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ABSTRACT: This article intends to compare two rivaling
technology tools that could reestablish communication
for people with severe disabilities. One of the tested tech-
nologies, steady state visual evoked potentials (SSVEPs)-
based Brain-Computer Interface (BCI), detects patterns
in brain activity. Eye-tracking devices, on the other hand,
measure the eye position, blinks, saccades, fixation paths,
and other eye-specific parameters. Both methods can
be used to interpret the users intent allowing control of
spelling applications. Accuracy and speed of these two
control methods are compared. A graphical user interface
(GUI) with 30 targets (letters of the alphabet and special
characters) was developed implementing each of the two
technologies. Nine participants (two female) completed
the phrase “RHINE WAAL UNIVERSITY” with both
technologies. As expected, the achieved ITR with the
eye-tracking device was significantly higher (91.8 bpm
compared to 38.2 bpm for the SSVEP-based BCI). How-
ever, the eye tracking did not work for all of the partici-
pants, in this case the SSVEP-based interface can offer an
alternative. The optimal interface needs to be customized
individually.

INTRODUCTION

A brain-computer interface (BCI) can be seen as a spe-
cific type of Human-Cumputer Interaction (HCI) device.
BCI can be defined as system that replaces, restores, en-
hances, supplements, or improves natural central nervous
system output [1], or more general, as a device that com-
municates with other devices (or adjust the communica-
tion between them) via the brain signals [2]. The most
common BCI approaches are the event-related desyn-
chronization/synchronization (ERD/ERS) [27], steady
state visually evoked potential (SSVEP) [28, 29, 16], and
the P300 event-related potential (ERP) [3]. This arti-
cle focuses on BCIs based on SSVEPs, neural responses
which are evoked by repetitive visual stimuli (e. g. flick-
ering boxes on a computer screen).
Though SSVEP-based BCIs have shown to be fast and
reliable [4, 5], its dependency on eye gaze could exclude
patients with lack of oculomotor control from using such
systems and they therefore compete with other healthcare
applications based on gaze direction. Another control
method that also depends on gaze direction is eyetrack-
ing. Eye trackers are devices that compute the gaze di-

rection; the calculated gaze coordinates can be used to
classify objects the user is interested in. Typically, the
eye movements are tracked by utilizing infrared technol-
ogy and a high-resolution camera. Meanwhile commer-
cial eye-tracking devices have become a valuable tool in
augmentative communication [6].
Eye-tracking devices are generally considered more prac-
tical than SSVEP-based BCIs as they are faster and the
required setup is much simpler; usually only the short
calibration is necessary. However, some studies suggest
that the performance gap between the two technologies
might be smaller than expected. Kishore et al. compared
the two methods using a head-mounted display (HMD) as
a means of controlling gestures of a humanoid robot [7].
They found that both methods are appropriate for usage
in immersive settings, but results for the eye tracker were
surprisingly poor (two out of ten participants did not suc-
ceed in triggering gestures of a controlled robot using the
eyetracker). It was stated though, that there were tech-
nological differences in this setup. Kosmyna and Tarpin-
Bernard tested eye tracking in combination with different
BCI paradigms in a gaming setup. Though they stated
that the combination of eye tracking and SSVEP was
slightly slower, it was more accurate than the pure Eye-
Tracker [8].
One major obstacle with the eye tracking technology is
the so called “Midas touch-problem” (see e. g. [9]). Usu-
ally the activation of a selected target object is based on
dwell times; the user has to focus on a target object for
an extended period. But the system cannot differentiate
intentional from unintentional fixation, which can easily
lead to false classifications. Another disadvantage is that
any visual correction such as glasses or contact lenses can
reflect the infrared (IR) light and thus make the read-
ings inaccurate (optical eye trackers use the reflection
of IR light for pupil recognition). Suefusa and Tanaka
compared the eye-tracking with SSVEP when dealing
with small targets [10]. They found that for short selec-
tion times the SSVEP-based BCI had higher information
transfer rates (ITRs) then the eye-tracking interface for
small size (square, 20 mm) targets. They suggested also
that for small screen sizes (e. g. smartphone, tablets) BCI
can be a better choice then eye-tracking.
The implementation of SSVEP-based BCIs as spelling
interfaces has been a major research field in the BCI
community. An important issue preventing a broader
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use of BCIs is so-called BCI illiteracy (also synony-
mously called BCI deficiency), basically describing the
fact that a BCI cannot detect the intentions of the user
accurately [11]. That also takes into account the situa-
tions, if the classification accuracy cannot surpass a cer-
tain threshold of e. g. 70% [12]. The BCI literacy rate is
defined reciprocally as the percentage of users who are
able to achieve effective control over the BCI.

Meanwhile, a high number of targets can be implemented
using SSVEP-based BCIs. Higher number of visual
stimuli generally allow higher information transfer rates
(ITRs). Hwang et al. developed a SSVEP-based BCI
spelling system adopting a QWERTY-style LED key-
board [13]. Such multi target applications can also be im-
plemented on computer screens using the frequency ap-
proximation method [14]. Up to 84 simultaneously flick-
ering targets can be controlled utilizing this method [15].

This allows a direct comparison of the two technologies.
In this respect, the reliability, speed and user friendli-
ness of each system was investigated. Each technology
was tested using a custom-made graphical user interface
(GUI) utilizing 30 targets (letters of the alphabet and ad-
ditional characters).

MATERIALS AND METHODS

Participants: Nine users (two female) with a mean
age 23.8 years participated in the study, all students or
employees of the Rhine-Waal University of Applied Sci-
ences in Kleve. Participants were asked not to wear spec-
tacles if their vision was sufficient to identify the indi-
vidual targets, this was necessary because the extra IR
reflection would lead to misreadings of the gaze coordi-
nates. This study was conducted in accordance with the
Declaration of Helsinki. All participants (healthy adult
volunteers) gave written informed consent prior to the
experiment. Information needed for the further analy-
sis was stored anonymously, and cannot be traced back
to the participants. No financial reward was granted for
participation. This research was approved by the Ethical
Review Board of the Medical Faculty of the University
Duisburg-Essen (reference 16-6955-BO).

Hardware: Participants were seated in front of a LCD
screen (BenQ XL2420T, resolution: 1920 × 1080 pixels,
vertical refresh rate: 120 Hz) at a distance of about 60 cm.
The used computer system operated on Microsoft Win-
dows 7 Enterprise running on an Intel processor (Intel
Core i7, 3.40 GHz).

Figure 1: The Graphical User Interface. A participant
was spelling the word “RHINE WAAL UNIVERSITY”.

For the BCI experiment, standard Ag/AgCl electrodes
were used to acquire the signals from the surface of the
scalp. The ground electrode was placed over AFZ , the
reference electrode over CZ , and the eight signal elec-
trodes were placed over PZ , PO3, PO4, O1, O2, OZ , O9

and O10 in accordance with the international system of
EEG electrode placement. Standard abrasive electrolytic
electrode gel was applied between the electrodes and the
scalp to bring impedances below 5 kΩ. An EEG am-
plifier, g.USBamp (Guger Technologies, Graz, Austria),
was utilized.
The sampling frequency was set to 128 Hz. During the
EEG signal acquisition, an analogue band pass filter (be-
tween 2 and 30 Hz) and a notch filter (around 50 Hz) were
applied directly in the amplifier.

Signal Acquisition: The minimum energy combina-
tion method (MEC) [16] was used for SSVEP signal clas-
sification. To detect the signal-to-noise ratio (SNR) of
a specific frequency in the spatially filtered signals the
SSVEP power estimations for all Nf frequencies were
normalized into probabilities,

pi =
P̂i∑Nf

j=1 P̂j
, with

Nf∑
i=1

pi = 1 , (1)

where P̂i is the ith power estimation, 1 ≤ i ≤ Nf .
Further, in order to increase the difference between prob-
abilities, a Softmax function was aplied:

p′i =
eαpi∑j=Nf

j=1 eαpj
with

i=Nf∑
i=1

p′i = 1 , (2)

with α = 0.25.
All classifications were performed online on the basis
of the hardware synchronization of the EEG amplifier
(g.USBamp); the new EEG data were transferred to the
PC in blocks of 13 samples (101.5625 ms with the sam-
pling rate of 128 Hz). The classification was performed
with a blockwise increasing time window (up to 160
blocks) [5, 16].
If the ith stimulation frequency had the highest proba-
bility p′i and exceeded certain predefined thresholds βi
the corresponding target was classified. The thresholds
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Figure 2: Thirty SNR values (equivalent to the number of flick-
ering targets) for one participant (# 1) during spelling of the
word “RHINE WAAL UNIVERSITY”. The black line repre-
sents the SNR value of the frequency of the relevant box with
the letter “I” and the threshold value (in this case 6) The SNR
values representing the previous selection (letter S) is marked.

Figure 3: Path of the Eye-movement from the letter “S” to the
letter “I” for participant # 1. The participant was spelling the
word “RHINE WAAL UNIVERSITY”. Before the selection of
the letter “I” the eye tracker (TheEyeTribe) recorded several
gaze positions across the path from “S” to “I”, when the eye
focused sufficiently long (2 seconds) on the desired box, the
letter was selected.

of the SSVEP GUI were determined in a short calibra-
tion session where the user was asked to spell a short
word of free choice. After each classification the clas-
sifier output was rejected for 914 ms (9 blocks). During
this gaze shifting period, the targets did not flicker and
the user could change her or his focus to another target
unhindered (please also refer to [16] for more details). In
this study the minimal classification time window was set
to 2 seconds, same to the dwell time of the eye tracking
interface.
This minimal time window is based on our previous
studies that implemented this frequency approximation
method [15, 17]. We have observed that a certain
time (greater then the minimal 800 ms for SSVEP re-
sponse [16]) is needed until the desired stimulation fre-
quency can be detected in the EEG signal, in other words,
the brain response to this duty cycle needs longer time
windows.
In the frame-based stimulus approximation method a
varying number of frames is used in each cycle [14, 15].
The stimulus signal at frequency f is generated by

stim(f, i) = square[2πf(i/RefreshRate)], (3)

where square(2πft) generates a square wave with fre-
quency f and i is the frame index.
E. g., the black/white reversing interval for the approx-
imated frequency 17 Hz includes 17 cycles of varying
length (three or four frames). By using the formula
above, the one-second stimulus sequence of 17 Hz can
be generated: (4 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4
3 4 3 4 3 4 3 4 3 4 3 4 3 ). For the online spelling task
with the SSVEP GUI approximated frequencies between
6.1 and 11.8 Hz (logarithmically distributed resolution,
as suggested in our previous research [17]) were used to
avoid overlapping in the 2-nd harmonics.
The Eye-Tracker (TheEyeTribe, Kopenhagen, Denmark)
with the sizes 20 × 1.9 × 1.9 cm, sampling rate 30 Hz,
connected through USB 3.0 port to the PC was used for

tracking the users gaze coordinates. For each participant
a short (below 1 minute) eye tracking calibration run took
place (9 point matrix) with the provided software.

Software:
The spelling interface displayed 30 buttons which were
arranged into 5 rows (see Fig. 1). For the SSVEP sys-
tem each box flickered, using the aforementioned frame-
based stimulus approximation method. Any desired char-
acter could be selected in a single step. Each box was
outlined by a frame which determined the maximum size
a box could reach. The box sizes varied between 130×90
and 170×120 pixels, mirroring the current SNR power
distribution of the corresponding frequency. For the eye-
tracking system the box size mirrored the duration of the
total gaze position frames over the box during the dwell
time (longer gazing time on a box = bigger box). In order
to further increase the user friendliness, every command
classification was followed by an audio feedback with the
name of the selected command or the letter spelled.

Experimental Setup: After signing the consent form,
each participant was prepared for the EEG recording.
Participants were asked to complete spelling tasks for
both devices in random order. Initially users participated
in a familiarization run, spelling the word “KLEVE” and
a word of their own choice (e. g. their first name). After-
wards, they were instructed to spell the phrase “RHINE
WAAL UNIVERSITY” (name of our University). The
spelling phase ended automatically when the phrase was
spelled correctly. In case a user was not able to exe-
cute a desired classification within a certain time frame,
or if repeated false classifications occurred, the experi-
ment was stopped manually. Spelling errors were cor-
rected via the “delete” button. Information needed for the
further analysis was stored anonymously during the ex-
periment. After the test phase the participants completed
a post-questionnaire, answering questions regarding the
preferred spelling application. The entire session took on
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Table 1: Results of the spelling performance. The phrase “RHINE WAAL UNIVERSITY” was spelled with the SSVEP,
and Eye-Tracker interface, respectively. For each system one participant was not able to gain sufficient control. These
two participants (3 and 9) were excluded from the calculation of the corresponding mean values.

SSVEP Eye
Subject Time Acc. ITR character/min Time Acc. ITR character/min

[s] [%] [bpm] [s] [%] [bpm]
1 184.133 81.82 35.91 10.75 62.867 100.00 98.35 20.04
2 188.906 78.38 36.47 11.75 64.796 100.00 95.42 19.45
3 N/A N/A N/A N/A 107.111 86.21 59.43 16.24
4 91.711 100.00 67.41 13.74 56.063 100.00 110.28 22.47
5 431.641 73.33 17.36 6.26 60.125 100.00 102.83 20.96
6 200.180 83.87 32.39 9.29 70.890 95.65 86.39 19.47
7 114.359 100.00 54.06 11.02 61.242 100.00 100.96 20.57
8 156.914 95.65 39.03 8.79 75.563 95.65 81.05 18.26
9 276.859 86.21 22.99 6.28 N/A N/A N/A N/A

Mean 205.588 87.41 38.20 9.74 69.832 97.19 91.84 20.18
SD 107.309 10.07 16.10 2.62 16.280 4.85 16.02 1.34

average about 35 minutes for each user. Participants had
the opportunity to opt-out of the study at any time.

RESULTS

The overall BCI performance for both tested spelling ap-
plications is given in Table 1. Provided are the time T
needed to complete the task, the command accuracy P
and the commonly used information transfer rate (ITR)
in bits/min:

B = log2 N + P log2 P + (1− P ) log2

[
1− P

N − 1

]
, (4)

whereB represents the number of bits per trial. The over-
all number of possible choices (N ) was 30.
The accuracy P was calculated based on the number of
correct command classifications divided by the total num-
ber of classified commands Cn. To obtain ITR in bits per
minute, B is multiplied by the number of command clas-
sifications per minute. To obtain the average command
classification time, the total time needed for the spelling
task, T , was divided by Cn.

DISCUSSION

As can be seen in Table 1, BCI performance varied con-
siderably between participants. While most participants
performed better with the eye tracking GUI, not all were
able to use it.
The average accuracy achieved with the SSVEP in-
terface (87%) was significantly lower than the accu-
racy of the Eye-Tracking device (97%). A paired Stu-
dent’s t-test (with unpooled variances) revealed a statis-
tically significant difference between the mean accura-
cies t(10) = 2.475, p¡0.05. Further, participants reached
a mean ITR of 38.2 bpm with the SSVEP-based BCI
and 91.8 bpm with the Eye-Tracking device, respectively.
However, for each of the interfaces, one participant did
not gain sufficient control.

Except for subject 9, all participants achieved better per-
formance with the Eye-Tracking system.
Some users stated that the SSVEP interface was the
more exhausting one. The comparably low accuracy also
caused frustration for some participants. In addition to
that, the time the user had to focus their gaze at a target
was generally larger for the SSVEP GUI. The average
command classification time (including the gaze shifting
period) was 7.3 seconds for the SSVEP GUI, which is
considerably longer than the mean classification times for
the eye tracking system (on average 5.9 seconds). The
importance of the of appropriate time window length has
already been discussed e. g. in [18].
The obtained performance with the SSVEP GUI is quite
promising; a mean ITR of 29.82 bpm was achieved.
These results indicate the potential use of noninvasive
SSVEP-based BCIs as a standalone high-speed commu-
nication tool. Though multitarget BCIs usually allow
higher speed, slightly worse BCI accuracies have been
previously reported with a higher number of stimuli [15].
The literacy rate is generally higher with BCIs imple-
menting a low number of visual stimuli; some larger BCI
studies with only four targets reported that even all users
were able to gain control over the application [4, 5, 19].
Higher classification accuracies can be achieved with
fewer targets [15]. Low target SSVEP-based BCI are
therefore more suitable for hybrid systems, which com-
bine input signals of different brain patterns, or biosignals
such as eye gaze (see e. g. [20, 21, 22, 23, 24]).
Reliability of such systems could be improved further
e. g. through user specific parameter setup [5].
While speed attracts much attention in development of
BCI application, high accuracies are the priority for con-
trol applications and also tend to provide the highest liter-
acy rate. This is especially relevant as demographic fac-
tors influence BCI performance, e. g. elderly people are
slightly poorer BCI performers [25]. Eye tracking de-
vices, on the other hand, may be affected by the ethnicity
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(e. g. asian origin) or physiology (e. g. ptosis of the eye-
lid) factors of the participant [26].
Further tests with brain-injured patients are desirable, as
results might differ from findings of this study. In fu-
ture our focus lies on further development of low target
SSVEP-based BCIs and data fusion with eye tracking de-
vices.

CONCLUSION

The presented study compares performance of an
SSVEP-based BCI with an Eye-Tracking device. These
two communication technologies were tested with nine
healthy participants in order to explore the speed and ac-
curacy of each system.
Though all participants achieved reliable control over at
least one of the tested systems; both the SSVEP-BCI sys-
tem as well as the system based on Eye-Tracking could
not interprete the user intend accurately in all cases. The
comparison of mean values for literate participants shows
that ITR as well as classification accuracy was signifi-
cantly higher for the Eye-Tracking device. The results
demonstrate, however, that each of the devices has its
advantages and disadvantages, and should be chosen for
each user individually.
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