, 

triangles, cubes, etc.) or small contour drawings (e.g., a 

butterfly, star, car, tree, boat, or house) with the right 

hand at a comfortable but consistent speed. Imagine 

using a pen. This might support your imagination.” 

     Participant preparation: Prior to the experiment, 

participants were familiarized with the general 

procedure of the study. They shortly practiced mental 

drawing and answer encoding until they felt 

comfortable (ca. 15 min). Moreover, a list of 45 binary 

biographical questions, simple yet unobtrusive enquiries 

about their lives, was provided. Six of those questions 

were selected by an independent experimenter: three to 

be answered with “yes” and “no”, to assure equal 

distribution of answer options. After placement of the 

cap with the fNIRS optodes, participants were seated 

comfortably in a noise-dimmed cabin, which was 

equipped with a loudspeaker and microphone to enable 

verbal communication between participant and 

experimenter during the experiment.  

     Data acquisition: Self-induced hemodynamic brain 

signals were obtained using a NIRScout-816 system 

(NIRx Medizintechnik GmbH, Berlin, Germany) 

equipped with six detector and three source optodes 

(LEDs emitting wavelengths of both 760 nm and 

850 nm). Sources were positioned according to the 

international 10-20 EEG system on FC3 (1), C3 (2) and 

CP3 (3) and detectors were positioned on FC5 (1), C5 

(2), CP5 (3), FC1 (4), C1 (5) and CP1 (6) (Fig. 2). 
 

Figure 2: fNIRS optode set-up with the source optodes 

in red (optodes 1, 2 and 3 in the middle horizontal line) 

and detector optodes 1-6 in green. 
 

This limited number of optodes was chosen to ensure 

clinical applicability (i.e., reasonable optode-placement 

time allowing for rapid bedside measurements of 

patients). Recorded optical signals were sampled at a 

rate of 12.5 Hz. Due to the limited number of sources 

and detectors, the optodes’ montage covered a confined 

Figure 1: Encoding scheme for an answer-encoding run including expected oxyhemoglobin changes (white curve/line) 

in motor imagery-related brain regions. When a participant wants to encode “yes”, he/she performs motor imagery 

causing oxygenated hemoglobin to rise. When a participant wants to encode “no”, he/she stays at rest causing no 

relative change in oxygenated hemoglobin. Note that participants encoded the same answer five times in one run. 
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area above the left-hemispheric fronto-parietal 

(sensorimotor) cortex (Fig. 2). Auditory stimuli were 

presented using in-house stimulation software [20]. 

     Subjective ratings: After each run, participants rated 

the experienced fNIRS comfortability according to a 

Likert-scale ranging from 0 (extremely uncomfortable) 

to 10 (extremely comfortable). We predicted that 

comfortability ratings would decrease over time. After 

completion of the experiment, the participants rated the 

general easiness and pleasantness of the employed 

mental-imagery paradigm (mental drawing) again using 

a Likert-scale ranging from 0 (extremely 

difficult/unpleasant) to 10 (extremely easy/pleasant).  

     Data analysis: FNIRS time series were analyzed 

using Satori (v0.92, Brain Innovation B.V., Maastricht, 

The Netherlands). During preprocessing, raw data time 

course values were converted to oxygenated 

hemoglobin (oxy-Hb) and deoxygenated hemoglobin 

(deoxy-Hb) values. Linear trend removal, temporal low-

pass filtering (Gaussian full width at half maximum 

[FWHM]: 40 data points) and high-pass filtering (cut-

off: 10 cycles [localizer runs] or 2 cycles [answer-

encoding runs] per time course) were applied. These 

filtering parameters correspond approximately to a 

band-pass filter of 0.1-0.016 Hz for the localizer runs 

and 0.1-0.012 Hz for the encoding runs. The subsequent 

data analysis was focused on the 14 ‘direct-neighbor’ 

channels (i.e., channels emerging from sources-detector 

combinations of close proximity; see Fig. 3). Two types 

of analyses were conducted: univariate general linear 

model (GLM) analysis and multi-channel pattern 

(MCP) analysis.  

(1) GLM analysis. First, a single channel of interest was 

determined individually for each participant using the 

data of the first localizer run (called ‘best channel’ in 

the following). For this purpose, channel-wise (whole-

run) GLM analysis was performed separately for oxy- 

and deoxy-Hb time series using a predictor 

corresponding to the motor-imagery condition and 

applying the statistical contrast “motor imagery vs. 

resting”. For selecting the best channel we calculated a 

criterion value by averaging the obtained oxy-Hb and 

deoxy-Hb t-values per channel. The channel with the 

highest criterion value was considered the best channel 

and selected for further analysis. As a next step, the data 

of the first “yes” and “no” answer-encoding run per 

participant was analyzed as follows: For each of the ten 

trials (five “yes” and five “no” trials) the individual 

criterion value was calculated. Then, a mean across 

these ten individual criterion values was computed. This 

average value was used as ‘cut-off’ value for decoding 

the answers of the remaining four answer-encoding 

runs. Values above or below the cut-off value resulted 

in decoding the answer-encoding data as “yes” or “no”, 

respectively. Encoded answers were compared post hoc 

to the actually intended answers given by the 

participant. Next to individual and group-mean single-

trial (ST) accuracies, we computed multi-trial (MT) 

accuracies for each individual and for the group. Multi-

trial accuracies were derived by integrating the five 

separate yes/no decisions per run using majority voting 

(e.g., three answers encoded as “yes” and two answers 

encoded as “no” were considered as a “yes” answer). 

Resulting single-trial accuracies were evaluated in a 

confusion matrix per participant using a Chi square test 

to assess if decoding accuracies were significantly 

above chance level (p < 0.05).  

(2) MCP analysis. MCP analysis was conducted using a 

support vector-machine as classifier [21]. For this 

analysis, all channels (n = 14) were used to define the 

spatial features for the MCP analysis. In order to ‘train’ 

(and ‘test’) the classifier, means of raw values for oxy- 

and deoxy-Hb were estimated in a time window from 

6 s to 17 s after trial onset of the mental drawing trials. 

This window was defined for the mental drawing trials 

as it corresponds to the time points where the mean 

hemodynamic response was expected to be the highest. 

For the rest conditions an 11 s time window was chosen 

from 11 s to 22 s after trial onset of the rest conditions, 

during which the mean hemodynamic response is 

expected to be at baseline. The single-trial data of the 

two localizer runs served as training data. Analysis of 

the six answer-decoding runs resulted in five single-trial 

predictions (corresponding to the five separate answer-

encoding trials) per run. As in the GLM approach, each 

prediction was compared to the actual answer given by 

the participant. Again, mean single- and multi-trial 

accuracies were calculated individually and for the 

group as described above for the GLM approach. 

Resulting single-trial accuracies were tested for 

significance (p < 0.05) using permutation tests (10.000 

permutations). For both the GLM and MCP analysis, 

the average sensitivity – P(yes decoded | yes encoded) – 

and specificity – P(no decoded | no encoded) – was 

calculated. Correlations were run between the single-

trial and multi-trial accuracies of both approaches. 

Means and SEs will be calculated with the subjective 

ratings. 
 

RESULTS 
 

     GLM analysis: For each subject, a best channel 

could be selected based on the procedure described 

above (see Tab. 1 for selected channels and individual 

criterion values). Fig. 3 illustrates how often each 

channel was selected across participants. Using the 

GLM approach, participants’ answers could be decoded 

correctly with an average accuracy of 64.25% on a 

single-trial basis (theoretical chance level being 50%). 

Individual single-trial accuracies varied from 35.00-

95.00% (Tab. 1). In eight participants, single-trial 

accuracies were significantly above chance level as 

assessed with a Chi-Square test (Tab. 1). The classifier 

showed no bias, as “yes” and “no” answers were 

decoded respectively on 50.25% and 49.75% of the 400 

trials. The average sensitivity was 65.00% and the 

average specificity was 65.50%. On a group level, the 

multi-trial accuracy was 65.00%. Individual multi-trial 

accuracies varied from 25.00-100.00% (Tab. 1). For the 

group of nine subjects with individual single-trial 

accuracies of 70% or higher, the average single-trial 
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accuracy was 79.44% (SE = 2.82), whereas their 

average multi-trial accuracy was 84.09% (SE = 4.20). 

For the eleven other subjects, the average single-trial 

accuracy was 51.82% (SE = 2.88), whereas their 

average multi-trial accuracy was 47.73% (SE = 5.28). 
 

 
Figure 3: Frequency of best-channel selections within 

the GLM approach. The red and green numbers indicate 

source and detector optodes, respectively. Note that the 

most frequently selected channels correspond to brain 

areas [22] commonly associated with motor imagery. 
 

 

     MCP Analysis: Using the multi-variate approach, 

participants’ answers could be decoded correctly from 

single trials with an average accuracy of 62.33%. 

Individual single-trial accuracies ranged from 33.33-

76.67% (Tab. 1). In eleven subjects, single-trial 

decoding accuracies were significantly above chance 

level as revealed by permutation tests (Tab. 1). “Yes” 

and “no” answers were decoded respectively on 62.00% 

and 38.00% of the 600 trials. The sensitivity was 

75.67% and the specificity was 51.67%. The multi-trial 

accuracy was 63.33% on the group level and individual 

multi-trial accuracies ranged from 33.33-100.00% 

(Tab. 1). When focusing the analysis on the ten subjects 

with single-trial accuracies of 70% or above, the single-

trial accuracy was 72.33% (SE = 0.87), whereas the 

multi-trial accuracy was 85.71% (SE = 2.38). For the 

group of ten subjects with individual single-trial 

accuracies below 70%, the average single-trial accuracy 

was 52.33% (SE = 3.06), whereas their average multi-

trial accuracy was 59.09% (SE = 7.22). 

 

 
Figure 4: FNIRS comfortability ratings (group means 

and SEs) across runs. Values range from 0 (extremely 

uncomfortable) to 10 (extremely comfortable). Note that 

the first and eighth run were localizer runs. 

     Subjective ratings: FNIRS comfortability ratings 

were medium to high (see group means in Fig. 4). 

Comfortability decreased across time and dropped 

considerably for the last run (second localizer). 

Participants generally experienced the mental-drawing 

task as pleasant (M = 7.2, SE = .07) and easy to perform 

(M = 8.0, SE = .07). 

     Accuracy correlations: Correlations between the 

accuracies of the different approaches were all 

insignificant (p > .05): GLM MT and MCP MT 

(r = .21); GLM ST and MCP ST (r = .36). 
 

DISCUSSION 
 

A novel yes/no communication paradigm using mental 

drawing and fNIRS was tested in healthy participants. 

In LIS patients an fNIRS-based binary BCI has been 

tested recently [15,16]. However, in those studies a 

classifier was trained for several sessions over several 

days. The current approach has the potential of enabling 

immediate communication in the order of ca. 30 min 

(±15 min training; ±10 min localizer, ±6 min encoding). 

Of course, this should be tested using real-time 

decoding and in affected patients. We deem this will be 

successful as Naito et al. [14] found an accuracy rate 

above 75% in 23 out of 40 LIS patients with their 

fNIRS-based binary BCI using mental 

calculation/singing. Our results indicate that it is 

possible to obtain sufficiently high (≥ 70%, [3]) and 

reliable answer-decoding accuracies in healthy subjects 

by using the current paradigm and various data-analyses 

methods. On average, multi-trial accuracies were only 

marginally higher than single-trial accuracies. However, 

when focusing on participants reaching an accuracy of 

70% or higher, there is a trend for multi-trial accuracies 

to be higher than single-trial accuracies in both GLM 

and MCP analysis. Closer inspection of these 

participants’ data indicated relatively prominent 

hemodynamic responses, suggesting that the multi-trial 

approach is most advantageous when single-trial 

measurements have a sufficiently high signal-to-noise 

ratio. 

The GLM approach might be particularly suited in the 

context of a communication BCI due to its simplicity. 

We expect that at least some LIS patients are also able 

to use the binary BCI presented here, as accuracies of 

70% or higher were reached by approximately half the 

participants after a mere 15 min of training. Since our 

communication BCI relies on only a single fNIRS 

channel, preparation time can in principle (when having 

determined the best channel in a previous fNIRS 

session) be rather short. The similar sensitivity 

(65.00%) and specificity (65.50%) emphasizes that 

there is no bias to either “yes” or “no”. The MCP 

approach might be especially useful in the context of 

detection of remaining consciousness in non-responsive 

patients because in contrast to the GLM approach, it 

does not require the calculation of a yes/no cut-off 

value. Nevertheless a localizer containing differential 

activity (mental imagery vs. rest) is still required to train 

the classifier, which might not be easily obtained in this 
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patient group. Encouraging is the high specificity 

(75.67%) of this approach. In three of the four cases in 

which participants intentionally changed their brain 

states, this change was detected.  

The two data-analysis approaches differ in the number 

of subjects reaching a level of significance (9 in the 

GLM vs. 11 for the MCP approach; see Tab. 1). In 

addition, GLM analysis accuracies do not correlate 

significantly with any of the MCP analysis accuracies. 

However, comparison of the two methods is hampered 

by several fundamental differences: (1) In the GLM 

analysis, the data from only one channel was 

considered, whereas all channels are considered in the 

MCP analysis. (2) In the MCP analysis, more single-

trials could be considered, resulting in a higher chance 

of getting significant results. (3) Due to the 

fundamentally different nature of both approaches, 

different significance tests were employed (Chi-square 

vs. permutation testing). 

A general shortcoming of our study, affecting both the 

GLM and MCP analysis accuracies, is the absence of 

localizer data for the “no” condition. As there was no 

separate localizer to identify signal characteristics while 

participants do not change their brain state, the training 

data for encoding “no” answers was selected as the time 

window in the end of the resting period after each task 

performance. Obtaining proper localizer data for the 

“no” condition should be done it future experiments, 

albeit this would be at the cost of additional 

measurement time.  

We noted large differences between individual 

participants’ classification accuracies: some participants 

performed exceptionally well whereas for others 

classification accuracy was at chance level. Blood 

pressure, respiration and heart rate are known to 

influence the fNIRS signal [23]. Future studies taking 

into account these physiological measures may filter out 

such influences in order to improve the contrast-to-noise 

ratio of the fNIRS measurements. Moreover, given the 

very short training period, participants with chance-

level performance may be retested after providing them 

with additional training. 

We monitored comfortability over time and measured 

perceived easiness and pleasantness, as it is known that 

subjective motivation can influence BCI performance 

[24, 25]. Comfortability ratings across the experimental 

session decreased slightly with a drop in the last run. 

This could be due to the fact that performing a localizer 

run after the answer-encoding runs was experienced as 

comparatively boring. Overall, application of our BCI in 

affected patients is encouraged by the fact that our 

participants gave overall positive easiness and 

pleasantness ratings.  

 
Table 1: Participant characteristics, subjective rating, channel selection and classification results.  

    MD SR   GLM accuracies MCP analysis 
accuracies 

P H S E P BS  Crit. ST (%) MT (%) ST (%) MT (%) 

1 R M 8 7 2-4 16.69 75.00° 75.00 53.33* 66.67 

2 R F 9 8 2-5 5.28 55.00 50.00 33.33 33.33 

3 R F 10 10 3-3 101.44 70.00 75.00 70.00* 66.67 

4 R M 9 8 2-5 313.42 95.00° 100.00 76.67* 83.33 

5 R F 8 7 1-2 291.52 75.00° 75.00 70.00* 66.67 

6 L M 4 6 2-1 44.25 60.00 75.00 56.67 50.00 

7 R F 9 9 2-2 90.16 60.00 50.00 73.33* 100.00 

8 R M 7 6 3-6 71.26 45.00 50.00 53.33 50.00 

9 R M 7 7 2-1 177.18 70.00 75.00 76.67* 83.33 

10 R F 8 9 2-5 90.60 40.00 25.00 70.00* 66.67 

11 R F 6.5 6 2-3 73.27 60.00 50.00 66.67 66.67 

12 R F 7.5 5 1-2 26.03 45.00 25.00 63.33 83.33 

13 R M 6 4 2-6 2.59 85.00° 100.00 43.33 33.33 

14 R F 9 8 2-5 85.33 55.00°  75.00 70.00* 66.67 

15 R M 10 8 2-2 44.18 75.00° 100.00 73.33* 83.33 

16 R M 8 6 2-2 49.52 85.00° 100.00 73.33* 83.33 

17 R M 9 8 3-6 35.18 65.00 50.00 56.67 83.33 

18 L M 8 8 2-6 24.08 35.00 25.00 46.67 16.67 

19 L M 8 7 2-5 114.92 50.00 50.00 50.00 33.33 

20 R F 8 7 2-1 58.75 85.00° 75.00 70.00* 50.00 

Mean   7.92 7.20     64.25 65.00 62.33 63.33 

SE   .07 .07     3.72 5.56 2.77 4.93 

Notes. P = participant, H = handedness, R = right, L = left, S = sex, M = male, F = female, MD SR = mental 

drawing subjective rating, E = average easiness rating across runs, P = average pleasantness rating across runs, 

BS = best channel, Crit. = Criterion, ST = single trial, MT = multi-trial, ° p < .05 based on Chi-Square, * p < .05 

based on permutation testing. 
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CONCLUSION 
 

The presented yes/no communication procedure using 

fNIRS and mental imagery might constitute a useful 

communication means for LIS patients. Moreover, as 

the suggested encoding paradigm requires relatively 

little effort from individuals, it has potential as a 

diagnostic means to detect preserved conscious 

awareness in non-responsive patients. 
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