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Abstract. An electroencephalography (EEG) based brain computer interface (BCI) system with the ability of choosing
among 4 options reliably every 1 second has been developed. The system has been used to control a tele-operated robot
or wheelchair. The commands from the BCI system have been used as high and low level commands to control the
tele-operated robot/wheelchair. High level BCI commands take advantage of autonomous navigation implemented on
the target device for indoor and outdoor environments. The BCI system has been running at Northeastern University
while the robot/wheelchair were at Worcester Polytechnic Institute (WPI).
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1. Introduction
EEG-based brain-computer interfaces (BCIs) can be categorized into three categories, steady state visually evoked
potentials (SSVEP) [Sutter, 1992; Nezamfar et al., 2011], event-related potentials (ERP) [Krusienski et al., 2008], and
motor imagery signals [Wolpaw, 2012]. Among these categories, SSVEP signals are the fastest and they have higher
signal to noise ratio (SNR). Therefore, they are more suitable for control applications. One of the major target groups
to use such systems are people who are functionally locked-in, or who have extremely little muscle movements. We
developed a closed-loop brain-controlled tele-operated robot system that currently utilizes SSVEP-based command
inference and interfaces with a variety of robots including Oryx 2.0, a planetary rover, a standard power wheelchair,
and iCreate. The framework allows the operator to provide high and low level control commands to the robotic device,
which might be tele-operated or could be providing a lift to the operator. The system can be extended by introducing
more comprehensive assistive robots in the control loop and developing an improved inference assessment algorithm.

2. Brain-Computer Interface
The BCI in this work is an EEG-based system that utilizes SSVEP. Signals are generated by showing multiple flickering
checkerboards on the screen, representing different command options. Each checkerboard inverts its colors according
to a set of pseudo-random bit sequences called M-sequences. When the subject attends to one of the checkerboards to
demonstrate the intention to select the corresponding command, a response signal corresponding to the one attended
is generated in visual cortex. Consequently, by classifying this response according to the signature responses for each
bit sequence, the system can decide on the command intended by the operator [Nezamfar et al., 2011].

2.1. BCI Operation
The EEG signal acquisition is done using a g.USBamp (g.tec). Only one electrode, placed on Oz according to the
international 10/20 system, is used to sense and classify the brain activity. During calibration, which takes about 5
minutes, each M-sequence will be presented 50 times. Based on previous analysis [Nezamfar et al., 2011], template
signals built using 50 repetitions of M-sequence periods are highly robust and result in high classification accuracy.
After examining the calibration performance using 5-fold cross-validation, template signals ti in response to each
checkerboard’s flickering pattern are generated. The distance between the operator’s eye and the display was 60 cm
and each checkerboard, containing 7×7 checkers, was 7 cm by 7 cm.

2.2. Classification Method
The classifier used is a matched filter classifier. To classify the EEG signal into one of the four choices, classifier
extracts EEG signal y in response to a complete presentation of a sequence using a synchronization signal which
marks the beginning of the presentation of the M-sequences along with the EEG signal. Next the correlation ρi = yT ti
between each template signal ti and the extracted portion of EEG signal y is taken and the one with the highest
correlation will be considered as the decision D= argmaxi ρi. M-sequences used are of length 31 bit, and the frequency
of the presentation is 30 Hz, so a complete presentation of a sequence takes about 1.03 seconds. Therefore, the classifier
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is able to detect decisions roughly every one second. SSVEP responses by nature have about 100 ms delay, in other
words the effect of the stimuli shows up in the EEG signals approximately 100 ms after the stimuli onset. The network
delay between the BCI system and the robot was 140ms on average. Considering all of the above, the time period
between subject making a decision and robot receiving the new command over the network is less than 1.3 s.

Figure 1: System State Diagram.

2.3. Probabilistic filtering of the human input
In this work, we have proposed and implemented a probabilistic context-
aware filter which ensures a desired level of confidence in BCI-generated
commands by incorporating the human/BCI probabilistic model with the
probabilistic transition model calculated based on the context [Russel,
2010]. The two main components defining a probabilistic filter behavior
are sensor model and transition model. The sensor model P(Xt+1|E1:t+1)
describes the probabilistic relationship between the human intended des-
tination (or command) and the actual measured BCI output at time t +1
which can be dynamically updated based on the user input log avail-
able up to the current moment. Transition model P(Xt+1|Xt), describes the probabilistic relationship between the
current human intent and next human intent. With these definitions, the belief state can be calculated recursively
P(Xt+1|E1:t+1) = αP(Et+1|Xt+1)∑xt P(Xt+1|xt)P(xt |E1:t) where xt is a particular value of the random variable Xt , and
α is a normalizing constant that makes the belief state probabilities sum to 1. Each new BCI command updates the
belief state of the user’s intention. Now, we can generate a new destination setpoint for the path planner only if prob-
ability of one of the values in the belief state exceeds a predefined threshold, and is different from the previously set
destination setpoint.

3. Results and Discussion
Table 1: Experiment Task Durations.

Route Duration W.O. Filter, [sec] Duration W. Filter, [sec]
1 2 3 Avg. 1 2 3 Avg.

D3→ D2 60 64 62 62.0 44 51 42 45.7
D2→ D1 60 54 40 51.3 35 35 32 34.0
D1→ D3 109 145 150 134.7 56 54 75 61.7

To verify the effect of high level commands with probabilistic
context-aware filtering we defined three destinations D1, D2 and
D3 as the three high level choices. The subject was asked to move
the wheelchair from D3

10m→ D2
6m→ D1

16m→ D3 three times without
probabilistic filtering and three times with probabilistic filtering.
In total a 192 meter distance was covered in the evaluation. Ta-
ble 1 shows the time needed to complete each route which verifies that this filtering can reduce the task duration. The
target device needs to know the environment, which can be done once and updated each time a task is executed. In
this experiment, the wheelchair tachometer, a 2D laser range finder (LIDAR), and an inertial measurement unit (IMU)
constitute the perception of the robot. In the BCI system using pseudo-random bit sequences has numerous advantages
over using frequencies to induce SSVEP response. Firstly, M-sequences are broadband sequences, therefore it is more
robust to background activity in specific frequency bands. Secondly, it allows the usage of more stimulus objects e.g.
checkerboards, than the frequency based presentation, because as the frequencies get closer with increasing number
of stimuli, the separability of peaks in power spectrum considerably decreases.
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